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Abstract: We discuss how the non-equilibrium process of pion production within the Zubarev
approach of the non-equilibrium statistical operator leads to a theoretical foundation for the
appearance of a non-equilibrium pion chemical potential for the pion distribution function for
which there is experimental evidence in experiments at the CERN LHC.
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1. Introduction

The thermal statistical model [1–6] for chemical freeze-out of hadron species gives a successful
description of a set of particle ratios produced in heavy-ion collisions (HIC) at different center of
mass energies ranging from the energies provided by the Schwerionensynchrotron (SIS-18) at GSI
Darmstadt over those of the Alternating Gradient Synchrotron (AGS) at BNL Brookhaven and the
Super Proton Synchrotron (SPS) at CERN Geneva up to the highest energies at the Relativistic
Heavy Ion Collider (RHIC) at BNL and the Large Hadron Collider (LHC) at CERN. It came
therefore as a surprise that for LHC at

√
s = 2.76 TeV the measured proton abundances [7,8]

do not agree with the most common version of the thermal mode (the inclusion of resonance
formation due to (multi-)pion-nucleon interaction and further correlations in the continuum within
the Beth–Uhlenbeck approach [9,10] improves the agreement with the experiment) based on the
grand canonical ensemble [3,4]. As a possible explanation of this effect it has been suggested that the
freeze-out may take place off chemical equilibrium [11–13]. Hereby, a key feature is the enhancement
of low-transverse momentum pion spectra above the expectation from equilibrium statistical models
which was seen already at lower energies in pion spectra at SPS and clearly seen in the RHIC and
the LHC data. The effect can be seen as a precursor of pion Bose–Einstein condensation due to high
phase space occupation at low momenta and has consequently been parametrized by adopting a pion
chemical potential very close to the pion mass [14,15]. This concept is based on the assumption that
the total pion number is dynamically fixed on a time scale between the pion chemical freeze out tπ,cfo
and the thermal freeze-out (or simply freeze-out) tfo, tπ,cfo < t < tfo, where at tπ,cfo the pion number
becomes frozen and at tfo the momentum distributions stop to change [16]. Thereby, for pions, we
assume dominance of elastic collisions over inelastic ones. We will assume that for pions the time
typical for absorptive processes tπ,abs, which change the pion particle number, is tπ,abs > tfo.
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In the present paper, we want to elucidate the non-equilibrium evolution of the initial fireball
and the emergence of a non-equilibrium chemical potential for hadrons, in particular for the pions.
The theoretical background shall be provided by the Zubarev formalism of the non-equilibrium
statistical operator (NSO) [17] which introduces a generalization of the thermodynamical Gibbs
ensemble by including non-equilibrium observables into the derivation of the statistical operator of
the non-equilibrium, see also [18]. This is facilitated by extending the set of Lagrangian multipliers
by the additional non-equilibrium chemical potentials for the hadrons will appear in the NSO. If the
non-equilibrium chemical potential for the pions coincides with the pion effective mass, Bose–Einstein
condensation will occur, and strong effects are expected on the measured pion spectra [19,20].

Many formulations have been given for the approach to equilibrium [21,22] and the kinetics of
Bose–Einstein condensation, see for instance Refs. [23–27]. New ansätze have been developed, e.g., in
References [28,29] with a state that is a fixed point and the evolution towards it is universal. Via this
fixed point, the system develops then dynamically.

Such a behavior is long known in the context of the Zubarev formalism, which is able to
describe, for example, the transition from the kinetic stage to the hydrodynamic stage. The short-time
evolution goes to a relevant statistical operator with local time-dependent thermodynamic parameters.
The long-time scale evolution is given by the time dependence of these thermodynamic parameters
approaching thermodynamic equilibrium.

2. The Nonequilibrium Statistical Operator Method

HIC at ultrarelativistic energies are violent non-equilibrium processes which need, in principle,
a genuine non-equilibrium approach. At present, simple approximations are used such as transport
models based on the kinetic equations for single-particle distribution functions. Transport codes
based on the relativistic Boltzmann–Uehling–Uhlenbeck (BUU) or Vlasov–Uehling–Uhlenbeck (VUU)
equations have been worked out [23–25,30]. However, a non-equilibrium single-particle distribution
is not sufficient to describe correlations in the evolving system. As example, cluster formation in an
expanding fireball requires the inclusion of higher order correlation functions to describe bound states
like hadrons or nuclei. Alternatively, the freeze-out concept assumes nuclear statistical equilibrium
(NSE) during the expansion of the fireball, which is justified if the time τtherm for the relaxation to
thermodynamic equilibrium is small compared to the variation time τexp = q/q̇ of a parameter q
describing the thermodynamic state of the expanding system. The treatment of thermodynamic
equilibrium is able to include all equilibrium correlations, in particular cluster formation. At freeze-out,
t = tfo, collision processes that change the composition and the distribution die out. For t > tfo,
baryon distributions evolve according to the mean-field description of the expansion. Note that,
at least under conditions of the LHC and highest RHIC energies for soft pions (with energies and
momenta smaller than mπ), the time scales characterizing elastic and inelastic (absorptive) processes
are such that τπ,el � tfo < τπ,abs. Thereby, we may speak about the evolution of µπ(t) till thermal
freeze-out. Although the expanding fireball approach with time dependent temperature T(t) and
chemical potentials µc(t) for all hadrons including pions is rather reasonable, it is just an approximation
to a more sophisticated many-body non-equilibrium approach given below.

A systematic general approach to non-equilibrium is given by the NSO ρ(t) which is the solution
of the von Neumann equation with a given initial state [17],

ρ(t) = lim
ε→0

ε
∫ t

−∞
dt′eε(t−t′)U(t, t′)ρrel(t′)U†(t, t′), (1)

where for a Hamiltonian H which is not time-dependent holds U(t, t′) = exp[(i/h̄)H(t− t′)], and the
limit ε → 0 has to be taken after the thermodynamic limit. Instead of a distribution ρinitial(t0) at
an initial time t0, according to Zubarev, a relevant statistical operator ρrel(t′) has been introduced
that contains all relevant information of the system in the past t′ < t. This relevant information
characterizes the state of the system in non-equilibrium and will be discussed below. The missing
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irrelevant correlations ρirrel(t) = ρ(t)− ρrel(t) are assumed to be formed dynamically by the action of
the time evolution operator U(t, t′).

The non-equilibrium state of the system is characterized by observables Bn in addition to the
conserved observables such as total energy and particle numbers. The relevant information is given
by the averages 〈Bn〉t = Tr{ρ(t)Bn} of the relevant observables Bn. The maximum of the information
entropy Sinf = −Tr{ρrel(t) ln ρrel(t)} at given averages is the generalized Gibbs distribution

ρrel(t) =
1

Zrel(t)
e−∑n Fn(t)Bn ; Zrel(t) = Tre−∑n Fn(t)Bn (2)

where the Lagrange multipliers Fn(t) are determined by the self-consistency conditions

〈Bn〉trel = 〈Bn〉t (3)

with 〈Bn〉trel ≡ Tr{ρrel(t)Bn}. With respect to the selection of the set of relevant observables, Bn, it
should contain all conserved quantities which cannot be changed owing to the dynamics of the system.
In an ergodic system, all other correlations are produced dynamically. We can include any set of
observables to the relevant ones. In particular, if we include all slowly varying observables in the set
of relevant observables {Bn}, we can expect that a shorter time is necessary to produce the missing
non-equilibrium correlations. This means that Eq. (2) already gives a good approximation for ρ(t) at
finite ε so that memory effects are less important.

According to the NSO method, the equations of evolution (generalized kinetic equations) are
obtained from

d
dt
〈Bn〉t = lim

ε→0

iε
h̄

∫ t

−∞
dt′eε(t′−t)Tr

{
ρrel(t′)eiH(t′−t)/h̄[H, Bn]eiH(t−t′)/h̄

}
, (4)

where we inserted the time derivative of the NSO (1) and used the self-consistency conditions (3).
The correct reproduction of the relevant information in the past gives the possibility to form the

irrelevant correlations very fast so that a perturbation expansion is possible. Although the expression (1)
is correct for any choice of relevant observables after performing the limit ε→ 0, an appropriate choice
of the set of relevant observables {Bn} allows us to make expansions quickly convergent so that, for
instance, the Markov approximation can be performed (We speak here about memory effects associated
with dying initial correlations. There are memory effects related to processes described by diagrams
with more than two vertices in the non-equilibrium Greens function technique. These effects can be
neglected only for dilute gases, but, in general, they are important. They result in the famous T3 ln T
correction to the specific heat of 3He, cf. [31,32]. Since this correction is quite comparable (numerically)
to the leading term in the specific heat (∝ T), one may claim that liquid 3He is a liquid with quite
strong memory effects from the point of view of kinetics). In Section 4, we discuss this issue in detail.
It is our main goal to show that the optimal path for the non-equilibrium evolution (i.e., a sufficient
broad choice of relevant observables Bn) must be found to provide us with a precise description already
in low orders of perturbation theory.

A correct description of the evolution is also necessary for the expanding fireball if the freeze-out
approximation is used. We cannot assume that the system at freeze-out is strictly in thermodynamic
equilibrium. A simple relaxation-time ansatz is not sufficient, but a more detailed description of the
time evolution is necessary. An important feature of the evolution is that a perturbation expansion in
powers of the interaction which is often used cannot give the formation of bound states or quantum
condensates in any finite order of perturbation theory. The introduction of the relevant NSO provides us
with the description of those phenomena. In particular, we show that the formation of an intermediate
pion Bose–Einstein condensate can be described in our approach. It is an advantage of the Zubarev
approach that initial correlations are included via the relevant statistical operator ρrel(t), in contrast to
the kinetic theory which is based on the single-particle distribution function.
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3. Model for Pions in Heavy-Ion Collisions at Ultra High Energies

To explain our approach denoted as the NSO method, we discuss the pion production in heavy-ion
collisions. After an initial stage where hadrons are formed, we consider a fireball consisting of pions,
nucleons N, ∆ resonances, and further hadronic states such as N∗ and K mesons containing strangeness
degrees of freedom. In occupation number representation, a+p,c, ap,c are the creation/annihilation operators
of a particle in the quantum state p, c given by the species c (including spin) and momentum p.
The Hamiltonian H = H0 + H′ contains the kinetic part

H0 = ∑
p,c

√
p2 + m2

c a+p,cap,c = ∑
p,c

Ep,c a+p,cap,c (5)

and the interaction part H′. At highest RHIC and LHC energies, the fireball is dominated by pions.
Approximately, one may speak of a pure pion gas. Thus, further within our model, we consider only
special processes, which concern the pion distribution, c, that runs over pion species. We split the
interaction into an elastic part describing collisions which conserve the pion number, Hcol, and an
inelastic part describing reactions, Hreac, where the pion number is changed, H′ = Hcol + Hreac.

Expressions for the meson–meson interaction are found in the literature [16,30]. π−π interactions
at high energies are predominantly elastic implying that at low density the number of pions is
effectively conserved. We assume elastic π − π scattering of the form

Hcol =
1
2 ∑

p1 ,p2 ,p′1 ,p′2 ;c,d
λc,d(p1, p2; p′1, p′2)a†

p1 ,ca†
p2 ,dap′2 ,dap′1 ,c. (6)

We assume that at t < tπ,cfo a state overpopulated by soft pions is formed, for t > tπ,cfo the
collisions conserve the particle number, but evolve the distribution function to a thermal equilibrium
distribution with a corresponding short relaxation time τcol. These collision processes may happen
via a virtual states such as the ρ and σ mesons or other resonances. We note that the matrix
element λπ,π(p1, p2; p′1, p′2) of the π − π interaction can be taken in a separable form [33,34] so
that the Bethe–Goldstone equation for the T-matrix of the π − π scattering in the pion gas can be
solved straightforwardly, resulting in in-medium scattering phase shifts and cross sections with
resonances [34–36] as well as the corresponding equation of state [37,38].

Interactions of pions with baryons can also be described as particle number conserving 2 → 2
processes with a Hamiltonian of the form (6). See, for example, the recent work [39] on the ANL-Osaka
model which provides an excellent description of existing π − N scattering data. These processes
contain, in particular, the ∆ and N resonances that become very important for heavy-ion collision
experiments with lower c.m. energies at SPS, SIS-18, and the future FAIR and NICA experiments.
For our discussion of results from the LHC experiment in the present work, the processes involving
baryons are not important and will not be treated explicitly here.

If the particle number is fixed, neglecting processes described by Hreac, a pion gas in
thermodynamic equilibrium may form a Bose–Einstein condensate at high phase space occupation
densities and sufficiently low temperatures. It is possible that the expanding fireball will meet such
parameter values of the pion phase space during the non-equilibrium evolution.

There are also processes which change the particle numbers of the different species which
contribute to the interaction part of the Hamiltonian Hreac. As an example, we have π + π ⇀↽ 4π [40]
or the formation of other mesons such as π + π → K̄ + K which decay in other channels, see
Lin and Ko [30]. As shown there, because of the threshold for these reactions and the small cross
sections compared to the elastic collisions, the corresponding relaxation time τreac to establish chemical
equilibrium is large. This is a slow process not of relevance for the time scales considered here. Other
reactions involving resonant correlations such as ∆ ⇀↽ N + π contribute to collision processes via
virtual states and conserve the particle number, but also have a small branching ratio for a number of
non-conserving processes. These reactive collisions which change the pion number are assumed to be



Particles 2020, 3 384

weak in comparison to the quasielastic collisions and can be discarded for the short-time evolution,
but are relevant for the evolution on long time scales to produce chemical equilibrium.

The π − π collision term was treated in Boltzmann equation calculations by Welke and
Bertsch [30]. Strong pion interaction processes which change the pion number have been considered,
e.g., in Reference [40].

In addition, other work has been performed using transport codes to describe the time evolution
of the pion distribution function and to solve the low-pT enhancement puzzle. We discuss here the
more general NSO approach to give an approach which goes beyond the single-particle distribution
function considered in the transport codes which are based on kinetic equations.

4. The Relevant Statistical Operator

Our main point is the selection of the set of relevant observables Bn which determines the
convergence and the accuracy of the non-equilibrium description. We discuss three examples, the
Kubo case considering only conserved quantities, the kinetic theory considering the single-particle
occupation numbers, and the formation of a condensate where amplitudes are added. In principle,
all three choices for the set of relevant observables should give the same results if the limit ε → 0 is
correctly performed. However, because we use perturbation expansions and Fermi’s Golden rule,
these approximations lead to different results.

4.1. Kubo Case

Within the NSO method, there is no prescription for the choice of the set {Bn} of relevant
observables. Only conserved observables have to be included because their averages cannot be
changed dynamically.

A minimum set of relevant observables of the pion–nucleon system (Kubo case) is the energy
H that is conserved. The number of pions is not strictly conserved. Because the pion number
is not prescribed, in equilibrium, no corresponding chemical potential µπ can be introduced.
Formally, one takes µπ = 0 similar to the photon system. Thus, in the Kubo case, one supposes
that τπ,abs � tfo (contrary to the case studied by us in this paper). The number of baryons Nb is
conserved. In addition, the charge has to be considered as conserved quantity. With this selection
of relevant observables, we obtain from the maximum principle for the relevant entropy the grand
canonical distribution

ρ
(0)
rel (t) =

1

Z(0)
rel (t)

e−β(t)(H−∑α µα(t)Nα) . (7)

Because the system is expanding, the thermodynamic averages are also changing with time and
also the corresponding Lagrange parameters. We can adopt the blast wave model [41–45] to describe
the expansion of the fireball. If we assume that the velocity is proportional to the distance from the
center, the density is decreasing with time. Assuming adiabatic expansion, the entropy is constant, but
the temperature is also decreasing. This hydrodynamical model may serve as an approximation to
describe the time dependence of the average density and energy and, according to the self-consistency
conditions (3), µα(t) and β(t).

Starting from a non-equilibrium state, we consider the relaxation to the local thermodynamic
equilibrium. The time behavior of the observables Nc and HMF

c of the particle number of the species c
and its mean-field energy (see below) are given by

d
dt
〈Nc〉t =

i
h̄
〈[H, Nc]〉trel −

1
h̄2

∫ 0

−∞
dt′eεt′Tr{ρrel(t)[H(t′), [H, Nc]]} , (8)

d
dt
〈HMF

c 〉t =
i
h̄
〈[H, HMF

c ]〉trel −
1
h̄2

∫ 0

−∞
dt′eεt′Tr{ρrel(t)[H(t′), [H, HMF

c ]]} . (9)
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Evaluating the correlation functions in Born approximation for the pion system, we observe a
behavior different from the one that would be consistent with the assumption of µπ = 0. Because
the particle numbers Nπ are conserved with respect to the elastic collisions Hcol, only the inelastic
collisions Hreac contribute. This makes the time derivative (8) small. In contrast, the thermalization
process (9) is dominated by Hcol so that the exchange of energy between the different components c
and the momentum states is a fast process.

We can calculate the corresponding relaxation times τ−1
i = −[d〈Bi〉t/dt]/〈Bi〉t for the

observables of local thermodynamic equilibrium and compare it with the expansion time scale
τ−1

exp = ∂µuµ ≈ −n−1
b [dnb/dt]. The freeze-out time tfo is given by the condition that the increasing τi(t)

becomes equal to τexp.
It is evident that this is a very global approach. We cannot assume that at any freeze-out

time tfo the system is well approximated by the equilibrium distribution (7). A more detailed
description of the non-equilibrium state is necessary, in particular if there exist long-living correlations.
Indeed, the relaxation to thermodynamic equilibrium (7) also implies the achievement of the total pion
number in equilibrium which is determined only by T and µπ = 0 in thermodynamic equilibrium.
Because the processes which change the pion number are weak under conditions at RHIC and LHC
which we focus on, the corresponding relaxation times are long and the Kubo case is not valid for
our considerations. To have an appropriate description of the non-equilibrium process, these slow
modes should be included in ρrel(t). At freeze-out, we therefore expect that not the thermodynamic
equilibrium but a more general non-equilibrium distribution is seen.

4.2. Pion Number as a Relevant Observable

Long-living correlations have to be implemented in the set of relevant observables to improve
the convergence of the perturbation expansion, and to apply the Markov approximation. For the
pion system considered here, we have elastic collisions which conserve the particle numbers and in
general inelastic reactions where the particle numbers of the constituents c are changed. Because the
conserving interaction Hcol leads to cross sections which are large compared with cross sections for the
non-conserving interaction Hreac, the pion number Nπ is an observable which changes slowly with
time and should be included in the set of relevant observables so that the index α in Equation (7) goes
over all pion species c. The new condition

〈Nπ〉trel = 〈Nπ〉t (10)

is not given by the external condition of the expanding fireball but must be calculated self-consistently
solving the corresponding equation of evolution (8).

A new feature of the relevant distribution including the pion number is the possibility of a
singularity when the self-consistency conditions (3) are solved. As well known from the ideal Bose
gas, we have to treat the occupation of the ground state separately so that below a critical temperature
we have 〈Nπ〉 = 〈Nnorm

π 〉 + 〈Ncond
π 〉 with the normal component Nnorm

π = ∑p>0 a+p,πap,π and the
condensate Ncond

π = a+0,πa0,π . The corresponding relevant operator reads

ρBose
rel (t) =

1
ZBose

rel (t)
e−β(t)[H−∑c µc(t)Nnorm

c ]−F0,π(t)a+0,π a0,π . (11)

The new Lagrange parameter F0,π(t) follows from the self-consistency relation (10) in perturbation
expansion with respect to H′ as

〈Ncond
π 〉trel =

1
eβ(t)[E0,π−µπ(t)]+F0,π(t) − 1

, (12)
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which is a macroscopic number if the temperature is below the critical one. The normal component
〈Nnorm

π 〉trel is only a function of β(t) as is well known; we have E0,π − µπ(t) = 0 in the condensate
state. Then, the Bose condensate 〈Ncond

π 〉trel is a macroscopic number so that F0,π(t) is infinitesimally
small. Below, we improve this shortcoming introducing coherent states.

We can also solve the evolution equations (8) with the relevant statistical operator (11).
The corresponding relaxation times are given by the interaction part H′. However, they are very
different. As before, the elastic collisions thermalize the kinetic energies of the components (9) leading
to the relaxation time τtherm.

To describe chemical relaxation (8), we can simplify the von Neumann equation as

∂

∂t
ρ(t) =

1
ih̄

[
(H0 + Hreac), ρ(t)

]
− 1

τtherm

(
ρ(t)− ρBose

rel (t)
)

. (13)

This is possible if the thermalization is very fast compared to the formation of the chemical
equilibrium. The solution is given by Equation (1) after replacing ε by 1/τtherm and H′ by Hreac.

With respect to the evolution of the fireball, we have the result that full thermodynamic
equilibrium must not necessarily occur at the freeze-out time. The reaction rates become small during
the expansion so that the relevant distribution (11) at tfo is seen. In contrast to the thermodynamic
equilibrium (7), a Bose–Einstein condensate of pions is possible.

4.3. Kinetic Equations

We can further improve the relevant statistical operator considering the occupation numbers
np,c = a+p,cap,c of the single-particle states as relevant observables. Formally, instead of Nc, each
single-particle state is taken similar to a new species. The time dependence of the mean occupation
of this state leads to the kinetic equations. For details of the derivation, see, e.g., Reference [46],
Equation (4.100).

We consider the time evolution of the pion distribution function 〈np,c〉t as the diagonal part of the
Wigner distribution function [46]. The relevant statistical operator has the form

ρkin
rel (t) =

1
Zkin

rel (t)
e−∑p,c sp,c(t)a+p,cap,c (14)

with the corresponding self-consistency conditions to eliminate the Lagrange parameters sp,c(t),

〈np,c〉t =
1

esp,c(t) − 1
. (15)

For the time evolution, the following kinetic equation is obtained from (4) after integration by
parts and using (3), see also [46]

d
dt
〈np,c〉t =

1
h̄2

∫ 0

−∞
dt′eεt′Tr

{
[H, np,c]e(i/h̄)Ht′ [H, ρkin

rel (t)]e
−(i/h̄)Ht′

}
(16)

if we neglect the explicit time dependence of ρkin
rel (t). In the approximation of binary collisions, we get

the quantum statistical Boltzmann equation

d
dt 〈np1 〉tcoll = 2π

h̄ ∑p2,p′1,p′2
δ(Ep1 + Ep2 − Ep′1

− Ep′2
)δp1+p2−p′1−p′2

|t(p1p2, p′1p′2) + t(p1p2, p′2p′1)|2

×
{
〈np′1
〉t〈np′2

〉t[1 + 〈np1 〉t][1 + 〈np2 〉t]− 〈np1 〉t〈np2 〉t[1 + 〈np′1
〉t][1 + 〈np′ 〉t]

} (17)

where the two-particle T-matrix is given by the interaction potential in Born approximation [46].
Near thermodynamic equilibrium,

〈np,c〉eq =
1

eEp,c/T−µc/T − 1
, (18)



Particles 2020, 3 387

we can approximate the Boltzmann equation in relaxation time approximation as:

d
dt
〈np,c〉t = −

1
τp,c

(〈np,c〉t − 〈np,c〉eq) , (19)

where the relaxation time τp,c is calculated from a microscopic collision process. This approach of a
relaxation time τcol of collisions as the thermal average over τp,c [46] or the corresponding collision
frequency is used in the relevant literature (see, e.g., [30]). Note that the relaxation time ansatz (19) with
p-dependent relaxation time does not obey, in general, the conservation of particle number. According
to Mermin [47], this defect is removed if the relaxation occurs not to the equilibrium state but to a
relevant operator which accounts for the conservation of particle number, see also [48].

Thermal freeze-out is obtained at the time tfo when τcol(tfo) = τexp(tfo), where the scattering time
scale for a given particle species c, working in favor of equilibration, can be computed locally from the
local densities nd, thermal (relative) velocities vcd, and total scattering cross sections σcd between the
particles c and d [42–44] after momentum average

1
τcol

= ∑
d
〈vcdσcd〉nd . (20)

4.4. Nonequilibrium State with Condensate Formation

Alternatively, we can construct another relevant operator with the single-particle occupation
numbers np,c, but containing also non-diagonal parts and, in addition, also single construction
operators ap,c and a+p,c. Corresponding expressions are known from the theory of coherent states
which are of interest to describe Bose–Einstein condensates. We can construct the relevant entropy
with arbitrary powers of the creation and annihilation operators, corresponding to a very general
expansion of the entropy operator in occupation number representation.

As a simple case, we construct the relevant statistical operator

ρcoh
rel (t) =

1
Zcoh

rel (t)
e∑p,c [F∗p,c(t)ap,c+Fp,c(t)a+p,c−sp,c(t)a+p,cap,c ] = e−S(2)(t) (21)

with the corresponding expression for the partition function Zcoh
rel (t). Higher order contributions

such as a+p,ca+p,c are also possible, as well as non-diagonal terms (describing systems which are not
homogeneous in space) but will not be considered here. A similar approach has been used for
superfluidity in strongly coupled fermion systems [49]. Note that this bilinear form of the entropy
S(2)(t) may be extended including higher than second order terms in a+p,c and ap,c. This is necessary to
describe, e.g., total energy conservation or the formation of bound states.

We have to eliminate the Lagrange multipliers F∗p,c(t), Fp,c(t), sp,c(t) using the self-consistency
conditions (3). The evaluation of correlation functions becomes quite simple if the relevant statistical
operator (7) is diagonal in the occupation number representation. We transform ap,c = bp,c + Bp,c(t)
where bp,c obey the usual commutation relations for bosons, and Bp,c(t) = Fp,c(t)/sp,c(t) is a c-number.
We obtain the diagonal form

S(2)(t) = ∑
p,c

[sp,c(t)b+p,cbp,c − |Fp,c(t)|2/sp,c(t)] (22)

for the bilinear relevant entropy S(2)(t), the c-number term can be canceled with Zcoh
rel (t).

Then, the evaluation of 〈np,c〉rel is quite simple and yields the well-known result

〈b+p,cbp,c〉trel =
1

esp,c(t) − 1
= fp,c(t), 〈b+p,c〉trel = 〈bp,c〉trel = 0, (23)
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which is the Bose distribution for the ideal quantum gas, but with non-equilibrium parameter
sp,c(t) ≥ 0 which are determined by the given averages. The mean occupation numbers follow
as 〈np,c〉trel = [esp,c(t) − 1]−1 + |Bp,c(t)|2. In addition, we find 〈ap,c〉trel = Bp,c(t). With these relations,
the Lagrange parameters in Equation (21) can be eliminated.

As before, the dynamics of the many-particle system is described by the Hamiltonian
H = H0 + Hcol + Hreac, defined in Equations (5) and (6). We extract the mean-field terms (MF) from
the interaction (1 = {p, c})

H = ∑
1

EMF(1, t)a+1 a1 +
1
2 ∑

12
∆MF

pair(12, t)a+1 a+2 + c.c. +
1
2 ∑

121′2′
V(12, 1′2′)a+1 a+2 a2′ a1′ − (MF) (24)

with EMF(1, t) = E(1) + ∑2 V(12, 12)ex〈n2〉t and ∆MF
pair(12, t) = ∑1′2′ V(12, 1′2′)〈a2′ a1′〉t. We will

not consider pairing so that ∆MF
pair(12, t) = 0. In the case of fermions, pairing was considered

in Reference [49], which can also transformed to the bilinear form (22) applying the Bogoliubov
transformation. In the case of a Bose gas considered here, the mean-field terms contain also averages
〈a+2 a2′ a1′〉t of the condensate mode so that

HMF(t) = ∑
1

EMF(1, t)a+1 a1 +
1
2

∆MF
cond(1, t)a+1 + c.c. (25)

with ∆MF
cond(1, t) = ∑21′2′ V(12, 1′2′)〈a+2 a2′ a1′〉t.

According to the NSO method, the kinetic equations are obtained from the equations of
evolution (4) for the relevant observables

d
dt
〈Bn〉t = lim

ε→0

iε
h̄

∫ t

−∞
dt′eε(t′−t)Tr

{
e−S(2)(t′)eiH(t′−t)/h̄[H, Bn]e−iH(t−t′)/h̄

}
. (26)

We apply perturbation theory with respect to the deviation ∆H from the mean-field expression which
can be incorporated into sp,c(t) = βc(t)[EMF

p,c (t)− µc(t)] + δ fp,c(t) = f MF
p,c (t) + δ fp,c(t). The new Lagrange

parameters βc(t), µc(t) are introduced to describe the total particle number Nc and mean-field energy HMF
c

of the species c. The perturbation expansion is performed with respect to ∆S(t) = S(2)(t)− S0(t) with
S0(t) = β(t)[HMF(t)−∑c µc(t)Nc], where β(t) is determined by the average of the total energy H. We
have (S(2)(t) commutes with S0(t) in the lowest order of perturbation theory)

d
dt
〈a+1 〉

t = lim
ε→0

iε
h̄

∫ 0

−∞
dt′eεt′ e−iµ1t′/h̄Tr

{
e−S(2)(t′+t)

[
E(1)a+1 +

1
2 ∑

1′22′
V(1′2′, 12)a+1′ a

+
2′ a2

]}
(27)

and the corresponding equations of evolution for the other relevant observables Nc, HMF
c , ap,c.

To evaluate the trace, we perform the transformation of the relevant statistical operator (7) to the
diagonal form (22) and have

d
dt
〈a+1 〉

t =
i
h̄

EMF(1, t) lim
ε→0

ε
∫ 0

−∞
dt′eεt′ e−iµ1t′/h̄F∗1 (t + t′), (28)

where it was assumed that the mean-field energy EMF(1, t) = E(1) + ∑2 V(12, 12)ex f2(t) depends only
weakly on time so that it can be extracted from the integral which is determined by the collisions.
In addition, we suppose that a condensate mode is only in the state p1, c1 and V(11, 11) = 0 with 1
denoting the state of lowest mean field energy. In the stationary state, we assume a periodic dependence
on time, F1(t) = F0

1 eiωt. Then, the integral can be performed with the result ω = µ1/h̄. The amplitude
〈a1〉t = F(t) depends periodically on time. We obtain the condition h̄ω = µ1 = EMF(1) for a stationary
solution, considering the lowest order (mean-field approximation). Similar results hold for 〈a+1 〉t.
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For the other relevant observables, the time derivative vanishes in the lowest order of perturbation
expansion with respect to the interaction.

To obtain the evolution of the averages, one has to consider higher orders of the interaction. It is
convenient to use the following expression for the NSO obtained from (1) after integration by parts

ρ(t) = ρrel(t)− lim
ε→0

∫ t

−∞
eε(t′−t)U(t, t′)

{
i
h̄
[H, ρrel(t′)] +

∂

∂t′
ρrel(t′),

}
U(t′, t)dt′. (29)

so that, for the averages,

d
dt
〈Bn〉t =

i
h̄

Tr{ρrel(t)[H, Bn]}

+
1
h̄2

∫ 0

−∞
dt′eεt′Tr

{
[H, Bn]eiHt′/h̄

(
[H, ρrel(t′)] +

h̄∂

i∂t′
ρrel(t′)

)
e−iHt′/h̄

}
. (30)

In Markov approximation, the time dependence of ρrel(t′) is neglected, and we have the
Boltzmann-like form of the equations of evolution; see also (8), (9), which is obtained after cyclic
permutation within the trace. In our case, we cannot assume that the time dependence of F1(t) ∝
exp(iωt) is slow; only after the transformation to the diagonal form may the remaining s1(t) be slow.

Using Wick’s theorem, the evaluation of the first term of the r.h.s. of (30) is immediately done
if we transform to the diagonal form of the relevant statistical operator. The second term describes
the collision between the pions and gives the relaxation to the intermediate relevant state showing
the condensate distribution. The evaluation of the time dependence of occupation numbers 〈np,c〉t
coincides with the expression (17) but replacing 〈np,c〉t by fp,c(t) + |Bp,c(t)|2.

The time evolution of the amplitude follows in Born approximation as

d
dt 〈a

+
1 〉

t = i
h̄ EMF

1 B∗1 (t) +
π
2h̄ B∗1 (t)∑1′22′ |Vex(12, 1′2′)|2δ(Ep1 + Ep2 − Ep′1

− Ep′2
)δp1+p2−p′1−p′2

×{ f1′ f2′ (1 + f2)− f2(1 + f2′ )(1 + f1′ )} .
(31)

Stationary solution is the grand canonical distribution with the chemical potential given by
the pion number density. If the pion chemical potential approaches the lowest pion energy state,
a quantum condensate will be formed which is described by a coherent state. The time evolution of
the condensate is characterized by the collision time τcond.

4.5. Quantum Master Equation

The non-equilibrium evolution of the pion system can also be treated considering it as an open
system coupled to a bath. We can consider the gluon system as the bath in the stage of evolution where
the pions are formed from the hot quark–gluon plasma, or we can consider the interaction between
pions (e.g., via ρ mesons) as a bath. We also can consider the pion Bose–Einstein condensate as the
relevant subsystem interacting with the normal pion gas. A quantum master equation is derived that
contains a Lindblad term [17], and a solution can be performed using coherent states. We will not
discuss this interesting approach here but mention that the treatment of open many-particle systems is
also possible within the Zubarev NSO method, leading to quantum master equations [17]. See, for
instance, Reference [50] for the treatment of heavy quarkonia kinetics in a quark–gluon plasma.

5. Discussion

We refer to the central 200 AGeV 16O+Au data of the NA35 Collaboration, see [30]. For more recent
data, see also the discussion of Reference [51]. Assuming hadronization (formation time) at t0 ∼ 1 fm/c
and temperature of about 160 MeV, the equilibrium pion density at µπ = 0 is nπ,normal ≈ 0.15 fm−3,
in contrast to the observed density nπ(t0) ∼ 1 fm−3. This motivates the consideration of a strong
macroscopic occupation of the lowest momentum state, forming a pion Bose–Einstein condensate.
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We use the hydrodynamical expansion under conservation of the initial entropy S0 which
determines the temperature evolution according to s(T)V(τ) = S0 = const., where for the entropy
density we use a fit to lattice QCD data from Reference [52].

For the expansion of the fireball, we can adopt a Bjorken like picture where in the first stage
(t < 10 fm/c) we have one-dimensional expansion with nπ(t) ∼ nπ(t0)t0/t, and afterwards
three-dimensional expansion where nπ(t) ∝ t−3. The expansion rate τ−1

exp = |ṅ|/n ∼ 1/t drops
down as 1/t.

The relaxation τcol = 1/[〈σv〉n(t)] is estimated by a thermal average of the elastic π − π cross
section σ ≈ 23 mb [30], determined by scattering phase shift data. The thermal average 〈σv〉 ∼
7−−10 mb is nearly not depending on time, so that the collision time drops down proportional to 1/t
in the first stage, but proportional to 1/t3 in the later stage which induces the freeze-out which occurs
at t ≈ 10 fm/c, where this transition occurs. The relaxation of the condensate mode 〈a+1 〉 differs from
that of the normal modes. A slower relaxation entails that this mode freezes out while the normal part
is further thermalizing.

For a recent discussion of the chemical freeze-out in the phase diagram on the basis of a kinetic
criterion, see Reference [53] and references therein.

The experimental data are well reproduced by the fit of a pion (and kaon) distribution with
a non-equilibrium chemical potential as a Lagrangian multiplier in CERN SPS [14]. The thermal
freeze-out process of pions and kaons at LHC conditions is characterized by just two parameters,
the freeze-out time τfo and the transverse size rmax, whereby the shape of the transverse momentum
spectra is described with only one parameter, rmax/τfo because the volume at freeze-out V = πτfor2

max
fixes the overall normalization [13]. For an excellent simultaneous fit of pion, kaon, and proton spectra
in most central Pb+Pb collisions at

√
s = 2.76 TeV, including the low-momentum enhancement of

pions, a non-equilibrium chemical potential of pions µπ = 134.9 MeV is required which is very
close to the neutral pion mass mπ = 134.98 MeV. The other parameters are Tkin = 138 MeV,
τfo = 7.68 fm/c and rmax = 11.7 fm, according to [13]. A scenario as described by the Zubarev
approach to the non-equilibrium statistical operator, with a fast relaxation to an intermediate relevant
operator describing a Bose–Einstein condensate of pions and the slow relaxation to full thermodynamic
equilibrium seems to be realistic with these estimates of time scales.

A detailed numerical calculation within the presented approach, e.g., on the basis of a separable
model Hamiltonian for π − π scattering as discussed in Section 3 is the subject of ongoing work that
shall be reported in a subsequent publication.

6. Conclusions

There are different models to describe the low momentum enhancement of pions observed in
HIC at SPS, RHIC, and LHC energies. We discuss this effect as a signature of a quantum condensate of
the high-density pion gas. As an origin for the high phase space density of pions, one may think of
an initial state in the form of a color glass condensate state (gluon saturation) which gets converted
to a pion gas by particle number conserving process as described, e.g., [54,55].

After the hadronization time, a hadron gas is formed, which, under LHC conditions, mainly
consists of pions. The time evolution of the fireball is governed by particle-conserving binary
collisions; processes that change the pion number are weak and influence only the long-time evolution.
In the oversaturated pion gas, the cross sections of pion rescattering processes are relatively large.
As a consequence, the pion distribution function quickly relaxes to local thermodynamic equilibrium
(here denoted as relevant distribution) which slowly evolves to full equilibrium.

The expansion of the fireball produced in HIC changes not only the parameter of the local
thermodynamic equilibrium but influences also the relaxation time, and freeze-out happens if the
relaxation rate becomes smaller than the expansion rate. A general description of this non-equilibrium
process is given here within the Zubarev method of the non-equilibrium statistical operator.
As discussed in the literature, it appears that one can capture the essence of the effect with fixed
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point dynamics. The relevant statistical operator may be considered as a transient distribution
proposed also recently from other approaches [28,29]. Here, we formulate this behavior using the
Zubarev concept of a relevant statistical operator. The system quickly relaxes to a relevant distribution
(pre-equilibrium state) which evolves slowly to equilibrium, but is frozen out at the freeze-out time.
This relevant distribution at tfo describes the composition to be observed in the experiments.

We show different possibilities to introduce a relevant statistical operator to derive the
corresponding equations of evolution of the state. Treating the binary collisions in relaxation time
approximation, a quantum condensate may appear in the relevant statistical operator. After freeze-out,
where this relevant distribution stops evolving further, the non-equilibrium evolution of the pion
system is described by kinetic equations with initial condition at freeze-out time for the distribution
function, which is approximated by the relevant statistical operator at tfo. To obtain a optimum
description already in lowest order perturbation theory (Markov approximation), the relevant statistical
operator should contain already all relevant correlations, in particular the formation of quantum
condensates.

The method of the Zubarev NSO as presented here for the application to the pion production in
heavy-ion collision experiments considers not only a systematic description of the collision processes but
also a simultaneous treatment of the hydrodynamical evolution as well as the evolution of the condensate.
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