Next Issue
Volume 4, March
Previous Issue
Volume 3, September
 
 

Neuroglia, Volume 3, Issue 4 (December 2022) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
14 pages, 1553 KiB  
Article
Sex-Dimorphic Glucocorticoid Receptor Regulation of Hypothalamic Primary Astrocyte Glycogen Metabolism: Interaction with Norepinephrine
by Prabhat R. Napit, Abdulrahman Alhamyani, Khaggeswar Bheemanapally, Paul W. Sylvester and Karen P. Briski
Neuroglia 2022, 3(4), 144-157; https://doi.org/10.3390/neuroglia3040010 - 17 Nov 2022
Viewed by 1856
Abstract
Astrocyte glycogen is a critical metabolic variable that affects hypothalamic control of glucostasis. Glucocorticoid hormones regulate peripheral glycogen, but their impact on hypothalamic glycogen is not known. A hypothalamic astrocyte primary culture model was used to investigate the premise that glucocorticoids impose sex-dimorphic [...] Read more.
Astrocyte glycogen is a critical metabolic variable that affects hypothalamic control of glucostasis. Glucocorticoid hormones regulate peripheral glycogen, but their impact on hypothalamic glycogen is not known. A hypothalamic astrocyte primary culture model was used to investigate the premise that glucocorticoids impose sex-dimorphic independent and interactive control of glycogen metabolic enzyme protein expression and glycogen accumulation. The glucocorticoid receptor (GR) agonist dexamethasone (DEX) down-regulated glycogen synthase (GS), glycogen phosphorylase (GP)–brain type (GPbb), and GP–muscle type (GPmm) proteins in glucose-supplied male astrocytes, but enhanced these profiles in female. The catecholamine neurotransmitter norepinephrine (NE) did not alter these proteins, but amplified DEX inhibition of GS and GPbb in male or abolished GR stimulation of GPmm in female. In both sexes, DEX and NE individually increased glycogen content, but DEX attenuated the magnitude of noradrenergic stimulation. Glucoprivation suppressed GS, GPbb, and GPmm in male, but not female astrocytes, and elevated or diminished glycogen in these sexes, respectively. Glucose-deprived astrocytes exhibit GR-dependent induced glycogen accumulation in both sexes, and corresponding loss (male) or attenuation (female) of noradrenergic-dependent glycogen build-up. Current evidence for GR augmentation of hypothalamic astrocyte glycogen content in each sex, yet divergent effects on glycogen enzyme proteins infers that glucocorticoids may elicit opposite adjustments in glycogen turnover in each sex. Results document GR modulation of NE stimulation of glycogen accumulation in the presence (male and female) or absence (female) of glucose. Outcomes provide novel proof that astrocyte energy status influences the magnitude of GR and NE signal effects on glycogen mass. Full article
Show Figures

Figure 1

5 pages, 628 KiB  
Commentary
Olfactory Ensheathing Cells for Spinal Cord Injury: The Cellular Superpowers for Nerve Repair
by Francesca Oieni, Ronak Reshamwala and James St John
Neuroglia 2022, 3(4), 139-143; https://doi.org/10.3390/neuroglia3040009 - 04 Nov 2022
Cited by 4 | Viewed by 2324
Abstract
Neurotrauma injuries are notoriously difficult to deal with both clinically as well as experimentally, as the cellular and molecular events ensuing after injury complicate the neuroinflammatory processes. Spinal cord injuries are further complicated by the formation of scars at the injury sites, which [...] Read more.
Neurotrauma injuries are notoriously difficult to deal with both clinically as well as experimentally, as the cellular and molecular events ensuing after injury complicate the neuroinflammatory processes. Spinal cord injuries are further complicated by the formation of scars at the injury sites, which can provide a physical barrier to repair. The lack of effective clinical therapy for spinal cord injury underscores the need for experimental approaches to generate effective therapies. To repair the injury, cell transplantation offers the potential to replace lost cells and create a permissive bridge to promote neural regeneration across the injury site. Olfactory ensheathing cells (OECs), which are the glia of the olfactory nerve, stand apart from other candidate cell types due to their innate natural abilities to manage nerve injury and promote repair and regeneration. This is evidenced by their physiological role in the daily repair and maintenance of the olfactory nerve. Here, we explain their properties in relation to their physiological role and their most relevant cellular attributes, including cellular interactions, phagocytosis, migration, axonal guidance and support, and modulation of neuroinflammation. We highlight some critical drawbacks in the current approaches and identify some ways to address them. Full article
(This article belongs to the Special Issue Exclusive Papers Collection of Editorial Board Members in Neuroglia)
Show Figures

Figure 1

27 pages, 5481 KiB  
Review
Overview of Neuroglia Activation, Chronic Neuroinflammation, Remodeling, and Impaired Cognition Due to Perivascular Adipose Tissue-Derived Extracellular Vesicle Exosomes in Obesity and Diabetes
by Melvin R. Hayden
Neuroglia 2022, 3(4), 112-138; https://doi.org/10.3390/neuroglia3040008 - 04 Oct 2022
Cited by 3 | Viewed by 2375
Abstract
Perivascular adipose tissue (PVAT)-derived extracellular vesicles (EVs) with small exosome(s) (PVAT-dEVexos) from the descending aorta are capable of entering capillaries and systemic circulation. These PVAT-dEVexos are delivered to the central nervous system (CNS) in preclinical, obese, insulin and leptin resistant, diabetic, db/db mouse [...] Read more.
Perivascular adipose tissue (PVAT)-derived extracellular vesicles (EVs) with small exosome(s) (PVAT-dEVexos) from the descending aorta are capable of entering capillaries and systemic circulation. These PVAT-dEVexos are delivered to the central nervous system (CNS) in preclinical, obese, insulin and leptin resistant, diabetic, db/db mouse models and humans with T2DM. Once within the CNS, these exosomes are capable of traversing the blood–brain barrier and the blood-cerebrospinal fluid barrier resulting in activation of the neuroglia microglia cell(s) (aMGCs) and the formation of reactive astrocytes (rACs). The chronic peripheral inflammation in the PVAT via crown-like structures consists of activated macrophages and mast cells, which harbor peripheral adipokines, cytokines, and chemokines (pCC) in addition to the EV exosomes. These pCC are transported to the systemic circulation where they may act synergistically with the PVAT-dEVexos to amplify the activation of neuroglia and result in chronic neuroinflammation. Once activated, the MGCs and ACs will contribute to even greater neuroinflammation via central nervous cytokines/chemokines (cnsCC). Activated neuroglia results in an increase of cnsCC and the creation of a vicious cycle of ongoing chronic neuroinflammation and increased redox stress. The increase in reactive oxygen species (ROS) involves the reactive species interactome that not only include reactive oxygen but also reactive nitrogen and sulfur species wherein a vicious cycle of ROS begetting inflammation and inflammation begetting ROS develops. Thus, the CNS perceives peripheral systemic inflammation from the obese PVAT depots as an injury and a response to injury wound healing mechanism develops with activation of neuroglia, cellular remodeling, neurodegeneration, and impaired cognition. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop