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Abstract: The collapse of quasi-two-dimensional pseudospin-1/2 Bose-Einstein condensate of attract-
ing atoms with intra- and cross-spin interaction is studied in the presence of the Rabi coupling. The
condensate dynamics is presented as a function of the self-interaction and Rabi frequency. The evolu-
tion of two components of the condensate by using the Gross-Pitaevskii equations is investigated.
The initial Gaussian ansatz for two-component wave functions is selected for the better interpretation
of the numerical results. The intra-spin-coupling modifies the critical number of atoms causing the
collapse while the collapse is observed only in a single pseudospin component. It is demonstrated
that for cross-spin-coupling only double spin-components collapse can occur.

Keywords: collapse; Bose-Einstein condensate; Gross-Pitaevskii equation; synthetic magnetic field;
Rabi frequency; pseudospin

1. Introduction

Understanding of behavior of nonlinear quantum systems, including solitons and in-
stantons, is critically important for understanding of quantum field and particles physics [1].
Thus, studies of experimentally available nonlinear quantum condensed matter systems
can shed light on variety of processes occuring on much smaller spatial scales and involv-
ing much higher energies. One of those nonlinear quantum condensed matter systems
is Bose-Einstein condensate (BEC) of interacting atoms [2]. The BECs open new research
avenues in low-energy quantum physics as well as in astrophysics and cosmology, where
they are actively studied for the understanding of the nature of mysterious Dark Matter [3]
and possible alternatives of the relativistic neutron stars as boson stars. The nonlinear
self-interaction that can be “repulsive” or “attractive” due to the Feshbach resonance [4] or
dipolar interactions [5,6] is critically important for the BECs properties. The attractive inter-
action in the BEC can produce solitons [7], quantum droplets [8,9], collapse processes [10],
and many other phenomena.

The BEC collapse is a dynamical process, corresponding to the squeezing of the char-
acteristic size of the condensate into a point and sequentially an explosion as occurs in
the experiments [11–14]. The collapse process depends on the dimension of the system
and interatomic interaction. For instance, in a one-dimensional system, a cubic inter-
atomic attraction in the condensate characterizes soliton dynamics [15] rather than the
collapse. However, in the presence of the stronger quintic nonlinearity, the condensate can
collapse [16]. In three dimensional systems with cubic nonlinearity attractive interaction
always leads to the BEC collapse while in two dimensions a critical number of atoms is
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needed for the collapse to occur. The stabilization of the collapse opens a wide range of
possible features of self-attracting BEC with the studies carried out by introducing a variety
of obstacles into the self-attraction of the condensate [17–23].

In this paper we study the quasi-two-dimensional BEC of atoms with pseudospin-1/2.
Studying the cubic nonlinearity, the main focus will be on two types of interactions: intra-
and cross-spin coupling of components [24–26]. To produce the spin dynamics, we use
an external synthetic Rabi magnetic field which leads to redistribution of the condensate
density between the spin components. As a result, we will demonstrate the collapse of
the condensate depending on the type of interactions: (i) with the intra-spin interaction
the collapse can be observed only in one spin component depending on the Rabi field
strength; (ii) with the cross-spin interaction the collapse can be observed only in both spin
components for a sufficient strength of the Rabi field.

Controlled collapse of two and three-dimensional condensate is demonstrated in [17]
through changing scattering length of atoms, that is in the framework of time-dependent
inter-atomic interaction g. As a result, the stability of the condensate is limited in time,
eventually switching into collapse. Here, we apply a Rabi field to rotate the BEC pseu-
dospin and the spin rotation leads to the oscillation of condensate density between spin
components consequently modifying inter-atomic interaction. Thus we obtain the effect
being similar to the oscillated interatomic scattering length used in Ref. [17]. Despite this
similarity, the physics of the problem studied here is considerably richer since, as it will be
shown, various forms of collapse and collapse inhibition can occur here.

2. The Model and Main Parameters

The collapse dynamics of quasi-two-dimensional BEC with pseudospin-1/2 coupled
by the synthetic Rabi magnetic field is characterized by evolution of the wave functions
ψi ≡ ψi(r, t) (i = 1, 2) with the total norm N, r ≡ (x, y). The evolution of the wave
functions is described by the Gross-Pitaevskii equations (GPEs) in the form:

ih̄∂tψ1 = − h̄2

2m
∆ψ1 −

g
1 + |κ|

[
(1− κ)|ψ1|2 + (1 + κ)|ψ2|2

]
ψ1 +

Ω
2

ψ2,

ih̄∂tψ2 = − h̄2

2m
∆ψ2 −

g
1 + |κ|

[
(1− κ)|ψ2|2 + (1 + κ)|ψ1|2

]
ψ2 +

Ω
2

ψ1 .

(1)

Here m is the atomic mass, the interaction constant g = 4πh̄2|as|/maz, az is the conden-
sate extension along the z axis, and as < 0 is the s-wave scattering length. The Rabi
frequency Ω corresponds to the effective Zeeman magnetic field directed along the x-axis.
In the system of GPEs (1) κ = −1, 0, 1 describes the intra-, total and cross-spin interaction,
correspondingly. The spin components are normalized by

Ni = 2π
∫ ∞

0
|ψi(r, t)|2rdr , (2)

where (i = 1, 2), Ni ≡ Ni(t) and the total norm N = N1 + N2 is conserved.
Since the dynamics of the collapse is characterized by the density profile of the con-

densate components, we study the evolution of widths of the spin components and spin
dynamics driven by Rabi field for given inter-atomic interactions. The evolution of the
width of the spin components is characterized by time-dependent inverse participation
ratio in the form:

ai(t) =
Ni√
2π

[∫ ∞

0
|ψi(r, t)|4rdr

]−1/2
. (3)

The nonlinear condensate dynamics has a strong impact on the evolution of spin compo-
nents defined by

〈σj(t)〉 =
2π

N

∫ ∞

0
{ψ∗1 , ψ∗2}Tσj{ψ1, ψ2} rdr , (4)
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where σj (j = x, y, z) are corresponding Pauli matrices, “*” stands for the complex conjugate
and “T” is the transposition. Consequently, the length of the spin vector P(t) [27]

P(t) =
√

∑
j
〈σj(t)〉2 ≤ 1, (5)

corresponding to the decreased purity of the condensate in the spin subspace.
From Equation (1) the total energy of the system is given by

Eκ
T = EK + Eκ

I + ER . (6)

Here EK, Eκ
I , and ER are the kinetic, interaction, and Rabi magnetic field energies, respec-

tively, determined by

EK = −2π
∫ ∞

0

h̄2

2m
[ψ∗1 ∆ψ1 + ψ∗2 ∆ψ2]rdr , (7)

Eκ
I = − πg

1 + |κ|

∫ ∞

0

[
(1− κ)

[
|ψ1|4 + |ψ2|4

]
+ 2(1 + κ)|ψ1|2|ψ2|2

]
rdr , (8)

ER = πΩ
∫ ∞

0
[ψ∗1 ψ2 + ψ∗2 ψ1]rdr . (9)

From Equations (4) and (9) follows, the Rabi magnetic field energy can be characterized
with spin parameter 〈σx〉 by ER = N〈σx〉/2.

For the numerical solution of Equation (1) we assume that at t = 0 one has g = 0 and
Ω = 0, and the condensate is prepared in the ground state of harmonic potential. At t > 0
the harmonic potential is suddenly switched off and simultaneously the interaction and
the Rabi magnetic field are switched on causing the BEC dynamics. Thus, we start with the
Gaussian ground state wave function with the initial spin along the z-axis

ψ1(r, t = 0) =

√
N

πa2
0

exp

[
− r2

2a2
0

]
, (10)

where a0 is initial width of the condensate and ψ2(r, t = 0) = 0. Hereafter we use the
units with m = h̄ ≡ 1 and consequently dimensionless g = 4π|as|/az, unit of length ` is
arbitrary and unit of time is `2.

To have a reference point we assume that the condensate is prepared in the ground
state form (10) and in Equation (1) Ω = 0, κ = 0. Thus, Equation (6) yields

E0 = − N
2π

Λ
a2

0
, (11)

where Λ = (gN − λcr)/2 and λcr = 2π is the critical interaction parameter gN to obtain
the collapse as characterized by condition E0 → −∞ for a0 → ∞ satisfied only if Λ > 0 [28].
In this case the corresponding time dependent width is given by [29]

av(t) = a0

√
1− Λt2

a4
0

, (12)

with the collapse time being Tc = a2
0/
√

Λ.
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For a qualitative explanation of the Rabi magnetic field effect, we use Gaussian ansatz
for two-component wave functions in the form,

ψ1(r, t) =

(
N

πã′ 2
1 (t)

)1/2

exp

[
− r2

2ã2
1(t)

]
cos

(
Ω
2

t
)

,

ψ2(r, t) =

(
N

πã′ 2
2 (t)

)1/2

exp

[
− r2

2ã2
2(t)

]
sin
(

Ω
2

t
)

.

(13)

Here, we assume the ã2
i (t) is a complex number. The real part Re[ã2

i (t)] > 0 in order to
have a wave function of Gaussian form with ã′ 2

i (t) = Re[ã2
i (t)].

In the wave functions (13), Ω is the spin precession rate corresponding to oscillations
of the condensate density between spin components. From the ansatz functions (13) we
can characterize widths of spin components by(

2π

N

∫ ∞

0
r3|ψ1(r, t)|2 dr

)1/2
=
|ã1(t)|2

ã′1(t)

∣∣∣∣cos
(

Ω
2

t
)∣∣∣∣,(

2π

N

∫ ∞

0
r3|ψ2(r, t)|2 dr

)1/2
=
|ã2(t)|2

ã′2(t)

∣∣∣∣sin
(

Ω
2

t
)∣∣∣∣.

(14)

Here the widths of the spin-projected wave packets are characterized by |ã1(t)|2/ã′1(t)
where factors with cosine and sine functions are explicitly related to the spin rotation. If in
Equation (14) Im[ã2

i (t)] = 0, then the spin components widths are characterized by ãi(t).
Since the kinetic and Rabi-field related energies do not explicitly depend on the self-

interaction type, then for ansatz functions (13) the Equations (7) and (9) become:

EK =
N
2

[
1

ã′ 2
1 (t)

cos2
(

Ω
2

t
)
+

1
ã′ 2

2 (t)
sin2

(
Ω
2

t
)]

, (15)

ER = ΩN
ã′1(t)ã′2(t)
|ã1(t)ã2(t)|2

ã′ 2
1 (t)|ã2(t)|4 + ã′ 2

2 (t)|ã1(t)|4

|ã2
1(t) + ã∗ 2

2 (t)|2
sin(Ωt). (16)

Consequently, as can be seen from (16), the Rabi energy can be positive or negative, in
order to compensate kinetic and self-interaction energies depending on the spin state.

3. Numerical Results and Discussion
3.1. Intra-Spin Interaction

In this section we discuss the dynamics of the intra-spin interacting condensate with
κ = −1 in Equation (1). Since at time t = 0, the initial spin (10) is directed along the z-axis,
at time t > 0 the applied Rabi magnetic field starts to rotate the spin and the wave function
of the second spin component became nonzero. Correspondingly, the density of the con-
densate included in (1) splits between two spin components, thus reducing the interaction
between atoms because of the absence of spin cross-coupling term. As a result, although
for a weak Rabi field, the attractive self-interaction will be reduced by reorientation of spin
and density redistribution, the condensate eventually collapses. However, for a sufficiently
strong Rabi field, spin rotation provides oscillations of interaction on the 2π/Ω timescale
and can prevent the collapse, similar to the effect studied in Ref. [17].

Now, for intra-spin interaction κ = −1 we apply the ansatz functions (13) to (8) and
we obtain the interaction energy in the form

Eκ=−1
I = − gN2

4π
cos4

(
Ω
2

t
)

ã′ 2
1 (t)
|ã1(t)|4

− gN2

4π
sin4

(
Ω
2

t
)

ã′ 2
2 (t)
|ã2(t)|4

. (17)
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On the right hand side of the Equation (17), the first and second terms characterize the
interaction energies of the intra-spin components and the Rabi field. They are introduced to
demonstrate oscillations of these energies between the spin components. As follows from
Equation (14), in Equation (17) factors ã′ 2

i (t)/|ãi(t)|4 characterize the inverse square of the
widths of spin components. Then the condensate collapses at least in one spin component,
if ã′ 2

i (t)/|ãi(t)|4 → 0 and Eκ=−1
I → −∞, respectively. On the other hand, it is difficult to

collapse both spin components due to the cosine and sine functions in Equation (17), since
due to the fourth power, these functions can remain close to zero for a significantly long
time compared to the collapse time.

Since the spin rotation frequency is Ω, the characteristic spin flip time is
Ts f = π/Ω + 2πk/Ω, k = 0, 1, 2, . . .. At the time π/2Ω, the occupations of the spin com-
ponents become close, then the interaction energy (17) has decreased by a factor of 2. As
a result, Tc = π/2Ω could, in general, be a probable moment of collapse of the double
spin components under the condition of sufficiently large self-interaction, gN > 4π. On
the other hand, at t = π/2Ω it follows from Equation (16) that the Rabi field-related
energy can be either positive or negative with corresponding kinetic and self-interaction
energies being dependent on the spin state. Therefore, simultaneous collapse in both spin
components is difficult to achieve. Eventually, π/2Ω is a border time of collapse due to
the transfer of density between two spin components. As a result, the condition for the
collapse of the first spin component before the first spin flip is Ts f > 2Tc (k = 0), i.e.,
Ω < π

√
gN − 2π/(2

√
2a2

0). This means that for a weak Rabi field, the first spin compo-
nent collapses, and for a sufficiently large Ω, one of the spin components can collapse, as
depends on the Rabi field.

The Figure 1 presents the stability and collapse of diagram of the two spin components
in the (gN, Ω)-plane. In the figure, the panels (a) and (b) are plotted for two different initial
widths presented in the caption, and the initial wave function is described by (10). The
results show that when the Rabi coupling is switched on, the critical value of gN is shifted
up from 2π to ≈ 2π × 1.33. The transitions between different types of collapse show a
complex domain structure. For gN < 4π, the Rabi frequency can provide a stable BEC at
Ω ≈ π

√
gN − 2π/(2

√
2a2

0). Also, comparing panels (a) and (b) of the Figure 1, it can be
seen that decreasing the initial width of the condensate increases the Rabi collapse field of
each spin component, requiring a stronger Rabi field.

Figure 1. The diagram of stable and collapsing condensate is plotted in (gN, Ω)−plane for intra-spin
interaction κ = −1 given in Equation (1). The left panel (a) and the right panel (b) are plotted for
initial width of condensate a0 = 1 and a0 = 1/

√
2, correspondingly. Below in the next figures we

will present characteristic dynamics of the condensate for the values of (gN, Ω) from the fixed points
(1,2,3) in the panel (a).

The Figure 2 demonstrate dynamics of the condensate width and spin evolution,
defined by Equations (3) and (4). The panels (a), (b), (c) a related to the values (gN, Ω)
given by points (1,2,3) in Figure 1, correspondingly. The panel (a1) presents collapse of the
first spin component because for given values of (gN, Ω) = (1.32λcr, 0.1λcr) the condition
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Ω < π
√

gN − 2π/(2
√

2a2
0) is satisfied. Nonetheless, by comparing a1(t) and a(t) one can

see that this weak Rabi frequency changes the collapse time with respect to Ω = 0. Also,
for the same interaction and Rabi frequency, from the Figure 2(a2) it follows that the total
spin is reoriented in another direction rather that follows for a rotation expected due to
the Rabi field, because 〈σx〉 6= 0. Consequently, the length of the spin vector P(t) < 1 near
the Tc.

(a1)

a1(t) a2(t)

a(t)
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Figure 2. The plot of spin-components width (a1–c1) and spin rotation dynamics (a2–c2) versus time
for intra-spin interaction κ = −1 in Equation (1). The panels (a–c) correspond to the values of (gN, Ω)

given as (1.32λcr, 0.1λcr), (1.32λcr, 0.42λcr), (1.57λcr, 0.42λcr) from fixed points (1,2,3) in the Figure 1,
correspondingly. In the panels (a1,c1) the width a(t) are plotted for Ω = 0 to compare the collapse
times with non-spin effect.

The panel (b1) of Figure 2 shows that a relatively strong Rabi frequency at
(gN, Ω) = (1.32λcr, 0.42λcr) can stabilize the BEC and, correspondingly, the spin (b2)
is rotating perfectly in the spin subspace (σy, σz), with the conserved length P(t) ≈ 1. The
panel (c1) of Figure 2 demonstrates collapse of the second spin component for the inter-
action gN > 1.33λcr (point (3), (gN, Ω) = (1.57λcr, 0.42λcr)). One can see from the panel
(c1) that at time t < Ts f /2 the widths a(t) and a1(t) are the same because the interaction
is relatively strong therefore first spin component is squeezed. From panel (c2) it follows
that at time Ts f < Tc the spin is flipped to spin-down and then the condensate collapses.
Here also close to time Tc the spin length is P(t) < 1. Comparison of a(t) and collapsing
ai(t) in panels (a1) and (c1) implies that switching the collapse between spin components
increases the collapse time Tc compared the realization without the spin-related effects. It
may be noticed that in the panels (a2), (b2) and (c2) always 〈σx〉 < 0 that is reorientation of
the initial spin state. The sharp jump of the widths ai(t) in panels (b1) and (c1) corresponds
to spin flip time Ts f .

The Figure 3 presents density cross-section profiles of the condensate for the same
values of the Rabi frequency and interaction parameters from panels (a) and (b) of the
Figure 2 for collapse and stable, BEC correspondingly. The panels (a1), (a2) and (c1), (c2) of
Figure 3 demonstrate the density evolution of the spin components. The panels (b1) and
(d1) demonstrate spin rotation of σz and panels (b2) and (d2) show spin reorientation in
the σx direction. From panels (a1) and (b1) it follows that the condensate collapses in the
first spin component at a time Tc < Ts f because of a weak the Rabi frequency. It follows
from panel (a2) that the density of the second spin component is almost zero since spin
cannot rotate but it is reoriented because σx 6= 0. The panels (c1) and (c2) clearly show the
evolution of the density transition between spin-up and spin-down states and panel (d1)
shows pure spin rotation due to a large Rabi frequency. It follows from the panels (b2) and
(d2) that the initial spin is reoriented and σx < 0 that can compensate the interaction energy
for collapse or stable BEC. All presented density plots are in the same scales shown on the
right side with arbitrary units.

As a result, we numerically demonstrated that in the case of intra-spin interaction,
the Rabi frequency oscillations lead to different time dependence of the density profiles
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in the spin up to spin down components. Density redistribution between the components
decrease self-interaction in each component. Thus, the Rabi rotation at frequency Ω can
produce BEC stable against the collapse or collapse of one of the components. The intra-spin
interaction can lead to the reorientation of the spin from that expected for the Rabi rotation
by producing 〈σx〉 < 0 state. In addition, the initial extension of the condensate strongly
modifies the effect of the Rabi field on the BEC collapse.
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Figure 3. The density plot of the condensate parameters taken from panels (a,b) of Figure 2 is
presented for the corresponding values of (gN, Ω). The panels (a1,c1) are demonstrating |ψ1|2 and
(a2,c2) are demonstrating |ψ2|2. The panels (b1,d1) are demonstrating σz and (b2,d2) are demonstrat-
ing σx. The plots are presented in the plane (x, t) for intra-spin interaction κ = −1 in Equation (1).
The values of (gN, Ω) are given from the points (1, 2) of the Figure 1, correspondingly, for collapsing
and stable BEC. The density scales on the right side are the same for all panels with arbitrary units.
Here the panels (a,b) are presenting collapse of the first spin component with corresponding spin
dynamics and the panels (c,d) are presenting stable condensate with total density transition between
spin components and corresponding spin rotation.

3.2. Cross-Spin Interaction

In this section we discuss the cross-spin interaction with κ = 1 in Equation (1), that
can provide collapse of the condensate by applying the Rabi field. Since we take the initial
spin (10) along z-axis (ψ2(x, t = 0) = 0), then it follows from Equation (1) that to switch on
the cross-spin interaction the Rabi frequency should be nonzero.

With the cross-spin coupling the self-interaction energy (8) is given by

Eκ=1
I = − gN2

4π
sin2 [Ωt]ã −1

12 (t), (18)

where ã12(t) is

ã12(t) =
|ã1(t)|2

ã′1(t)
+
|ã2(t)|2

ã′2(t)
. (19)

On the other hand, at the moment of time Tk = πk/Ω the energy (18) also be-
comes zero due to sin2[Ωt] function. Thus, a sufficient self-interaction occurs only if
the BEC spin |〈σz(t)〉| < 1. Eventually, the condensate can collapse only at ã12(t) → 0,
and it follows from Equation (19) that the collapse can be ensured only in two spin
components simultaneously.

The Figure 4 demonstrates the stability and collapse diagram of two spin components
in the (gN, Ω)-plane. It follows from the figure that collapse can occur as Ω exceeding a
certain critical value of ≈ 0.4π and sufficiently large gN > 6π .

The Figure 5 demonstrates the collapse and stable dynamics of the BEC for given
values of (gN, Ω) from fixed points (1) and (2) of Figure 4, correspondingly. The panels
(a1) and (b1) correspond to the time evolution of the width, and the panels (a2) and (b2)
correspond to the total spin rotation dynamics. The plot (a1) demonstrates the widths of
both spin components tend to zero, as consistent with the interaction energy (18). Near
the collapse time Tc, the widths show some increase since, as it follows from plot (a2), at
this time the spin is flipped to spin-down and 〈σx〉 ≤ 0 leading to a decrease in the self-
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interaction. Thus, this behavior of the widths of the spin components can be explained as
follows. Since ER ∼ 〈σx〉, it follows from the plot (a2) that the attraction interaction energy
(18) is compensated by the Rabi magnetic field energy at 〈σx〉 > 0 and a sharp change in
this energy at 〈σx〉 ≤ 0 leads to expanding of the condensate. Finally, due to a relatively
fast spin rotation, one obtains 〈σx〉 > 0 and consequently, the condensate collapses. Also,
due to this interplay of the energies in the panel (a1) one can see the collapse time with
cross-spin interaction is considerably larger than a(t) that corresponds to the spinless
condensate. The panel (b1) of Figure 5 demonstrates the widths of spin components with
their interrelated behavior for stable condensate with the values of (gN, Ω) from the fixed
point (2) of Figure 4. The sharp changes in the widths correspond to transitions between
the spin up and down states with the Rabi frequency. It follows from panel (b2) that the
spin is rotating in the (σy, σz)−plane with the length P(t) ≈ 1. In this case, due to fast
oscillations of 〈σx(t)〉, Rabi magnetic field cannot inhibit collapse, but it still keeps the
condensate from expanding for a relatively long time. The panels (c1) and (c2) demonstrate
cross-section density plot of spin components and panels (d1) and (d2) show corresponding
spin rotation dynamics in (x, t) plane. In fact, the panels (c) and (d) present the density plot
simulation of the panels (a1) and (a2), correspondingly. Here the condensate is squeezed
and spin dynamics are clearly demonstrated.
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Figure 4. The diagram of the stable and collapsing BEC is presented in (gN, Ω)-plane for cross-spin
interaction with κ = 1 in Equation (1). The plot corresponds to initial width a0 = 1. For the values of
(gN, Ω) from fixed points (1,2) characteristic condensate dynamics will be presented below in the
next figures.

To summarize, in this section we presented numerical evidence that the condensate
with cross-spin interaction and initially non-coupled spin components can collapse in the
presence of Rabi magnetic field. For the self-interaction exceeding some critical value, the
collapse of the condensate can be produced by spin reorientation from the initial state even
for a relatively small Ω. This implies that the self-interaction energy could be compensated
by interaction with the Rabi field when the spin state with 〈σx(t > 0)〉 > 0 is formed.

Moreover, Figure 6 demonstrates for intra- and cross-spin interaction that the initially
Gaussian wave functions become non-Gaussian with time. The plots of Figure 6 show the
evolution of the expectation values of 〈r4〉i and 〈r2〉2i defined as:

〈rd〉i =
2π

Ni

∫ ∞

0
rd|ψi(r, t)|2 rdr , (20)

where ψi(r, t) is numerical solution of Equation (1) and Ni is defined by Equation (2). For
two-dimensional Gaussians one has 〈r4〉i − 2〈r2〉2i = 0, and the nonzero values demonstrate
that the BEC shape strongly deviates from the Gaussian profile.
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Figure 5. The panels (a1,b1) present the widths of the spin components defined by Equation (3) and
the panels (a2,b2) present the spin rotation dynamics defined by Equation (4) versus time. The panels
(a,b) are plotted for the values of (gN, Ω) given as (3.3λcr, 0.3λcr), (3.3λcr, 0.5λcr) from the fixed
points (1, 2) of Figure 4 for collapse and stable BEC, correspondingly. In the panel (a1) the width a(t)
is plotted for Ω = 0 to compare the collapse time with that in the spinless condensate. The panels
(c1,c2) are the cross section density plots of the collapse dynamics of |ψ1|2 and |ψ2|2, and the panels
(d1,d2) present the cross section density plot of spin rotation of σz and σx in the plane (x, t), with
correspondingly values of (gN, Ω) from the panel (a), correspondingly.
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Figure 6. The plot of non-Gaussian behavior of the spin components versus time. Blue lines corre-
spond to the spin up and red dashed lines corresponds to the spin down. The panels (a,b) correspond
to intra-spin interaction with the value of (gN, Ω) from fixed points (1) and (2) of Figure 1, corre-
spondingly. The panel (c) corresponds to cross-spin interaction with the value of (gN, Ω) from fixed
points (1) of the Figure 4.

4. Conclusions

In this paper, we investigated the collapse of quasi-two-dimensional BEC of atoms
with pseudospin-1/2 and in a synthetic Rabi magnetic field. The collapse of condensate is
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explored assuming intra- or cross-spin attractive interactions. With the intra-spin interac-
tion, the Rabi magnetic field affects the collapse of the condensate by modifying number
of atoms in each spin component. In this case the spin rotation leads to oscillations in the
self-interaction energy with the double Rabi frequency that can stabilize the condensate.
With the cross-spin interaction, the condensate collapses by rotation of the spin, which
enhances the self-interaction.

We obtained that for the intra- and cross-spin coupling both, the initially Gaussian
wave function becomes non-Gaussian at time t > 0. As a result, we determine collapse
and stability diagram in the (gN, Ω)− plane for both interactions. The intra-spin-coupling
modifies the critical number of atoms causing the collapse while the collapse is observed
only in a single pseudospin component. It is demonstrated that for cross-spin-coupling
only double spin-components collapse can occur.

To connect the results with the realization of the BEC experiments, for s-wave scat-
tering length |as| ∼ 100aB ∼ 5 × 10−3 µm (aB being the Bohr radius) and the con-
densate extension along the z axis az ∼ 1 µm, the dimensionless interaction constant
g = 4π|as|/az ∼ 0.05. The velocity of the collapse is vc ∼ h̄

√
gN/Ma(0). For the BEC of

87Rb atoms at a(0) ∼ 10 µm and N ∼ 104 this estimate yields vc ∼ 0.1 cm/s and the corre-
sponding time scale Tc = a(0)/vc ∼ 0.01 s. Therefore, the Rabi frequency providing the
cross-over condition Ω Tc ∼ 1 is of the order of Ω ∼ 100 Hz. The conditions of weak and
strong Rabi frequency against the BEC collapse, ΩTc � 1 and ΩTc � 1, correspondingly,
can be achieved by modifying initial a(0), the number of particles N, and Rabi frequency
Ω in the available experimental range [30].
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