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Abstract: We review nonsingular static, spherically symmetric solutions of general relativity with
minimally coupled scalar fields. Considered are wormholes and regular black holes (BHs)
without a center, including black universes (BHs with expanding cosmology beyond the horizon).
Such configurations require a “ghost” field with negative kinetic energy K. Ghosts can be invisible
under usual conditions if K < 0 only in strong-field region (“trapped ghost”), or they rapidly decay
at large radii. Before discussing particular examples, some general results are presented, such as
the necessity of anisotropic matter for asymptotically flat or AdS wormholes, no-hair and global
structure theorems for BHs with scalar fields. The stability properties of scalar wormholes and regular
BHSs under spherical perturbations are discussed. It is stressed that the effective potential V¢ for
perturbations has universal shapes near generic wormhole throats (a positive pole regularizable by
a Darboux transformation) and near transition surfaces from canonical to ghost scalar field behavior
(a negative pole at which the perturbation finiteness requirement plays a stabilizing role). Positive
poles of V¢ emerging at “long throats” (with the radius r &~ ry + const - 2, n > 1, x = 0 is the
throat) may be regularized by repeated Darboux transformations for some values of #.
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1. Introduction

Space-time singularities exist in a great number of solutions of general relativity (GR) with or
without various material sources, and at each of them the theory itself demonstrates conditions under
which it cannot work any more. However, construction of various nonsingular solutions of GR,
which are especially interesting and attractive, is also a long-term tradition. In particular, nonsingular
static, spherically symmetric space-times, which are a subject of this paper, may be classified as follows:
(i) starlike (or solitonic, or particlelike) space-times with a regular center; (ii) black holes (BHs) with
a regular center; (iii) space-times having no center and no horizons, including wormholes and some
other geometries like horns and flux tubes; and (iv) space-times without a center but containing
horizons, and among them are a few classes of regular BHs as well as wormholes with cosmological
horizons—for reviews see, e.g., [1-5] and references therein. Our interest will be in wormholes and
regular BHs (BHs) without a center described by solutions of GR with a minimally coupled scalar field
as a source. Even such a narrow class of geometries turns out to be sufficiently rich in properties of
interest, especially concerning their dynamic stability.

A wormbhole is generally understood as a kind of tunnel or shortcut between two manifolds
or two distant parts of the same manifold. However, this term is used in the literature in different
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meanings: the wormholes can be Lorentziian (traversable or not), Euclidean, and even quantum, which
means that a wave function resembles a tunnel geometry in a certain sense. In this paper, the term
“wormhole” is applied to traversable Lorentzian wormholes only. The so-called non-traversable
wormbholes are, in general, BHs (or parts of BH space-times) rather than wormholes; thus, a
wormhole-like geometry quite usually appears as a spatial section of a black hole, it is this phenomenon
that was discovered by Flamm [6] as early as in 1916 in his study of Schwarzschild’s solution, and his
article is now referred to as the pioneering paper in wormhole physics. As to Euclidean and quantum
wormbholes, they represent quite separate areas of research.

It is well known that the existence of traversable Lorentzian wormholes as solutions to the Einstein
equations requires what is called “exotic matter”, i.e., matter violating the Null Energy Condition
(NEC) [7,8], which is a part of the Weak Energy Condition (WEC) whose physical meaning is that the
energy density is nonnegative in any reference frame. In particular, for static, spherically symmetric
systems sourced by scalar fields, wormhole solutions can be and are really obtained if such a scalar
field is phantom (or ghost), i.e., has negative kinetic energy [9-12]. In theories of gravity alternative
to GR, for example, scalar-tensor theories and the related multidimensional and curvature-nonlinear
theories, wormhole solutions also appear only in the presence of phantom degrees of freedom [9,13-15]
(see also [2,3,5] and references therein). This is true for both continuous matter distributions and thin
shells [13]. In can happen that gravity itself becomes phantom in some region of space [9,13,16], in other
cases the role of a phantom is played by such geometric quantities as torsion [17,18], higher-dimensional
metric components or variables related to higher-order derivatives [19-21] or unusual couplings
between fields and matter [22]. For example, in brane-world theories, a source for wormhole geometry
in four dimensions can be provided by a tidal effect from extra dimensions originating from the Weyl
tensor in the bulk [4,21,23]. Such a source, due to its geometric origin, is not subject to any energy
conditions applicable to ordinary matter.

If, however, our interest is in obtaining (at least potentially) realistic wormholes, it still makes
sense to adhere to GR and to use macroscopic matter or fields, because it is GR that explains all
observations and experiments on the macroscopic level; it is even used as a tool in applications like
GPS navigation.

Still, as yet nobody has observed macroscopic phantom matter, which puts to doubt its possible
existence and therefore a possible realization of wormbholes, suitable, for instance, for interstellar
communication and travel, even by any advanced civilization or in the remote future.

In attempts to circumvent such problems and still to find wormhole solutions in GR, a way of
interest is to invoke such a sort of matter that would be phantom in a certain region of space only,
somewhere in the vicinity of a wormhole throat, while away from it it would observe all usual energy
conditions [24]. To obtain such a kind of matter, one can try to use a minimally coupled scalar field
with the Lagrangian

L, = h(cp)gV"ay<paV¢ - V(¢), 1)

where h(¢) and V(¢) are arbitrary functions. If h(¢) can change its sign, it cannot be absorbed by
redefinition of ¢ in its whole range. A situation of interest for us is if 1 > 0 (so that the scalar field is
canonical and has positive kinetic energy) in a weak field region and /1 < 0 (a phantom, or ghost scalar
field) in a strong-field region where one could expect a wormhole throat. One can say that in this sense
the ghost is trapped. Let us note that such a transition between i > 0 and & < 0 was considered in [25]
in a cosmological setting.

It is known that phantom fields can produce not only wormholes but also regular black
holes of different kinds, see, e.g., [26-28]. Among such models, it makes sense to mark separately
those combining the features of BH physics and nonsingular cosmological models, the ones called
black universes [26,27]. Such objects look like “conventional” BHs (spherically symmetric ones in
the existing examples) as seen from spatial infinity, where they can be asymptotically flat, but after
crossing the horizon, a possible explorer gets into an expanding universe instead of a singularity.
Thus such hypothetic objects combine the features of wormholes (no center but a regular minimum of
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the spherical radius r(x)), BHs (static (R-) and nonstatic (T-) regions separated by a Killing horizon),
and regular cosmological models. In addition, in such models the Kantowski-Sachs cosmology of the
T-region can become isotropic at large times and be asymptotically de Sitter, making these models
a potentially viable description of an epoch before inflation. One can apply the trapped ghost concept
to such models on equal grounds with wormholes [29,30]: in such cases, the scalar field should
be phantom close to a minimum of the spherical radius r (and this minimum can be located both
outside and inside the horizon or even coincide with it) but has canonical properties in the weak field
regions on both sides of the strong-field one, at large radii on the static side and at large times on the
cosmological side.

It can also happen that a phantom field is not observed because it decays rapidly enough in
the weak-field region (the so-called “invisible ghost”) but can also create wormhole and regular
BH geometries.

In this paper we briefly review the wormhole and black universe solutions of GR with minimally
coupled scalar fields, including trapped and invisible ghost fields, and also discuss the stability
problem. For any static model, the stability properties are of utmost importance since unstable objects
cannot survive in the real Universe, at least for a long time. It is known from previous studies that
many wormhole and black universe solutions of GR are unstable under radial perturbations [31-38].
Considering the stability problem for trapped-ghost configurations, we shall see that it has some
distinctive features that lead to a somewhat unexpected inference that transitions surfaces between
canonical and phantom regions of a scalar field play a stabilizing role. We will also discuss how the
shape of the throat (its being generic or elongated) affects the stability study.

The paper is organized as follows. Section 2 presents the basic equations and some general
features of spherically symmetric wormhole and regular BH space-times without a center. Section 3
describes the general properties of space-times with scalar sources and presents a number of explicit
solutions with “simple”, trapped and invisible ghosts. Section 4 discusses the stability problem for
spherically symmetric scalar field configurations in GR and its particular features that emerge when
we consider trapped-ghost scalars. Section 5 is a conclusion.

2. Basic Equations and General Statements

We will restrict ourselves to considering only static, spherically symmetric configurations and their
small spherically symmetric perturbations. Before discussing solutions with scalar fields, let us begin
with some general results which, using spherical symmetry as the simplest illustration, reveal some
general features of wormhole solutions in GR.

2.1. General Relations

The general static, spherically symmetric metric which can be written in the general form without
fixing the choice of the radial coordinate u:

ds? = e2'y(u)dt2 _ eZa(u)duZ _ eZﬁ(u)dQZ, )

where d)? = d6? + sin? 8d¢? is the linear element on a unit sphere. Our conventions are: the metric

signature (+ — — —), the curvature tensor Ry = BVF"ZP — ..., Ryy = Ry, so that the Ricci
scalar R > 0 for de Sitter space-time and the matter-dominated cosmological epoch; the sign of T such
that T{ is the energy density, and the system of units 877G = ¢ = 1. In what follows we use different
radial coordinates, to be denoted for convenience by different letters:

u—a general notation,

x—a quasiglobal coordinate, such that « = —,
y—a harmonic coordinate, such that « = 25 + 7,
z—a “tortoise” coordinate, such that & = +.
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Then the nonzero components of the Ricci tensor are

Ri = —e [y +9'(+ —o' +28')], (3a)
Ri = —e [y +28" +97 + 287 — /(v + 28], (3b)
R =Ry = e — e [p" + f'(y o' +2p))], (3¢)

where the prime stands for d/du. The Einstein equations can be written in two equivalent forms

Gy, =R, —36,R=~T;, or Ry,=—(T,—35,Ts), 4)
where T is the stress-energy tensor (SET) of matter. The most general SET compatible with the
geometry (2) has the form

T;j = diag(p, —Pr, —PT, —PT), ©®)

where p is the energy density, p; is the radial pressure, and pr is the tangential pressure, which are
in general different (p, # pr), so that the SET (5) is anisotropic. It may contain contributions of one
or several physical fields of different spins and masses or/and the density and pressures of one or
several fluids.

Our interest here is in the existence and properties of wormhole and regular BH solutions to the
Einstein equations. A wormhole geometry with the metric (2) requires that the function r(u) = ef(*)
should have a regular minimum r = ry, (this sphere is called a throat) and reach values r > ry, on
both sides of the throat. Of greatest interest are wormhole geometries which are asymptotically flat on
one or both sides since only in this case a wormhole may be thought of as a local object in the modern,
very weakly curved universe. To distinguish wormholes from BHs, it is often required that gy = e27
should be everywhere positive; however, it makes sense to admit gy = 0 (a horizon) sufficiently far
from a throat, which may be of cosmological nature, with a possible de Sitter asymptotic beyond it.

As to regular BH geometries, among their different kinds [27], the most widely discussed are
those with a regular center, which can be obtained, for example, with a matter source satisfying
the vacuum-like condition p 4+ p, = 0, such as gauge-invariant nonlinear electrodynamics with
Lagrangians of the form L = L(f), f = F,, F*" (F,y being the Maxwell tensor) (see, e.g., [39-42]). In the
present paper we focus on other kinds of regular black holes, those which, like wormholes, have no
center, so that, in general, the spherical radius » = eP has a minimum.

Before considering such objects with scalar field sources, let us mention two general results
concerning any kinds of matter. To this end, let us use, for convenience, the so-called quasiglobal
coordinate u = x under the condition a + ¢ = 0; denoting €7 = e 2* = A(x) and ef = r(x),

we rewrite the metric as
dx?

A(x)

The three different nontrivial components in the Einstein equations for the metric (6) have the form

ds* = A(x)di? — — 2 (x)dO2. (6)

1
Gi = 5[-1+A@" +7?%) + A'r) = T}, (7a)
Gf = %2[—1 + Alrr' + Ar?) = —T%, (7b)
Gf = GJ = 5 A7+ rA" 24| = pr, (7¢)

where the prime denotes d/dx, and Equation (7b) is the constraint equation, free from second-order
derivatives.
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2.2. The Necessity of Exotic Matter

It is quite a well-known fact, first noticed for static, spherically symmetric space-times [7] and
later proved for general static space-times in [8]. The term “exotic matter” is applied to matter whose
SET violates the Null Energy Condition (NEC) (T;{ kFk, > 0, where k¥ is any null vector, k*k;, = 0).
This condition is, in turn, a part of the Weak Energy Condition (WEC) whose physical meaning is that
the energy density is nonnegative as viewed in any reference frame (see any textbook on GR).

The necessity of exotic matter for the existence of a wormhole throat is easily shown using
Equations (7a) and (7b) whose difference reads

247" /1 = —(T; = T}) = —(p+ pr), ®)
On the other hand, at a throat as a minimum of r(x) we have
r>0, =0, " > 0. 9)

(In special cases where 1’/ = 0 at the minimum, it always happens that " > 0 in its neighborhood.)

Then from Equation (8) under the condition gy = A > 0 it immediately follows p + p, < 0.
This inequality does indeed look exotic, but to see an exact result, we can choose the null vector
k" = (1/+/A,\/A,0,0) and find that T, k'ky = p + pr. Thus the inequality p + p, < 0 does indeed
violate the NEC.

In the case of regular BHs it may happen that a minimum of r(x) is located in a region beyond
its horizon, in which A < 0 (T-region), where the metric describes a Kantowski-Sachs cosmology,
In such a region, x is a temporal coordinate, then T¥ = { is the energy density while — T} = p; is the
pressure in the (spatial) ¢ direction. Then the requirement r”” > 0 leads, according to Equation (8),
to 4+ p+ < 0. Thus such a minimum also requires NEC violation. And lastly, if a minimum of
r coincides with a horizon, then the same reasoning shows that NEC violation is necessary on either
side in its neighborhood.

2.3. A No-Go Theorem for Isotropic Matter

It is of interest whether or not wormhole solutions can be obtained with a source in the form of
isotropic matter (Pascal fluid), such that p, = pr. We will see that the answer is negative for wormholes
with flat or anti-de Sitter asymptotic behavior at both ends [4].

If p, = pr, we have G} = G§, and the difference of Equations (7b) and (7c) gives

r?A” +2Ar" —2Ar? +2 = 0. (10)
The substitution A(x) = D(x)/r*(x) converts it to

4D'r'  4Dr”
+ 2
r r

D" — +2=0. (11)

A possible minimum of D(x) at some x = x( requires D’ = 0 and D" > 0, and it should be D > 0
for a traversable wormhole. Meanwhile, if D’ = 0, Equation (11) gives D" < —2, hence a point where
D’ = 0 is necessarily a maximum.

However, an asymptotically flat traversable wormhole requires r — coand A — 1 as x — %o,
in an asymptotically anti-de Sitter wormhole it must be A ~ 2 at large r, etc. In all such cases
D(x) — oo on both sides far from the throat, hence it should have a minimum, which, as we have seen,
is impossible. We thus have the following theorem:

Theorem 1. A static, spherically symmetric traversable wormhole with r — oo and A(x)r?(x) — oo on both
sides of the throat cannot be supported by any matter source with p, = pr everywhere.
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This excludes, in particular, twice asymptotically flat and twice asymptotically AdS wormholes
as well as those asymptotically flat on one end and AdS on the other. What is not excluded, is that
one or both asymptotic regions are de Sitter: in this case, r — oo but A ~ —r? at large r, and it is
not necessary to have a minimum of D(x). A number of examples of such asymptotically de Sitter
wormhole solutions have been found in [4], see also references therein.

These inferences were obtained above using a specific coordinate condition, but they have an
invariant meaning since the quantities A = gy and r?> = gy are insensitive to the choice of the radial
coordinate, as well as the mixed components T;j of the SET.

There exist wormhole solutions with isotropic fluids as sources, but in all such cases the fluid
occupies a finite region of space, and there are inevitably “heavy” thin shells on the boundaries between
fluid and vacuum regions [43,44]. Such shells are highly anisotropic in the sense that a tangential
pressure is nonzero while the radial one is not defined (since the radial direction is orthogonal to
the shell). Therefore, these solutions do not contradict the above no-go theorem.

3. Static Systems with a Scalar Field Source

The total action of GR with a minimally coupled scalar field ¢ as a source of gravity can be
written as

1
5= [ V=gd*x[R+2n(9)3"puts —2V(4)], "

where, as before, R is the scalar curvature, g = det(g,y), and V(¢”) is a self-interaction potential.
We include here an arbitrary function /(¢) and notice that #(¢) > 0 for a normal scalar field with
positive kinetic energy, and h(¢) < 0 for a phantom scalar. If /i(¢) has the same sign in the whole
range of ¢, it is easy to redefine ¢ to obtain 11(¢) = £1, but let us keep it arbitrary to be able to consider
solutions where h(¢) can change its sign.

The field equations may be written as

2h(p) VIV + jl:fp/”(p,y +Vp =0, (13)
RZ = —2h(P)Pupv + 5;V(4>) (14)

(recall that we are using the units in which 87G = 1 and ¢ = 1). In static, spherically symmetric
space-time with the metric (2), assuming ¢ = ¢(u), the scalar field SET has the form

T, = h(¢)e ¢/ (u)? diag(1, —1, 1, 1) + &,V (u). (15)

In terms of the metric (6) with the quasiglobal radial coordinate the field equations take the form

2(A7 ") — AR ¢ = r*dV/de, (16a)

(A'?) = —2r7V; (16b)

e = —h(g)d’; (16¢)

AP =rPA" =2, (16d)

— 1+ A + Ar? = ?(hAP”? — V), (16e)

where the prime denotes d/dx. Equation (16a) is the scalar field equation, (16b) is the component

Rl = ..., (l6c) and (16d) are the combinations R} — R¥ = ... and R} — R} = .., respectively, and (16e)
is the constraint equation G} = ..., free from second-order derivatives.

We see that if ¢ # const, the SET (15) is anisotropic, and, in particular, Theorem 1 does not prevent
the existence of twice asymptotically flat wormhole solutions. And indeed, such solutions are easily
found with a massless phantom scalar field (h < 0,V = 0) [9,10], see below.
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As to possible regular black hole solutions, there are significant restrictions, and let us consider
them in some detail.

3.1. Restrictions on Black Holes with Scalar Fields

3.1.1. Global Structure Theorem

Equation (16d) may be rewritten in terms of B(x) = A(x)/r?(x):
r*B" +4B'rr' +2 = 0. (17)

According to Equation (17), if at some x = xo we have B = 0, then B”(xg) = —2/r*(xy) < 0,
s0 x( is a maximum of B(x), and a regular minimum of this function is impossible. On the other hand,
since 2 > 0, regular zeros of A(x), i.e., horizons, are also regular zeros of B(x). Since B(x) has no
minimum, this function, having once become negative while moving to the left or to the right along
the x axis, cannot return to zero or positive values. Therefore, if B(x) > 0 in some range of x, it can
have at most two zeros, and these zeros are simple since otherwise there would be B" = 0 and B” > 0
near such a zero, contrary to Equation (17). We obtain the following theorem [11]:

Theorem 2. Consider solutions of Equations (16). Let there be a static region a < x < b where a and b may be
finite or infinite. Then there are at most two horizons [A(x) = 0], which are necessarily simple.

By Equation (17), a double horizon is also possible, but only if it separates two T-regions; in this
case this horizon is unique, and there is no static region at all.

All possible dispositions of zeros of the function A(x), and hence the list of possible global
causal structures, turn out to be the same as for the vacuum solution with a cosmological constant,
i.e., the Schwarzschild-(anti-)de Sitter space-time. This conclusion is valid for any possible choice of the
functions V(¢) and h(¢) since they are not involved in Equation (17). The possible causal structures
and the corresponding Carter-Penrose diagrams are listed, for example, in [3,11].

3.1.2. No-Hair Theorem

The expression “BHs have no hair” belonging to Wheeler [45] means that BHs in GR are characterized
by a restricted set of parameters (the mass, electric and magnetic charges and angular momentum).
There are a number of “no-hair theorems” claiming that no more charges or fields can accompany
a BH under various circumstances. For us here it will be relevant to recall a theorem for the static,
spherically symmetric system (12) [46,47] which can be formulated as follows in terms of the metric (6)
with the quasiglobal radial coordinate:

Theorem 3. Given Equations (16) with h(¢) > 0and V(¢) > 0, the only asymptotically flat BH solution is
characterized by ¢ = const and the Schwarzschild metric in the whole range x, < x < oo, where x = xy, is
the horizon.

Let us reproduce its proof following [3].

With hi(¢) > 0, without loss of generality we can put &(¢) = 1 and also assume that spatial infinity
corresponds to x — co. At the horizon x = x;, we have by definition A = A(x;) = 0,and A > 0 at
x > x3,. By Theorem 2, the horizon is simple, hence near it A ~ |x — x;,|. Consider the function

T2V — A¢?) (18)

One can verify that

4)/2
F(x) = r(4V tozt A(P/2>- (19)
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To do so, when calculating F’, one can substitute ¢” from Equation (16a), r”’ from (16c),
and A’ from (16e). Let us integrate Equation (19) from x;, to infinity:

F(o0) — F(xy) = / F'(x) dx. 20)
B x;,
Asymptotic flatness implies r(x) ~ x at large x, therefore #'(c0) = 1, and ¥/ < 0 due to

Equation (16¢) with h(¢) > 0,so ' > 1 in the whole range of x, but r'(x;,) < oo (one can verify [3] that
r" — co would lead to a curvature singularity instead of a horizon).

The quantity F (x;,) should be finite, since otherwise we would obtain infinite SET components
and, via the Einstein equations, a curvature singularity.

If, however, we admit a nonzero value of A¢’ 2 at x = xy, then, since A = 0, it would mean
¢"? ~ (x — xj,) 7!, and the integral in Equation (20) will diverge at x = x;, due to the second term in
Equation (19), which in turn leads to an infinite value of F(xj,). Therefore A¢'> — 0 as x — x;, and
we conclude that F(x;,) = 2(r2/r')V|y—y, > 0. On the other hand, F(c0) = 0 due to the asymptotic
flatness condition. Thus, in Equation (20) there is a nonpositive quantity in the left-hand side and
a nonnegative quantity on the right. The only way to satisfy Equation (20)istoput V=0and ¢’ =0
in the whole range x > x;, and the only solution for the metric is then the Schwarzschild solution with
r=xand A(x) =1—2m/x.

This concerned normal fields (h(¢) > 0). The main consequence of Theorem 3 is that nontrivial
BH solutions with scalar “hair” require an at least partly negative potential V (¢).

Now, what happens if the scalar field is phantom, /(¢) < 0? It is straightforward to verify that
the whole proof of the theorem can be preserved if we require V(¢) < 0. To prove that, it is sufficient
to replace ¢'2 — —¢'? in all relations, then F and F’ will simply change their sign. The only subtle
point is that now " < 0 due to Equation (16¢), therefore, to prove the theorem, we should separately
require 7' (x;) > 0. Thus nontrivial BH solutions with a phantom scalar field and v’ (x;,) > 0 require an
at least partly positive potential V (¢).

To the author’s knowledge, no similar theorem is known for scalar fields with h(¢) having
an alternating sign, corresponding to the “trapped ghost” concept. We may expect, in particular,
the existence of BHs with such fields having completely positive or completely negative potentials.

3.2. Solutions with a Massless Scalar

After making clear the basic restrictions on possible solutions to Equations (16), let us begin
a consideration of their various examples with the simplest case, a massless scalar with V(¢) = 0.
Some properties of the solutions are immediately clear: thus, by Theorem 3, no asymptotically flat BHs
are possible if h(¢) > 0 or h(¢) < 0, and wormhole solutions are impossible if 1(¢) > 0. As to h(¢) of
variable sign, some more reasoning is necessary.

For a massless field, the SET (5) with any /(¢) possesses the same structure as is known for
a usual massless scalar with i1 = £1. Therefore for the metric we obtain the same well-known form as
in these cases, which reduces to the Fisher metric [48] if h(¢) > 0 and to its counterpart for a phantom
scalar, first found by Bergmann and Leipnik [49] (it is sometimes called “anti-Fisher”) if h(¢) < 0.
We here reproduce this solution in a joint form, following [9]. To this end, it makes sense to return to
the general metric (2).

Two combinations of the Einstein equations (14) for the metric (2) and the SET (5) with V = 0do
not contain ¢ and read Rl = 0 and Rl + Rg = 0. They can be most easily solved if we choose
the harmonic radial coordinate © = y, defined by the condition a(y) = 2B(y) + ¥(y). Indeed,
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the first of these equations takes the form 4" = 0, and the second one leads to the Liouville equation
B’ + 7" = e2P+7) (the prime here denotes d/dy). Their solution is

Y= —my,
k~lsinh ky, k>0,

e P =sky):=< vy, k=0, (21)
k~'sinky, k<0O.

where k and m are integration constants, and other two constants have been excluded by choosing
the zero point of the coordinate y and the scale along the time axis. As a result, the metric takes the
form [9] ) ,
2 —2my 442 e dy 2
ds® = e W —Sz(kly)[sz(k’y)—i-d()]. (22)

Note that without loss of generality we have y > 0, spatial infinity corresponds to y = 0, at small
y the spherical radius r behaves as r =~ 1/y, and m has the meaning of the Schwarzschild mass.

All this was obtained from the general properties of the scalar field SET and does not depend
on the choice of (¢) in any way. Such a dependence emerges only when we take into account the
constraint, i.e., the (%) component of the Einstein equations (14) that leads to

K signk = m? + h(p) ™. (23)

It means, in particular, that &1(¢)¢? = const, hence h(¢) cannot change its sign as long as we are
dealing with a particular solution, characterized by fixed values of the integration constants m and k.
(A detailed description of the properties of Fisher and anti-Fisher solutions can be found in [3,12,50,51],
see also references therein. Let us only mention here that the metric (22) describes wormholes [9,10]
if the parameter k is negative, which is only possible if h(¢) < 0; the two flat spatial infinities then
correspond toy = 0and y = 7/|k|.)

This situation does not change even if we use, instead of a single scalar field, a set of scalars ¢*,
forming a nonlinear sigma model with the Lagrangian

Lo = —hgpg" 0,¢"0,9", (24)

where h,;, are functions of ¢: in such a case, the metric has again the form (22), and instead of (23) we
have the relation [51]
K signk = m® + hay () (¢°)'-

Therefore the quantity h,;,(¢?)’(¢")’ that determines the canonical or phantom nature of the
scalar fields is inevitably constant. If the matrix h,, is positive-definite, the sigma model consists of
canonical fields, and then k > 0, so (22) is the Fisher metric containing a central naked singularity.
If, on the contrary, h,;, is negative-definite, we are dealing with a set of phantom scalars, leading to
solutions with k < 0 (wormbholes), and, in addition, there is a subset of solutions with k > 0 containing
horizons of infinite area which have been given the name of “cold black holes” [50] because of their
zero Hawking temperature. If the matrix h,, is neither positive- nor negative-definite, then there exist
special solutions of wormhole nature (with k < 0) while other solutions correspond to a canonical
scalar field and are described by Fisher’s metric with a central singularity [51]. However, there cannot
appear solutions of trapped-ghost nature. More complicated and more interesting examples can appear
only with nonzero potentials V (¢), such as those considered below.

3.3. Scalar Fields with a Potential: Wormholes and Black Universes

Let us return to field equations with an arbitrary potential, Equation (16), written for the metric (6)
in terms of the quasiglobal coordinate x (the “gauge” « + v = 0 for the general metric (2)). It is
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hard to obtain exact solutions with a prescribed potential V(¢), and, on the other hand, there is no
clear physical reason to prefer any specific potential if our purpose is to find solutions with physical
properties of interest. Instead, we will use the inverse problem method and choose the metric function
r(x) with required properties.

It is easy to verify that Equations (16a) and (16e) follow from (16b)—(16d), which, if the potential
V(¢) and the kinetic function /(¢) are known, form a determined set of equations for the unknowns
r(x), A(x), ¢(x). Furthermore, Equation (16d) does not contain the scalar field, therefore, if r(x) is
known, then, solving (16d) to find A(x), we determine the metric completely, after which ¢(x) and
V(x) are found from (16c) and (16b), respectively, and V(¢) is then defined unambiguously if ¢(x) is
monotonic.

Moreover, Equation (16d) is easily integrated giving

B'(x) = (A/r?) =2(3m —x)/r%, (25)

where (as before) B(x) = A/r?, and the integration constant  has the meaning of Schwarzschild mass
if the metric (2) is asymptotically flat as x — co (so thatr ~ x, A =1 —2m/x + 0(1/x)). If the metric
is asympt