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Abstract: The relativistic form of the Zubarev density operator can be used to study quantum effects
associated with acceleration of the medium. In particular, it was recently shown that the calculation
of perturbative corrections in acceleration based on the Zubarev density operator makes it possible
to show the existence of the Unruh effect. In this paper, we present the details of the calculation of
quantum correlators arising in the fourth order of the perturbation theory needed to demonstrate the
Unruh effect. Expressions for the quantum corrections for massive fermions are also obtained.
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1. Introduction

There are wonderful quantum-field effects associated with non-uniform motion of the medium.
A well-known example of such an effect is the Unruh effect, according to which an accelerated observer
perceives the Minkowski vacuum as a medium filled with particles with a temperature depending on
the acceleration [1]. This temperature is called the Unruh temperature, and it is equal to

TU =
h̄|a|

2πck
. (1)

The Unruh effect is similar to the Hawking effect, since it is also associated with the appearance
of the event horizon in the accelerated system. This effect continues to be the focus of theorists [2–5].
The possibility of experimental observation of the Unruh effect needs the generation of ultrahigh
acceleration in a system, which is relevant, in particular, for particle collisions [6,7] and systems with
two-level atoms in quantum optics [8–10].

There is a universal fundamental statistical approach to describing the equilibrium
thermodynamics of quantized fields. This approach is based on the relativistic form of the Zubarev
density operator [11,12]. It has recently been shown that this approach allows to study in a regular
way the effects of rotation and acceleration in a medium of relativistic particles [13–15].

Using the Zubarev operator method, various effects associated with the motion of the medium
are shown. In particular, the well-known chiral vortical effect is shown and corrections to this effect
are calculated [13,14,16]. Since the chiral vortical effect is associated with the axial electromagnetic
anomaly [17–19], as well as with the gravitational anomaly [20,21], it turns out that the approach with
the Zubarev operator carries information about the most fundamental properties of matter.
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A remarkable observation made recently is that the Unruh effect can also be obtained from the
Zubarev density operator [22,23]. Relativistic quantum statistical mechanics considers a continuous
medium filled with particles described by quantized fields. This medium in equilibrium is characterized
by a number of thermodynamic parameters, such as temperature, energy density, pressure, and others.
Non-trivial aspect is connected with the need for normalization of the thermodynamic quantities of the
system to a specific vacuum, as a rule, the Minkowski vacuum. With such a statement of the problem,
a direct consequence of the Unruh effect from the point of view of quantum statistical mechanics is
the vanishing of the observables, in particular, the energy-momentum tensor, at a proper temperature
equal to the Unruh temperature [24,25]. This is exactly what was found in [23].

This means that, in the Zubarev approach, nontrivial gravitational effects, associated with the
occurrence of an event horizon, and the changes in vacuum properties depending on the reference
system, are reproduced. This observation seems even more surprising because the corresponding
calculation was carried out in ordinary flat Minkowski space-time, that is, by observing an accelerated
medium from an inertial frame. Nevertheless, nontrivial physics associated with Unruh effect
is reproduced.

Moreover, as discussed in [26], the Zubarev density operator exactly reproduces quantum
corrections that were derived in space of a cosmic string, characterized by a conical singularity [25,27].
The existence of such exact duality means that the Zubarev operator of the accelerated medium leads
to emergent conical geometry.

To justify the Unruh effect in [23], it was necessary to calculate a five-point correlator with boost
operators and energy-momentum tensor. This calculation in [23] was made for the massless Dirac field.
The method we used was developed in a series of works [13–15], where the perturbation theory with
the boost operator was developed and corrections up to the second order were calculated. It is well
known [13] that the boost operator does not commute with the Hamiltonian of the system. Because of
this, with each subsequent order of the perturbation theory, the complexity of calculation of the
corresponding quantum correlators increases. The fourth order found in [23] is currently a record
one. In the present paper, we describe a never before given scheme for calculating higher orders
of the perturbation theory with the boost operator and also derive expressions for the fourth-order
corrections to the energy-momentum tensor at nonzero mass.

To date, the Unruh effect has been considered from various points of view. In particular, in the
framework of quantum optics [8–10], the Unruh effect manifests itself in the thermal distribution with
the Unruh temperature, in the probability of absorption and emission of gamma quanta by accelerated
two-level atoms. It is necessary to consider the interaction of atoms with an electromagnetic field in
the framework of perturbation theory with respect to the coupling constant, while acceleration effects
can be taken into account in a nonperturbative way through Rindler coordinates.

Despite the difference in approaches, a parallel can be established between our consideration
and the usual approach to the Unruh effect, as well as quantum optics. In particular, in the statistical
approach we also obtained a term in the energy density (which is the last term in Equation (3.1) in [23]),
which corresponds to the Bose distribution of gamma quanta at the Unruh temperature.

The paper has the following structure. Section 2 introduces the basic concepts of the method of
Zubarev density operator. An algorithm of constructing a perturbation theory in acceleration is also
discussed. In the Section 3 we describe in details the calculation of the corrections of the fourth-order
in acceleration to the energy-momentum tensor. The interpretation associated with the Unruh effect
is given in Section 4. In Section 5 the conclusions are given. In the Appendix A the formulas for the
coefficients at finite mass are presented.

The system of units h̄ = c = k = 1 is used.
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2. Perturbation Theory in Acceleration Based on the Zubarev Density Operator

In this section, we introduce the basic concepts related to the density operator and describe how
the acceleration perturbation theory can be constructed. In general, in this section we follow the
paper [13]. In [11,12], a relativistic form of the Zubarev density operator was obtained for a medium in
a state of local thermodynamic equilibrium

ρ̂ =
1
Z

exp
{
−
∫

Σ
dΣµ[T̂µν(x)βν(x)− ξ(x) ĵµ(x)]

}
, (2)

where integration over the three-dimensional hypersurface Σ is performed. Here, βµ =
uµ

T is the
inverse temperature 4-vector, T is the proper temperature, ξ = u

T is the ratio of the chemical potential
in the co-moving frame to temperature, T̂µν and ĵµ are the energy-momentum tensor and current
operators. The conditions of global thermodynamic equilibrium for a medium with rotation and
acceleration, that is, conditions under which the density operator (2) becomes independent on the
choice of the hypersurface Σ, over which the integration occurs, thus acquiring the properties of a
density operator in a state of global thermodynamic equilibrium, have the form [13,15,28,29]

βµ = bµ + vµνxν , bµ = const , vµν = const ,

vµν = −1
2
(∂µβν − ∂νβµ) , ξ = const , (3)

where vµν is the thermal vorticity tensor. In the general case, integration over the hypersurface is to be
done and the quantum statistical theory should be projected to this hypersurface [30–32]. So under the
condition (3), the density operator (2) becomes the global equilibrium density operator [13,15,22]

ρ̂ =
1
Z

exp
{
− βµ(x)P̂µ +

1
2

vµν Ĵµν
x + ξQ̂

}
, (4)

where P̂ is the 4-momentum operator, Q̂ is the charge operator, and Ĵx are the generators of the Lorentz
transformations shifted to the point x

Ĵµν
x =

∫
dΣλ

[
(yµ − xµ)T̂λν(y)− (yν − xν)T̂λµ(y)

]
. (5)

The technique of calculating the mean values of physical quantities based on (4) was developed
in [13,15], in which second-order corrections in the thermal vorticity tensor were calculated to various
thermodynamic quantities for scalar and Dirac fields.

Note that the condition (3) also lead to a system of kinematic equations of motion, solving which,
we can construct trajectories of motion. Particular cases of this solution are the rotation of the medium
as a solid, as well as uniformly accelerated motion.

Following [13], we introduce the thermal acceleration vector αµ and the thermal vorticity
pseudo-vector wµ

αµ = vµνuν, wµ = −1
2

εµναβuνvαβ . (6)

Drawing a parallel with the electrodynamics, αµ and wµ can be called the “electrical” and
“magnetic” components of the tensor v. The tensor vµν can be decomposed into these components
as follows

vµν = εµναβwαuβ + αµuν − ανuµ . (7)
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The meaning of the vectors αµ and wµ becomes clear when considering the case of global
thermodynamic equilibrium, in which they are proportional to the usual kinematic 4-acceleration aµ

and vorticity ωµ

αµ = vµ
νuν = uν∂νβµ =

1
T

uν∂νuµ =
aµ

T
, (8)

and for thermal vorticity, we get

wµ = −1
2

εµναβuνvαβ = −1
2

εµναβuν∂ββα =
1

2T
εµναβuν∂αuβ =

ωµ

T
. (9)

In the rest frame, aµ and ωµ are expressed in terms of three-dimensional vectors

aµ = (0, a), ωµ = (0, w) , (10)

where a and w are three-dimensional acceleration and angular velocity.
The density operator (4) allows one to find corrections related to thermal vorticity in the framework

of perturbation theory. To do this, it is necessary to expand (4) in a series taking into account the fact
that we are constructing a perturbation theory with non-commuting operators. According to [13]
we have

〈Ô(x)〉 = 〈Ô(0)〉β(x) +
∞

∑
N=1

vN

2N N!|β|N
∫ |β|

0
dτ1dτ2...dτN〈Tτ Ĵ−iτ1u... Ĵ−iτN uÔ(0)〉β(x),c , (11)

where it is assumed that each of the thermal vorticity tensors is contracted with the tensor Ĵ so that
vµν Ĵµν. Equation (11) includes only connected correlators, all disconnected correlators are reduced due
to the contribution of the denominator 1/Z to (4). This fact is reflected in the subscript c; the subscript
β(x) means that the mean values are taken at v = 0, that is, averaging is performed over a grand
canonical distribution. The Tτ operator orders in imaginary time τ, and |β| =

√
βµβµ = 1

T .
It is convenient to introduce the boost operator K̂ and the angular momentum operator Ĵ

Ĵµν = uµK̂ν − uνK̂µ − εµνρσuρ Ĵσ . (12)

From (7) and (12), it follows that scalar products with vorticity tensor in (4) and (11) decompose
into terms with boost and angular momentum

vµν Ĵµν
x = −2αµK̂µ

x − 2wµ Ĵµ
x . (13)

Further, we will consider uniformly accelerated media without vorticity and chemical potential;
therefore (4), transforms to the density operator of the form

ρ̂ =
1
Z

exp
{
− βµ P̂µ − αµK̂µ

x

}
, (14)

and the perturbation theory in (11) takes the form of the series in acceleration

〈Ô(x)〉 = 〈Ô(0)〉β(x) +
∞

∑
N=1

(−1)N aN

N!

∫ |β|
0

dτ1dτ2...dτN〈TτK̂−iτ1u...K̂−iτN uÔ(0)〉β(x),c , (15)
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3. Calculation of Fourth-Order Coefficients in Acceleration

The second-order coefficients in acceleration in the energy-momentum tensor of the Dirac
field were calculated in [13,14]. In this section, we present the details of calculation of the
fourth-order coefficient.

The operator form of the energy-momentum tensor of the mass-less Dirac fields is well known.
We will use the symmetrized Belinfante energy-momentum tensor

T̂µν =
i
4
(
Ψγµ∂νΨ− ∂νΨγµΨ + Ψγν∂µΨ− ∂µΨγνΨ

)
. (16)

As follows from (15), the calculation of the necessary correlators is performed in imaginary
time—a time shift is made along the imaginary axis. Thus, it is necessary to pass to the Euclidean
formalism in imaginary time. The Euclidean version of the energy-momentum tensor (16) has the form

T̂µν =
iδ0µ+δ0ν

4
(
Ψγ̃µ∂νΨ− ∂νΨγ̃µΨ + Ψγ̃ν∂µΨ− ∂µΨγ̃νΨ

)
, (17)

where γ̃ are the Euclidean Dirac matrices

γ̃µ = i1−δ0µ γµ , γ̃µ = i1−δ0µ γµ , {γ̃µγ̃ν} = 2δµν , (18)

and derivatives are also taken in Euclidean space-time, so that

∂̃µ = (−i)δ0µ ∂µ . (19)

However, we will omit the tilde sign for derivatives. Consider the mean value of the energy-momentum
tensor in the fourth order of the perturbation theory in acceleration using (15)

〈T̂µν(x)〉 = 〈T̂µν(0)〉β(x) +
aρaσ

2

∫ |β|
0

dτ1dτ2〈TτK̂ρ
−iτ1uK̂σ

−iτ2uT̂µν(0)〉β(x),c (20)

+
8aρaσaγaη

4!

∫ |β|
0

dτ1dτ2dτ3dτ4〈TτK̂ρ
−iτ1uK̂σ

−iτ2uK̂γ
−iτ3uK̂η

−iτ4uT̂µν(0)〉β(x),c +O(a6) .

Symmetry and parity considerations fix the form of the energy-momentum tensor in the fourth
order of perturbation theory

〈T̂µν〉 = (ρ0 − A1T2a2 + A2a4)uµuν − (p0 − A3T2a2 + A4a4)∆µν

+(A5T2 − A6a2)aµaν +O(a6) ∆µν = gµν − uµuν , (21)

where a2 = aµaµ. As already mentioned, 2-order coefficients were calculated earlier in [13,14]. Our goal
is to calculate coefficients of the 4th order A2, A4, A6. Comparing (20) with (21), we obtain

A2a4uµuν − A4a4∆µν − A6a2aµaν =
aρaσaγaη

4!

∫ |β|
0

dτ1dτ2dτ3dτ4

×〈TτK̂ρ
−iτ1uK̂σ

−iτ2uK̂γ
−iτ3uK̂η

−iτ4uT̂µν(0)〉β(x),c . (22)



Particles 2020, 3 6

The coefficients A2, A4, A6 are Lorentz invariants, and the relation (22) is valid for any choice
of the vectors uµ, aµ. Therefore, to determine the coefficient, we can choose the vectors uµ, aµ in
any form convenient for us. To determine A2, we choose aµ = (0, 0, 0, |a|) and uµ = (1, 0, 0, 0) and
consider the components µ = 0, ν = 0, to determine A4 we choose aµ = (0, 0, |a|, 0) and uµ = (1, 0, 0, 0)
and consider the components µ = 3, ν = 3, and to determine A6 we choose aµ = (0, 0, 0, |a|) and
uµ = (1, 0, 0, 0) and consider the components µ = 3, ν = 3. As a result, we obtain

A2 =
1
4!

∫ |β|
0

dτ1dτ2dτ3dτ4〈TτK̂3
−iτ1uK̂3

−iτ2uK̂3
−iτ3uK̂3

−iτ4uT̂00(0)〉β(x),c ,

A4 =
1
4!

∫ |β|
0

dτ1dτ2dτ3dτ4〈TτK̂2
−iτ1uK̂2

−iτ2uK̂2
−iτ3uK̂2

−iτ4uT̂33(0)〉β(x),c ,

A6 = −A4 +
1
4!

∫ |β|
0

dτ1dτ2dτ3dτ4〈TτK̂3
−iτ1uK̂3

−iτ2uK̂3
−iτ3uK̂3

−iτ4uT̂33(0)〉β(x),c . (23)

We now use the representation of the boost operator through the energy-momentum tensor.
According to (5) and (12), we have

K̂3
−iτu = Ĵ03

−iτu =
∫

d3x(−1)x3T̂00(τ, x) ,

K̂2
−iτu = Ĵ02

−iτu =
∫

d3x(−1)x2T̂00(τ, x) , (24)

Substituting (24) into (23), we come to the need of calculating quantities of the form

Cα1α2|α3α4|α5α6|α7α8|α9α10|ijkl =
∫ |β|

0
dτxdτydτzdτf d3xd3yd3zd3 f

×xiyjzk f l〈Tτ T̂α1α2(τx, x)T̂α3α4(τy, y)T̂α5α6(τz, z)T̂α7α8(τf , f)T̂α9α10(0)〉β(x),c . (25)

In particular, from (23), we have

A2 =
1
4!

C00|00|00|00|00|3333 , A4 =
1
4!

C00|00|00|00|33|2222 , A6 = −A4 +
1
4!

C00|00|00|00|33|3333 . (26)

Next, we will focus on calculating the coefficient in energy A2; the remaining coefficients can be
calculated by analogy.

We represent the energy-momentum tensor (17) in a split form

T̂αβ(X) = lim
X1,X2→X

Dαβ
ab (∂X1 , ∂X2)Ψ̄a(X1)Ψb(X2) ,

Dαβ
ab (∂X1 , ∂X2) =

iδ0α+δ0β

4
[γ̃α

ab(∂X2 − ∂X1)
β + γ̃

β
ab(∂X2 − ∂X1)

α] , (27)

and substitute it in (26). As a result, we get for the corresponding correlator

〈Tτ T̂00(X)T̂00(Y)T̂00(Z)T̂00(F)T̂00(0)〉β(x),c = lim
X1,X2→X
Y1,Y2→Y
Z1,Z2→Z
F1,F2→F
H1,H2→H=0

D00
a1a2

(∂X1 , ∂X2)

D00
a3a4

(∂Y1 , ∂Y2)D
00
a5a6

(∂Z1 , ∂Z2)D
00
a7a8

(∂F1 , ∂F2)D
00
a9a10

(∂H1 , ∂H2)〈TτΨa1(X1)Ψa2(X2)

×Ψa3(Y1)Ψa4(Y2)Ψa5(Z1)Ψa6(Z2)Ψa7(F1)Ψa8(F2)Ψa9(H1)Ψa10(H2)〉β(x),c . (28)
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When calculating the correlator with 10 Dirac fields of the form (28), it is necessary to use an
analogue of Wick theorem for field theory at finite temperatures. Then, the five-point correlator
in (28) leads to the product of mean values of quadratic combinations of Dirac fields, that is,
thermal propagators. For short, we denote Ψan → n, and Ψan → n̄ and omit Tτ and the index
β(x). Then, after extraction on the connected part in (28) according to Wick theorem, we obtain
24 terms

〈TτΨa1(X1)Ψa2(X2)Ψa3(Y1)Ψa4(Y2)Ψa5(Z1)Ψa6(Z2)Ψa7(F1)Ψa8(F2)

Ψa9(H1)Ψa10(H2)〉β(x),c = 〈1̄23̄45̄67̄89̄10〉 = −〈1̄4〉〈29̄〉〈3̄6〉〈5̄8〉〈7̄10〉
+〈1̄4〉〈27̄〉〈3̄6〉〈5̄10〉〈89̄〉+ 〈1̄4〉〈29̄〉〈3̄8〉〈5̄10〉〈67̄〉+ 〈1̄4〉〈25̄〉〈3̄8〉〈69̄〉〈7̄10〉
+〈1̄4〉〈27̄〉〈3̄10〉〈5̄8〉〈69̄〉 − 〈1̄4〉〈25̄〉〈3̄10〉〈67̄〉〈89̄〉+ 〈1̄6〉〈29̄〉〈3̄8〉〈45̄〉〈7̄10〉
−〈1̄6〉〈27̄〉〈3̄10〉〈45̄〉〈89̄〉+ 〈1̄6〉〈29̄〉〈3̄10〉〈47̄〉〈5̄8〉+ 〈1̄6〉〈23̄〉〈49̄〉〈5̄8〉〈7̄10〉
+〈1̄6〉〈27̄〉〈3̄8〉〈49̄〉〈5̄10〉 − 〈1̄6〉〈23̄〉〈47̄〉〈5̄10〉〈89̄〉+ 〈1̄8〉〈29̄〉〈3̄6〉〈47̄〉〈5̄10〉
−〈1̄8〉〈25̄〉〈3̄10〉〈47̄〉〈69̄〉 − 〈1̄8〉〈29̄〉〈3̄10〉〈45̄〉〈67̄〉 − 〈1̄8〉〈23̄〉〈49̄〉〈5̄10〉〈67̄〉
+〈1̄8〉〈25̄〉〈3̄6〉〈49̄〉〈7̄10〉 − 〈1̄8〉〈23̄〉〈45̄〉〈69̄〉〈7̄10〉+ 〈1̄10〉〈27̄〉〈3̄6〉〈49̄〉〈5̄8〉
−〈1̄10〉〈25̄〉〈3̄8〉〈49̄〉〈67̄〉 − 〈1̄10〉〈27̄〉〈3̄8〉〈45̄〉〈69̄〉 − 〈1̄10〉〈23̄〉〈47̄〉〈5̄8〉〈69̄〉
−〈1̄10〉〈25̄〉〈3̄6〉〈47̄〉〈89̄〉+ 〈1̄10〉〈23̄〉〈45̄〉〈67̄〉〈89̄〉 , (29)

where signs correspond to the number of permutations of anti-commuting fields. Thermal propagators
have a standard form [13,33]

Ga1a2(X1, X2) = 〈TτΨa1(X1)Ψa2(X2)〉β(x) = ∑
∫
P

eiP+(X1−X2)(−iP+
µ γ̃µ + m)a1a2 ∆(P+) ,

Ḡa1a2(X1, X2) = 〈TτΨa1(X1)Ψa2(X2)〉β(x) = −〈TτΨa2(X2)Ψa1(X1)〉β(x)

= −∑
∫
P

eiP−(X1−X2)(iP−µ γ̃µ + m)a2a1 ∆(P−) , (30)

where integration over the three-dimensional components of the momentum and summation over the
Matsubara frequencies of fermion field appear. The following notations are used in (30): P± = (p±n , p),

p±n = π(2n + 1)/|β| ± iµ, n = 0,±1,±2, · · · , X = (τ, x), ∑
∫

P = 1
|β| ∑∞

n=−∞
∫ d3 p

(2π)3 , and ∆(P) = 1
P2+m2 ,

where the square is taken with the Euclidean metric, as also in P±µ γ̃µ = /P± (unlike P+(X1 − X2)

according to [33]). Since we consider mass-less field at zero chemical potential, the mass and chemical
potential must be set equal to zero m = 0, µ = 0. Nevertheless, we retain the notation P±, bearing in
mind the possibility of generalization to the case with nonzero chemical potential in the future.

Next, substitute (30) in (29). We will describe the calculations for the first term in (29), while all
other terms can be calculated by analogy
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− lim
X1,X2→X
Y1,Y2→Y
Z1,Z2→Z
F1,F2→F
H1,H2→H=0

D00
a1a2

(∂X1 , ∂X2)D
00
a3a4

(∂Y1 , ∂Y2)D
00
a5a6

(∂Z1 , ∂Z2)D
00
a7a8

(∂F1 , ∂F2)D
00
a9a10

(∂H1 , ∂H2)

×Ḡa1a4(X1, Y2)Ga2a9(X2, H1)Ḡa3a6(Y1, Z2)Ḡa5a8(Z1, F2)Ḡa7a10(F1, H2) =

− ∑
∫

{P,Q,K,R,L}

e−ip(x−y)−iqx−ik(y−z)−ir(z−f)−ilfeip−n (τx−τy)+iq+n τx+ik−n (τy−τz)+ir−n (τz−τf )+il−n τf

×∆(P−)∆(Q+)∆(K−)∆(R−)∆(L−)

×tr
[
(−i/L−)D00(iL−,−iR−)(−i/R−)D00(iR−,−iK−)(−i/K−)

×D00(iK−,−iP−)(−i/P−)D00(iP−, iQ+)(−i/Q+)D00(−iQ+,−iL−)
]

, (31)

where it was necessary to arrange all the matrices under the trace in accordance with the order of the
spinor indices. To calculate (31), it is necessary to find a trace of the form

tr
[

/P1D00(P2, P3) /P4D00(P5, P6) /P7D00(P8, P9) /P10D00(P11, P12) /P13D00(P14, P15)
]

. (32)

The subsequent calculations are more convenient to carry out using special software applications.
Calculation (32) requires finding the trace of 10 Euclidean Dirac matrices

tr
[
γ̃α1 γ̃α2 γ̃α3 γ̃α4 γ̃α5 γ̃α6 γ̃α7 γ̃α8 γ̃α9 γ̃α10

]
. (33)

Using the definition (18), this trace can be easily transformed to the trace of ordinary
Dirac matrices, which can be found using standard methods. We denote the trace in (32) as
A(P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15). Then (31) will be presented in the form

−
∫ d3 pd3qd3kd3rd3l

(2π)15 e−ip(x−y)−iqx−ik(y−z)−ir(z−f)−ilf

× ∑
pn ,qn ,kn ,rn ,ln

1
|β|5 eip−n (τx−τy)+iq+n τx+ik−n (τy−τz)+ir−n (τz−τf )+il−n τf

×∆(P−)∆(Q+)∆(K−)∆(R−)∆(L−)

×A(−iL−, iL−,−iR−,−iR−, iR−,−iK−,−iK−, iK−,−iP−,−iP−, iP−, iQ+,

−iQ+,−iQ+,−iL−) . (34)

Next, one needs to sum over the Matsubara frequencies in (34) using the relation

1
|β|∑ωn

(ωn ± iµ)kei(ωn±iµ)τ

(ωn ± iµ)2 + E2 =
1

2E ∑
s=±1

(−isE)keτsE[θ(−sτ)− nF(E± sµ)] , (35)

where E =
√

p2 + m2, nF(E) = 1/(1 + eE/T) is the Fermi distribution, and θ is the Heaviside theta
function. Again, we can take m = 0, µ = 0. As a result, we obtain



Particles 2020, 3 9

−
∫ d3 pd3qd3kd3rd3l

(2π)15 e−ip(x−y)−iqx−ik(y−z)−ir(z−f)−ilf

× 1
32EpEqEkErEl

∑
s1,s2,s3,s4,s5

e(τx−τy)s1Ep+τxs2Eq+(τy−τz)s3Ek+(τz−τf )s4Er+τf s5El

×A(−iL̃, iL̃,−iR̃,−iR̃, iR̃,−iK̃,−iK̃, iK̃,−iP̃,−iP̃, iP̃, iQ̃,−iQ̃,−iQ̃,−iL̃)

×
(
θ
[
−s1(τx − τy)

]
− nF

(
Ep
)) (

θ [−s2]− nF
(
Eq
))

×
(
θ
[
−s3(τy − τz)

]
− nF (Ek)

) (
θ
[
−s4(τz − τf )

]
− nF (Er)

)
(θ [−s5]− nF (El)) . (36)

Here, following [13], the notations P̃ = P̃(s1) = (−is1Ep, p), Q̃ = Q̃(s2), · · · are introduced.
We return now to the formula for A2 (26) with spatial integrals and calculate the contribution of the
term (36). This contribution has the form

A2 =
∫ dτxdτydτzdτf d3xd3yd3zd3 f d3 pd3qd3kd3rd3l

4!(2π)15 e−ip(x−y)−iqx−ik(y−z)−ir(z−f)−ilf

×x3y3z3 f 3D + · · · , (37)

where the ellipsis indicates the contribution of the remaining 23 terms from (29), and D equals to

D = − 1
32EpEqEkErEl

∑
s1,s2,s3,s4,s5

e(τx−τy)s1Ep+τxs2Eq+(τy−τz)s3Ek+(τz−τf )s4Er+τf s5El

×A(−iL̃, iL̃,−iR̃,−iR̃, iR̃,−iK̃,−iK̃, iK̃,−iP̃,−iP̃, iP̃, iQ̃,−iQ̃,−iQ̃,−iL̃)

×
(
θ
[
−s1(τx − τy)

]
− nF

(
Ep
)) (

θ [−s2]− nF
(
Eq
))

×
(
θ
[
−s3(τy − τz)

]
− nF (Ek)

) (
θ
[
−s4(τz − τf )

]
− nF (Er)

)
(θ [−s5]− nF (El)) . (38)

Next, one needs to rewrite the product of spatial coordinates in the integral through derivatives
using the formula∫

d3 pd3qd3kd3rd3xd3yd3zd3 f F(p, q, k, r, l)e−ip(x−y)−iqx−ik(y−z)−ir(z−f)−ilfx3y3z3 f 3

= (2π)12
∫

d3 p
(
− ∂3

∂q3∂l3∂p3∂r3 −
∂3

∂q3∂l3∂p3∂l3

+
∂3

∂q3∂l3∂r3∂q3 +
∂3

∂q3∂q3∂l3∂l3

)
F(p, q, k, r, l)

∣∣∣∣∣ l=p
r=p
k=p
q=−p

, (39)

resulting from integration by parts and properties of the delta function. After that, (37) is converted to
the form

A2 =
1

4!(2π)3

∫
dτxdτydτzdτf d3 p

(
− ∂3

∂q3∂l3∂p3∂r3 −
∂3

∂q3∂l3∂p3∂l3

+
∂3

∂q3∂l3∂r3∂q3 +
∂3

∂q3∂q3∂l3∂l3

)
D(p, q, k, r, l)

∣∣∣∣∣ l=p
r=p
k=p
q=−p

+ · · · . (40)



Particles 2020, 3 10

Now, it remains to integrate over the imaginary time and also over the last momentum, which
can be done directly in spherical coordinates d3 p = |p|2d|p| sin(θ)dθdφ. The sequence of actions
in this case, from the point of view of calculation speed, will be most convenient as follows: first
one needs to make differentiations with respect to the four momentum variables in (40), then make
the corresponding changes of the variables following from the delta functions, then sum over the
indices sn from (38), then integrate over the angles in d3 p, and then integrate over imaginary time
variables, which requires careful handling of theta functions. The transformations with each of the
24 terms in (29) can be performed independently and using parallel computing tools. We do not give
the described intermediate steps, since they are most conveniently performed using the program,
and the intermediate formulas themselves are extremely long, while the calculations themselves are
not difficult from a mathematical point of view and are done directly. As a result, we obtain the
following integral

A2 =
∫ ∞

0
dp̃e

9p̃
2 p̃3

(
5600p̃

(
49p̃2 − 95

)
cosh

(
p̃
2

)
+ 2016p̃

(
25− 119p̃2

)
cosh

(
3p̃
2

)
+53200

(
sinh

(
3p̃
2

)
− 11 sinh

(
p̃
2

))
cosh4

(
p̃
2

)
+ p̃

(
− 224

(
p̃2 + 25

)
cosh

(
7p̃
2

)
+224

(
119p̃2 + 575

)
cosh

(
5p̃
2

)
+ 18p̃ sinh

(
p̃
2

)(
− 5786p̃2 +

(
p̃2 + 210

)
cosh (3p̃)

−6
(

41p̃2 + 1890
)

cosh (2p̃) + 3
(

1349p̃2 + 9450
)

cosh ( p̃)

+39900
)))

(50400π2 (e p̃ + 1
)9
)−1 , (41)

where the dimensionless variable p̃ = |p|/T was introduced. This integral converges and can be
found analytically:

A2 = − 17
960π2 . (42)

Repeating the entire calculation algorithm for the coefficients A4, A6 in (26), we obtain at m = 0

A4 = − 17
2880π2 , A6 = 0 . (43)

Saving the mass in all formulas, in particular, in the propagators (30), we get more complicated
expressions for the coefficients at finite mass given in the Appendix A.

4. Discussion

In the previous section, we described the details of the calculation of the corrections of the
fourth order in acceleration to the energy-momentum tensor of the Dirac field, first obtained in [23].
Taking into account (42) and (43), we obtain the next formula for the energy-momentum tensor at
m = 0

〈T̂µν〉 =
(7π2T4

60
+

T2|a|2
24

− 17|a|4
960π2

)
uµuν −

(7π2T4

180
+

T2|a|2
72

− 17|a|4
2880π2

)
∆µν +O(a6) , (44)

where the notation |a| =
√
−aµaµ is used.
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As discussed in [22,24,25,27], the mean value of the energy-momentum tensor calculated in this
way should vanish at the proper temperature equal to Unruh temperature. Since the energy-momentum
tensor is normalized with respect to the Minkowski vacuum, such a vanishing is a direct consequence
of the Unruh effect—an accelerated medium with Unruh temperature corresponds to the Minkowski
vacuum. It is easy to see that energy-momentum tensor (44) satisfies this condition following from the
Unruh effect

〈T̂µν〉(T = TU) = 0 . (45)

Moreover, as discussed in [26], from the presentation of the result (44) in the form of Sommerfeld
integrals, as well as comparison with the field theory in a space with a conical singularity, it follows that
the calculated fourth order of perturbation theory is maximal; that is, O(a6) = 0 at least at T > TU [26].
Thus, Equation (44) is an exact non-perturbative formula in this region.

We also note that expression (44) can be obtained from the point of view of another approach,
where field theory in a space with a conical singularity is considered [25,27]. As discussed in [26],
this indicates the duality of the statistical and geometrical approaches to the description of
accelerated media.

5. Conclusions

The Zubarev density operator provides a powerful fundamental theoretical method for studying
quantum-field effects in the accelerated medium. This makes it possible to obtain information about
such a medium from the point of view of an inertial observer and there is no need to go to the
curvilinear coordinates of the accelerated frame and consider the features of nontrivial space with a
boundary. All effects can be calculated in ordinary flat space described by the Minkowski metric using
standard Green functions at finite temperature. In this case, the effects of acceleration are calculated
in a regular way in the framework of perturbation theory with the boost operator. However, it is
possible to obtain exact non-perturbative expressions in the chiral limit, since the first few orders of
the perturbation theory are to give a complete perturbative series.

In particular, earlier in [23], the Unruh effect for fermions was demonstrated by calculating
fourth-order quantum corrections. In the language of the statistical approach with the Zubarev
operator, the Unruh effect should lead to the vanishing of the energy-momentum tensor at the proper
temperature equal to the Unruh temperature. Thus, the Zubarev density operator allows one to obtain
information about the effects associated with the occurrence of an event horizon in an accelerated
system and the radiation associated with it.

In more usual formulation or from the point of view of modern developments in the quantum
optics [8–10], the Unruh effect should be manifested in the thermal distribution of photons with
Unruh temperature. However, it can be shown that the formula we obtained (44) also contains such a
distribution with the Unruh temperature [23].

In this paper, we described the details of the calculations of the coefficients with acceleration in
the energy-momentum tensor given in [23], focusing on the calculation of the quantum correction to
the energy density. The calculation of this correction consists in finding the mean value of the product
of the boost operators and operator of the energy-momentum tensor. Applying Wick theorem, one can
transform the average of the product of operators to the product of five thermal propagators. Each of
the propagators adds one summation over the Matsubara frequencies and a three-dimensional integral
over the momentum, and also each boost operator adds three-dimensional integral over the coordinate
and one integral over the imaginary time. The procedure for calculating these sums and integrals is
described. In addition, expressions for the coefficients at a finite mass are given.
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The effects of acceleration we are discussing are of interest from the experimental point of view,
in particular, in heavy-ion collisions, where large acceleration can occur. A systematic study of the
effects of acceleration requires calculating the acceleration resulting from particle collisions, similar to
calculating the vorticity [34–36]. Since the vorticity turns out to be significant in the collision of particles,
acceleration, being another combination of derivatives, is also expected to affect the observables.
We predict that the effects of acceleration should be significant at early stages of the collision, when the
system is not yet fully thermalized and the terms with acceleration are not suppressed with respect to
temperature. In this case, non-equilibrium processes can arise that are associated with instability at the
Unruh temperature, which were discussed in [26]. One can also make a prediction that the discussed
electron-ion collider (EIC) can become a good laboratory for studying effects of acceleration [37].
An elementary particle like an electron, colliding with an ion, behaves like a wave, which allows us to
separate the effects of acceleration from the effects of vorticity.
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Appendix A. The Coefficients a4 at Finite Mass

The coefficient A2 at a finite mass is described by the expression

A2 =
∫ ∞

0
dp̃p̃2e

9Ẽp
2

(
Ẽp

(
9
(

51450− 15619m̃2
)

p̃4 + 175
(

2450m̃2 − 361
)

p̃2

+175m̃2
(

392m̃2 − 285
)
− 140571p̃6

)
sinh

(
Ẽp

2

)
+ 27Ẽp

(
27
(

53m̃2 + 490
)

p̃4

+175
(

70m̃2 − 19
)

p̃2 + 35m̃2
(

56m̃2 − 75
)
+ 1431p̃6

)
sinh

(
3Ẽp

2

)
−Ẽp

(
9
(

247m̃2 + 11550
)

p̃4 + 175
(

550m̃2 + 133
)

p̃2 + 175m̃2
(

88m̃2 + 105
)

+2223p̃6
)

sinh

(
5Ẽp

2

)
+ Ẽp

(
9
(

m̃2 + 210
)

p̃4 + 175
(

10m̃2 + 19
)

p̃2

+35m̃2
(

8m̃2 + 75
)
+ 9p̃6

)
sinh

(
7Ẽp

2

)
− 8

(
m̃2 + p̃2

) (
5m̃2

(
2p̃2 + 63

)
+28p̃2

(
p̃2 + 25

) )
cosh

(
7Ẽp

2

)
− 504

(
m̃2 + p̃2

) (
5m̃2

(
34p̃2 − 9

)
+476p̃4 − 100p̃2

)
cosh

(
3Ẽp

2

)
+ 56

(
m̃2 + p̃2

) (
5m̃2

(
34p̃2 + 207

)
+476p̃4 + 2300p̃2

)
cosh

(
5Ẽp

2

)
+ 1400

(
m̃2 + p̃2

) (
m̃2
(

70p̃2 − 171
)

+4p̃2
(

49p̃2 − 95
) )

cosh

(
Ẽp

2

))
(50400π2

(
eẼp + 1

)
9Ẽ2

p)
−1 , (A1)
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where the dimensionless quantities m̃ = m/T, Ẽp =
√

p2 + m2/T are introduced. The coefficient A4

at a finite mass has the form

A4 =
∫ ∞

0
dp̃
(

p̃4e
9Ẽp

2

(
1960 sinh

(
Ẽp

2

)
cosh2

(
Ẽp

2

)((
8m̃2 + 15

)
cosh

(
2Ẽp

)
−8
(

56m̃2 + 15
)

cosh
(
Ẽp
)
+ 984m̃2 − 135

)
+ p̃2

(
408170− 421713p̃2

)
sinh

(
Ẽp

2

)

+27p̃2
(

4293p̃2 + 11662
)

sinh

(
3Ẽp

2

)
− p̃2

(
6669p̃2 + 91630

)
sinh

(
5Ẽp

2

)

+ p̃2
(

27p̃2 + 1666
)

sinh

(
7Ẽp

2

)
+ 29400

(
14p̃2 − 19

)
Ẽp cosh

(
Ẽp

2

)

−168
(

2p̃2 + 35
)

Ẽp cosh

(
7Ẽp

2

)
− 10584

(
34p̃2 − 5

)
Ẽp cosh

(
3Ẽp

2

)

+1176
(

34p̃2 + 115
)

Ẽp cosh

(
5Ẽp

2

))) (
1058400π2

(
eẼp + 1

)
9Ẽp

)−1
. (A2)

The coefficient A6 is zero both for massless and massive Dirac fields

A6 = 0 . (A3)
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