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Abstract: Efficient maintenance in the face of complex and interconnected industrial equipment
is crucial for corporate competitiveness. Traditional reactive approaches often prove inadequate,
necessitating a shift towards proactive strategies. This study addresses the challenges of data scarcity
and timely defect identification by providing practical guidance for selecting optimal solutions for
various equipment malfunction scenarios. Utilizing three datasets—Machine Sound to Machine
Condition Monitoring and Intelligent Information (MIMII), Case Western Reserve University (CWRU),
and Machinery Failure Prevention Technology (MFPT)—the study employs the Short-Time Fourier
Transform (STFT) as a preprocessing method to enhance feature extraction. To determine the best
preprocessing technique, Gammatone Transformation, and raw data are also considered. The research
optimizes performance and training efficiency by adjusting hyperparameters, minimizing overfitting,
and using the KERAS Early Halting API within resource constraints. To address data scarcity, which
is one of the major obstacles to detecting faults in the industrial environment, Few-shot learning
(FSL) is employed. Various architectures, including ConvNeXt Base, Large MobileNetV3, ResNet-18,
and ResNet-50, are incorporated within a prototypical network-based few-shot learning model.
MobileNet’s lower parameter count, high accuracy, efficiency, and portability make it the ideal choice
for this application. By combining few-shot learning, MobileNet architecture, and STFT preprocessing,
this study proposes a practical and data-efficient fault diagnosis method. The model demonstrates
adaptability across datasets, offering valuable insights for enhancing industrial fault detection and
preventive maintenance procedures.

Keywords: few-shot learning; fault diagnosis; deep learning; limited data; prototypical network;
across different data sets; usage of different model architecture

1. Introduction

In recent times, fault diagnosis (FD) has become a focal point, particularly within the
realm of data-driven methodologies applied to condition monitoring data [1]. The essence
of FD involves harnessing sensor data from equipment and establishing connections be-
tween specific machine defects and their corresponding values [2]. Traditional methods for
defect diagnosis encompass data gathering, feature extraction and selection, and health
state detection [2]. However, the manual nature of feature extraction and selection can be
time-consuming, demanding a profound understanding of the intricacies involved. The
landscape of defect detection has witnessed a transformative shift with the advent of Deep
Learning (DL) and Transfer Learning (TL). These advancements enable the automatic ac-
quisition of high-level, non-linear representations from input data [3]. While promising for
enhancing fault diagnostic robustness and accuracy, DL and TL often demand substantial
labeled data. This poses a challenge in sectors where obtaining labeled data for faulty
scenarios is hindered by productivity loss and safety concerns [4]. Few-shot learning (FSL)
approaches are designed to address the scarcity of labeled data and enhance models’ adapt-
ability to new conditions [4]. By training models with a minimal set of labeled samples,
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FSL transcends the limitations of conventional Machine Learning (ML) and Deep Learning
(DL) approaches. Despite limited training data, the model excels at generalizing to new,
unknown data—a crucial asset when gathering extensive labeled data proves arduous or
time-consuming [5]. This paper immerses itself in the domain of Few-shot learning for fault
diagnosis, with a specific focus on identifying novel conditions within industrial systems.
Experimental evaluations on three diverse datasets—MIMII, CSWR, and MFPT—are con-
ducted, exploring four architectural choices: ResNet-18, ResNet-50, ConvNeXT base, and
Large MobileNetV3, while implementing three types of data pre-processing methods: STFT,
gammatone, and raw plotting. Through the integration of Few-shot learning techniques,
our aim is to amplify the adaptability and versatility of fault diagnosis models, particularly
in scenarios where data scarcity poses a substantial challenge. This research endeavors to
make meaningful contributions to the application of few-shot learning in industrial defect
diagnosis, paving the way for more effective and precise systems in safety-critical settings.

Contributions

• Our research journey commenced with the curation of an extensive dataset repository
encompassing three datasets, including MFPT, MIMII, and CWRU. This comprehensive
dataset formed the bedrock for training and evaluating our few-shot learning model.

• Recognizing the pivotal role of data preprocessing, we delved into three distinct
techniques: 2D Raw Plotting, Short-Time Fourier Transform (STFT), and Gammatone
transformation. These preprocessing methods were strategically employed to enhance
feature extraction and representation, laying the groundwork for a robust few-shot
learning model.

• To ensure the versatility and stability of our few-shot learning model, we harnessed
a diverse set of architectures, namely ResNet-18, ResNet-50, ConvNext Base, and
MobileNetV3-Large. Our unique approach involved subjecting each architecture
to few-shot learning, providing a nuanced understanding of their performance in
scenarios characterized by limited labeled data.

• A meticulous comparative analysis was undertaken to ascertain the efficacy of the three
data preprocessing methods. This step was crucial in determining which approach
yielded the most favorable results in enhancing feature extraction and, consequently,
the performance of our few-shot learning model.

• Our primary contribution is a thorough analysis of model performance. Across our
curated datasets, we systematically compared and contrasted the performance of the
diverse model architectures within the realm of few-shot learning. This distinctive
approach allowed us to identify the architecture that excelled in navigating the chal-
lenges posed by limited labeled data in our chosen domain. By integrating few-shot
learning across various architectures, our study sheds light on how these models fare
under data scarcity, thereby enriching the understanding of their practical utility in
real-world scenarios.

The remainder of the paper is organized as follows. Section 2 is the literature review.
Moreover, the proposed methodology in this study is described in Section 3. In Section 4,
we have discussed our findings. Finally, in Section 5, we concluded our research study, and
we also discussed the limitations and our future plans regarding this study.

2. Literature Review

Industrial failure diagnosis in machinery is a serious problem that has sparked sub-
stantial studies into workable solutions. When solving issues like bearing diagnostics,
knowledge-based solutions outperform other strategies in terms of accuracy and perfor-
mance. These techniques make use of their ability to evaluate sensor and actuator data
effectively. However, the benefit of deep learning (DL), a subtype of machine learning, is
that it does not require explicit feature extraction, allowing for accurate diagnostic results.
In this section, we have discussed different approaches researchers have taken in terms of
fault diagnosis as well as the potential few-shot learning holds.
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Fault diagnosis is vital in engineering for swiftly detecting anomalies in complex
systems across sectors like manufacturing, automotive, and aerospace. It uses techniques
such as data analysis, signal processing, and machine learning to pinpoint the causes of
deviations and performance issues, ensuring reliability and safety. Deep Transfer Learning,
a subset of machine learning, has exhibited exceptional potential in fault diagnosis thanks
to its ability to autonomously extract intricate features from raw data. Deep transfer
learning is a machine learning technique that leverages knowledge gained from one task to
enhance performance on a different but related task [6]. By utilizing pre-trained models and
their learned representations, transfer learning enables faster convergence and improved
accuracy, especially in scenarios where limited data is available for the target task.

Qi et al. [7] have taken a novel approach with Recurrent Convolutional Neural Net-
works to identify faults in machinery. The study also incorporates a Bayesian change-point
detection for fault recovery. With the rise of sensor-rich environments and data availability,
machine learning techniques like support vector machines and decision trees have gained
prominence. In a study, Yin et al. [8] reviewed the advancements in fault diagnosis on
SVM. The study concludes that SVM has certain advantages if the dataset is small. These
methods empower systems to discern patterns and correlations from data, thereby enabling
the detection of nuanced anomalies that might evade rule-based methodologies.

Another study conducted by Uddin et al. [9] made use of a multiclass support vector
machine (MCSVM) to diagnose faults in induction motors. The approach of that study was
to extract features from 2D images and use the Gaussian radial basis function to detect
and classify anomalies. The proposed model achieved 100% accuracy on average, even in
noisy conditions.

Furthermore, the emergence of semi-supervised learning within the field has brought
a new dimension to fault diagnosis. By effectively utilizing a combination of labeled and
unlabeled data, semi-supervised learning techniques enable models to learn more efficiently
and effectively. This is especially valuable in scenarios where acquiring a large volume of
labeled data is challenging or costly, as shown by Jian et al. [10].

In addition, the fusion of few-shot learning and fault diagnosis methods has given
rise to hybrid approaches, which harness the strengths of rule-based and data-driven
techniques. Wang et al. [11] have explored the realm of few-shot learning-powered fault
diagnosis. The study addresses the disadvantages of deep-learning-based approaches by
proposing a fusion model named Dual Graph Neural Network (DGNNet). The proposed
model works efficiently with limited data by constructing two distinct graphs on the sample
features that extract relations between samples. Thus, we are mitigating the shortcomings
of traditional fault diagnosis models.

Additionally, Zabin et al. [12] introduced a hybrid deep learning architecture that
combines convolutional neural networks and long short-term memory layers to extract
temporal and spatial features from Hilbert transform 2D images. The model achieved an
average F1 score of 0.998 on three standard audio-sound fault datasets using an input size
of 32 × 32. Implementing transfer learning reduces training epochs and improves accuracy
compared with existing models in various environments.

Furthermore, a study by Liu et al. [13] introduces a novel hybrid model for real-
time wind turbine gearbox status detection through oil temperature forecasting. The
model, consisting of three key steps, achieves accurate forecasting results with significantly
lower RMSE values and outperforms multiple alternative and existing models, demon-
strating over a 90 percent enhancement in forecasting accuracy. Another notable study
by Yan et al. [14] presents a novel data-driven hybrid approach for predicting locomotive
axle temperatures, involving three stages: preprocessing with Complementary Empirical
Mode Decomposition (CEEMD), prediction using Bi-directional Long Short-Term Memory
(BILSTM), and optimization and ensemble of weights through Particle Swarm Optimiza-
tion and Gravitational Search Algorithm (PSOGSA). The hybrid model outperforms single
models, demonstrating superior predictive accuracy, and effectively captures the dynamic
changes in axle temperature, as evidenced in experiments using measured datasets.
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The fundamental importance of fault diagnosis in protecting complex systems is
underscored by its evolution from rule-based approaches [15] to data-driven and hybrid
methods [16], highlighting the field’s dynamic nature. The integration of semi-supervised
learning further accentuates the adaptability and efficiency of contemporary fault diagnosis
techniques.

Although researchers have taken many approaches to diagnosing faults, the appli-
cability of few-shot learning to diagnose faults remains overlooked. Few-shot learning,
a subfield of machine learning, deals with the problem of training models when only a
few labeled samples of each class are available [17,18]. Few-shot learning seeks to give
models the ability to generalize precisely even when few instances are provided, unlike
conventional supervised learning, which depends on a large amount of labeled data. A
key idea in few-shot learning is meta-learning, often referred to as “learning to learn”.
Models are trained on various tasks, each supported by sparse data, in a process known
as meta-learning. According to Gharoun et al. [19], models learn to swiftly adapt to new
situations and perform adeptly in tasks with little or no precedent, thanks to exposure to a
variety of jobs. This strategy makes use of the dynamics and patterns that are unique to a
particular task, allowing models to generalize to other situations with ease.

Few-shot learning has found applications across various domains. A study conducted
by Brown et al. [20] suggests that language models work incredibly well with few-shot
learning. Their approaches include zero-shot, one-shot, and few-shot learning, which shows
performance on NLP tasks comparable to more complex systems. LM-BFF, another few-
shot approach taken by Gao et al. [21], which includes both a prompt-based method and a
dynamically refined strategy to fine-tune a model, reveals that it can achieve substantial
improvement over other fine-tuning methods. Furthermore, few-shot learning has played a
pivotal role in tasks such as image recognition and language translation, where models can
achieve remarkable performance with minimal training data. Incorporating a large number
of classes can result in incredible performance, as demonstrated by Guneet et al. [22], with
a simple method that still outperforms other standard benchmarks.

One of the core strategies in few-shot learning is transfer learning. This approach
initially involves training models on comprehensive datasets and subsequently fine-tuning
them using task-specific data. Researchers Ravi et al. [23] have made use of an LSTM-based
technique that enables few-shot models to learn the optimization algorithm from another
neural network model. By harnessing knowledge acquired during the initial training phase,
these models can rapidly adapt to new tasks, even when presented with a small number
of labeled examples. In addition, meta-transfer learning (MTL) is useful for improving
few-shot learning [24]. MTL adapts deep neural networks (DNNs) by adjusting DNN
weights across various tasks using scaling and shifting functions. The study introduces a
beneficial training scheme named the hard task (HT) meta-batch scheme. Experimental
results on challenging few-shot benchmarks validate the effectiveness of MTL in enhancing
DNN performance for few-shot tasks. In Table 1, we have summarized all of the papers we
discussed here.

In conclusion, Few-shot learning is a vital subfield of machine learning that focuses on
training models effectively with minimal labeled data. In situations where data is scarce,
harnessing the techniques and methodologies from this area is essential for building models
that generalize accurately [18].



Vibration 2023, 6 1008

Table 1. Summary of the various models.

Ref. Model Summary

[2]
Recurrent Convolutional Neural
Networks with Bayesian
change-point detection

Novel approach using recurrent CNNs and
Bayesian change-point detection for
machinery fault diagnosis.

[3] Support Vector Machines (SVM)
SVM is effective for small dataset fault
diagnosis allowing detection of nuanced
anomalies.

[4] Multiclass Support Vector Machine
(MCSVM) using 2D image features

Achieved 100% accuracy in classifying
faults in induction motors even in noisy
conditions.

[5] Semi-supervised learning
techniques

Efficient use of labeled and unlabeled data
for improved model learning in data-scarce
scenarios.

[6] Dual graph neural network
(DGNNet)

DGNNet efficiently works with limited
data in few-shot fault diagnosis
overcoming traditional model limitations.

[7] Hybrid deep learning architecture
(CNN + LSTM)

High F1 scores achieved in fault diagnosis
using 2D images and hybrid deep learning
with spatial-temporal features.

[8] Hybrid model for wind turbine
gearbox status detection)

Improved forecasting accuracy for real-time
wind turbine gearbox status detection
outperforming alternative models.

[9] Data-driven hybrid approach

Hybrid approach outperformed single
models in predicting locomotive axle
temperatures using preprocessing and
optimization.

[15] Few-shot learning in language
models

Effectiveness of few-shot learning in NLP
tasks including zero-shot, one-shot, and
few-shot learning.

[16] LM-BFF approach for few-shot
learning

Introduction of LM-BFF with prompt-based
and refined strategies for enhanced
few-shot learning performance.

[18] LSTM-based few-shot learning
Utilization of LSTM-based techniques for
few-shot models to learn optimization
algorithms and adapt to new tasks.

3. Proposed Methodology

In emerging or nascent fields, as well as in professions where data collection is either
difficult or costly, like industrial fault detection, tasks can be mastered using few-shot
learning algorithms that generalize from limited data samples. To develop and advance
few-shot learning models for machinery fault diagnosis, we followed a systematic research
methodology. First, we acquired and curated a diverse repository of three datasets, in-
cluding MFPT, MIMII, and CWRU. Next, we applied three data preprocessing techniques:
2D Raw Plotting, Short-Time Fourier Transform (STFT), and Gammatone Transformation.
These techniques enhance feature extraction and representation, which are essential for
building robust few-shot learning models. We then evaluated four architectures: ResNet-18,
ResNet-50, ConvNext Base, and MobileNetV3-Large. We compared their performance
under few-shot learning conditions, where labeled data is scarce. In Figures 1 and 2, we
have shown our approach in short.
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Figure 1. Workflow of the proposed methodology. Data Collection.

Figure 2. Few Shot Learning Approach.

We also conducted a detailed comparative analysis of the three data preprocessing
methods to understand their impact on feature enhancement. Finally, we compared and
contrasted the performance of the four architectures across the curated datasets. The
analysis shed light on the intricacies of few-shot learning for machinery fault diagnosis,
allowing us to pinpoint the best architecture to address the challenges posed by limited
labeled data.

Our research has implications for real-world applicability and potential generalization.
We conclude with a summary of our findings and outline avenues for future exploration
and refinement within the proposed methodology. In Figure 3, we have tried to summarize
the overall methodology of our research.
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Figure 3. Summary proposed methodology.

3.1. Datasets

Purohit et al. introduced the MIMII dataset, a benchmark dataset for sound-based
machine fault diagnosis [25]. The “MIMII Dataset” [25] is an essential tool for industrial
machine inquiry and inspection since it offers a vast array of audio recordings of three
different kinds of industrial machines: fans, pumps, and sliders. Our understanding of
malfunction detection and assessment in industrial settings has improved because of the
use of this dataset. The diversity of recording conditions is a distinguishing feature of the
dataset, enhancing its realism and practicality. While the slider’s sound was recorded in a
hard−6 dB setting, the audio recordings of fans and pumps were made in a controlled 0 dB
environment. The value of the dataset in developing reliable and adaptable fault detection
systems is enhanced by the diverse recording settings that reflect real-world situations.
Each audio file in the dataset maintains a consistent sample rate of 16,000 Hz, ensuring
precise recording of machine noises.

The dataset has been divided into six classes (6-way). They are Fan Abnormal, Fan
Normal, Pump Abnormal, Pump Normal, Slider Abnormal, and Slider Normal.

The MIMII dataset stands out for its collection of both typical and unusual machine
sounds for each industrial category. This inclusion of unusual noises is important for
training and assessing algorithms designed to detect errors in industrial machines. The
dataset has been painstakingly divided into sub-levels to enable sophisticated analysis and
feature extraction. Additionally, the dataset has been transformed using the Short-Time
Fourier Transform (STFT), Gammatone treatment, and raw audio plot. These methods
enable the extraction of relevant characteristics that could be crucial for differentiating
between normal and pathological machine noises. The MIMII dataset offers a wide variety
of real audio samples from different machines and environmental situations, making it a
useful tool in the field of industrial machine study. The dataset offers a robust foundation
for developing and validating innovative fault detection techniques. These methods could
profoundly influence the realms of industrial maintenance and quality control due to their
thorough organization, transformative analysis, and diverse sound profiles.

We went outside the bounds of a single dataset in our quest to improve diagnostic and
prognostic algorithms for Condition-Based Maintenance (CBM), and we also made use of
the “MFPT’s Dataset”. Stefaniak et al. introduced the MFPT dataset, a benchmark dataset
for machine failure prediction [26]. The MFPT dataset [26] is a priceless tool created to aid
in the testing and improvement of CBM systems. It was curated and compiled by Dr. Eric
Bechhoefer, Chief Engineer of NRG Systems. The data that were collected from MFPT used
the bearing shown in Figure 4.
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Figure 4. Two bearings that were used to record the MFPT data set. (a) Innerrace Bearing. (b) Outer-
race Bearing.

To hasten the development of CBM methods and systems, this dataset serves both
researchers and CBM practitioners. The dataset has been divided into four classes (4-way).
They are Baseline, Inner Race Fault Varied Load, Outer Race Fault, and Outer Race Fault
Varied Load. The Condition-Based Maintenance Fault Database’s main goal is to provide a
wide range of rigorously recorded datasets covering various bearing and gear problems.
This dataset offers a thorough assessment of diagnostic and prognosis algorithms in diverse
circumstances by including scenarios of known good and faulty states. Furthermore, The
MFPT dataset has a sizable bearing analysis component. The dataset contains information
from a customized bearing test rig to enable an in-depth investigation of bearing behavior.
In addition to nominal bearing data, outer race faults under various loads, inner race faults
under varied loads, and three actual faults, this test rig covers a wide range of situations.
The test rig’s bearing complies with the following requirements: Roller diameter (rd):
0.235 Pitch diameter (PD): 1.245 Number of elements (ne): 8 Contact angle (ca): 0. The
dataset is structured into distinct sets of conditions, as mentioned in Table 2; each crucial
for understanding different aspects of bearing behavior:

Table 2. Description of Different Conditions and Parameters in the MFPT dataset.

Dataset Version Load Levels
(lbs)

Input Shaft
Rate (Hz)

Sample Rate
(sps) Duration (s)

3 Baseline
Conditions 270 25 97,656 6

3 Outer Race
Fault Conditions 270 25 97,656 6

7 Outer Race
Fault Conditions

with Varied
Loads

25–300 25 48,828 3

7 Inner Race
Fault Conditions

with Varied
Loads

0–300 25 48,828 3

We carefully picked the dataset as well as further separated it into ten different samples
to increase the depth of our study. Furthermore, we utilized the Short-Time Fourier Trans-
form (STFT) and Gammatone Transformation, two essential signal processing methods. We
were able to extract relevant characteristics from the audio data using these approaches,
which may have shown patterns and differences between various circumstances that were
otherwise obscured.
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We also kept the raw signal so we could test our models. We wanted to examine
the performance of our diagnostic and prognostic algorithms in their most raw form by
including unprocessed data, ensuring resilience and accuracy across various settings.

In conclusion, our work involves a thorough investigation of the dataset from the
MFPT, which is specially designed for developing CBM methods. We aimed to uncover
insights and develop models capable of precisely diagnosing and predicting faults in
industrial machinery through meticulous selection, transformative processing, and rigorous
testing, ultimately assisting in the improvement and acceleration of Condition-Based
Maintenance systems.

We included the priceless materials provided by the Case Western Reserve University
(CWRU) Bearing Data Center [27] in the last phase of our study inquiry. This archive is
a veritable gold mine of ball-bearing test data, painstakingly recording both healthy and
unhealthy bearing states. The information is crucial for the field of equipment condition
monitoring and provides a rare look at how motor properties and bearing health interact.
A Reliance Electric motor with a 2-horsepower capacity was used in the experimental
configuration. The focus was placed on acceleration data, which was captured at locations
near and far from the motor bearings. These online resources’ thorough documentation
of test circumstances and bearing defect status for every experiment is one of their most
notable qualities. The technique of electro-discharge machining (EDM) was used to intro-
duce defects into the motor bearings. This resulted in the introduction of a variety of flaws
at the inner raceway, rolling element (ball), and outside raceway, each with a diameter
ranging from 0.007 inches to 0.040 inches. The test motor was subsequently rebuilt using
these defective bearings, and vibration data were methodically gathered at various motor
loads, from 0 to 3 horsepower, and corresponding motor speeds, from 1797 to 1720 RPM.
The dataset includes several different situations, such as those using standard bearings as
well as single-point drive end and fan end faults. High sampling rates—12,000 samples per
second and 48,000 samples per second for drive end-bearing experiments—were used to
carefully record the data. Data from the fan end bearings was consistently gathered at a
rate of 12,000 samples per second.

The dataset has been divided into five classes (5-way). They are: 12 k RPM 0.007
Diameter 0 Load Baseline; 12 k RPM 0.007 Diameter 0 Load Inner Race; 48 k RPM 0.007
Diameter 0 Load Baseline; 48 k RPM 0.007 Diameter 0 Load Inner Race, Baseline.

Each dataset file encompasses critical information, such as fan and drive-end vibration
data, in addition to the motor’s rotational speed. The variable naming conventions are
designed to facilitate clarity and understanding. They are DE: drive-end accelerometer data,
FE: fan-end accelerometer data, BA: base accelerometer data, Time: time series data, and
RPM: rotations per minute during testing. Our plan for doing this research was properly
thought out. We purposefully chose particular datasets, such as the 12 k drive end, 48 k
drive end, and baseline datasets. We then selected a motor speed of around 1797 RPM
and a motor load of 0 horsepower for each dataset. After this, we began the meticulous
process of dividing each dataset into ten distinct subgroups. These subsets went through a
thorough transformation procedure that included the Short-Time Fourier Transform (STFT),
analysis of the Gammatone spectrograms, and the preservation of raw data. The complex
preprocessing made it possible to train and evaluate our models.

In conclusion, our interaction with the CWRU Bearing Data Center’s resources consti-
tuted an important turning point in our study. We sought to identify patterns, trends, and
fault-related differences that would aid in the creation of sophisticated fault detection and
prognostic algorithms by utilizing meticulously documented ball-bearing test data. We
aimed to increase machine health evaluation, predictive maintenance methods, and, even-
tually, the reliability of industrial machinery through meticulous division, transformation,
and model assessment.
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3.2. Data Preprocessing

We utilized three datasets to assess our proposed model and its architecture and
validate our hypothesis. Initially, we employed the MIMII dataset, a dependable resource
for examining industrial machines. Second, we took advantage of the information offered
by the Case Western Reserve University Bearing Data Center. Finally, we tested diagnostic
and prognostic algorithms using the MFPT’s fault dataset, which is a Condition-Based
Maintenance Fault Database. In Figure 5, readers can see the preprocessing overview. The
WAV files and the mat files were imported into MATLAB following the selection of our
datasets (which will be covered in more detail later). We utilized the Gammatone and STFT
filter banks to preprocess our data.

Figure 5. Data Preprocessing.

3.2.1. Raw Plot

The plot function in MATLAB is used to produce 2D line charts of data. As shown
visually in Figure 6. The plot function displays points and connects them with lines to
emphasize patterns or relationships between variables, allowing for clearer data analysis.
The “raw plot method” most likely refers to utilizing the plot function’s default settings
without any formatting or other customization. Using extra optional arguments with the
plot function allows one to alter the plot’s visual look. You may add markers to data points,
alter the color and style of the lines, and more.

3.2.2. Gamma Tone Spectrogram

Gammatone filters were first introduced by Glasberg and Moore [28]. The functioning
of the human auditory system served as inspiration for the creation of the gammatone filter,
or spectrogram. The design aims to mimic the cochlea’s frequency-selective activity, where
sound is transformed into neural impulses by the spiral-shaped component of the inner
ear. Gammatone filters work particularly well for audio signal analysis, which is more
in line with auditory perception in humans. The following procedures are involved in a
gammatone spectrogram:

First, the audio stream is convolved using a bank of Gammatone filters in a filter bank
application. These filters are made to resemble the human cochlea’s frequency response
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characteristics. The bank’s filters are each adjusted to a certain frequency band, allowing
them to capture a separate spectral component of the signal.

Secondly, Envelope Extraction is applied. The amplitude envelope of the filtered
signals is retrieved using convolution. This captures the energy distribution of the signal
across various frequency bands and correlates to changes in amplitude over time.

Finally, the resultant envelopes from each filter are then used to construct a time-
frequency representation, which is frequently represented as a spectrogram. This illus-
tration, Figure 7, shows how the signal’s energy is spread over time and at different
frequencies.

Figure 6. A sample of Raw data (a) Pump Normal at 0 dB. (b) Pump Abnormal at 0 dB. (c) Slider
Normal at −6 dB. (d) Slider Abnormal at −6 dB.
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Figure 7. A sample of Gamma tone spectrum (a) Pump Normal at 0dB. (b) Pump Abnormal at 0 dB.
(c) Slider Normal at −6 dB. (d) Slider Abnormal at −6 dB.

3.2.3. Short-Time Fourier Transform

The STFT was first introduced by Oppenheim et al. [29]. A common method for
evaluating non-stationary signals, such as audio or other time-varying signals, is the short-
time Fourier transform. It allows you to track variations in a signal’s frequency content
over time. The STFT has a few advantages, including its versatility and its ability to localize
signals in time and frequency [30]. The procedure entails dividing the signal into smaller
pieces and examining the frequency content of each piece separately. Here is how STFT
functions:

The window function divides the audio stream into overlapping chunks. To reduce
artifacts from rapid shifts, this window function generally tapers the signal toward the
segment’s edges. The Fourier transform is used to derive the frequency-domain representa-
tion of each windowed segment. This shows information about the amplitude and phase
of different frequency components that are present in that segment.
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A 2D representation known as a spectrogram is produced by plotting the resulting
frequency-domain data across time. This illustration, Figure 8, shows how the signal’s
frequencies shift over time.

Figure 8. A sample of STFT data (a) Pump Normal at 0 dB. (b) Pump Abnormal at 0 dB. (c) Slider
Normal at −6 dB. (d) Slider Abnormal at −6 dB.

3.3. Few-Shot Learning

Researchers started looking into the idea of few-shot learning in the 1980s [31], and
it has since grown in significance as a means of addressing the problem of scarce data
availability. With this method, we can successfully categorize data with a minimal number
of instances. Let’s explore a few-shot learning’s core concepts after providing a thorough
justification.

Consider teaching a model to distinguish between various items, such as cats and dogs.
To aid the model’s learning, several instances of each would be required in conventional
learning. However, with few-shot learning, we employ a more sophisticated strategy. This
is how:
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We first use pairs of data to train our model. These samples may be drawn from the
same category (such as two distinct photographs of cats) or a different category (such as a
cat image and a dog image). Whether the provided pairs of samples are similar or different
must be taught to the model.

The model seeks to determine whether the two input samples, denoted mathematically
as x and y, fall into the same category (y = 1) or distinct categories (y = 0). The chance
that x and y are comparable can be produced using a function called f (x, y).

Later on, we separate our data into two sets for few-shot learning: the query set and
the support set. Examples of various categories are included in the support set for the
model to learn from. We utilize the query set’s many categories to assess the model’s
effectiveness.

Finally, one-shot k-way and N-shot k-way are the two primary testing approaches.
This is what they signify:

For the one-shot k-way, by using this technique, we assess the model’s capacity to
categorize new categories using just a single sample for each category. The k indicates how
many various categories we are testing. Mathematically, our goal is to categorize the query
sets k categories using the knowledge we’ve gained from the support set.

Lastly, for N-shot k-way, like the one-shot strategy, the N-shot k-way method tests the
model using N instances from each of the k categories.

The model must generate correct classifications based on this sparse data if we have
N instances for each of the k categories in the query set.

Few-shot learning has two types of representations of the task. They are: Task T,
Support set ST , and Query set QT . The Embedding Function is:

fθ : X → Rd (1)

Additionally, the Task-Specific Embedding functions are: Embedding of support set:

hi = fθ(xi), ∀xi ∈ ST (2)

Embedding of query set:

gj = fθ(xj), ∀xj ∈ QT (3)

To find the Similarity, the mentioned equation is being used (known as Cosine similarity):

s(hi, gj) =
hi · gj

‖hi‖‖gj‖
(4)

Attention weights for support set examples:

αi =
exp(s(hi, gj))

∑
|ST |
i=1 exp(s(hi, gj))

(5)

Weighted sum for classifying the query:

ŷj =
|ST |

∑
i=1

αihi (6)

Lastly, the Cross-entropy loss:

Loss = −∑
k

yj,k log(ŷj,k) (7)

In conclusion, the Few-shot learning approach shown in Figure 9 is an effective method
that lets us classify data even when there are very few instances. The model is trained with
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pairs of samples. The data is divided into query and support sets, and the model’s ability
to classify new categories is assessed using a limited sample size.

Figure 9. Few Shot Training and Testing Strategy (a) Training. (b) One Shot Testing. (c) N Shot
Testing.

3.4. Prototypical Network

Few-shot learning supports several networks for training the model. Researchers are
always looking for new approaches to overcome the difficulties presented by situations
with little available data and improve the effectiveness of few-shot learning models. Ravi
and Larochelle provide a comprehensive survey of few-shot learning algorithms [32].
Prototypical Networks, one of the significant techniques used, stands out because it creates
category prototypes from support set samples and then uses prototype-query distance
calculations to quickly and accurately classify query set samples. Similar to this, Relation
Networks (RNs) excel at tasks requiring few trials by modeling relationships between pairs
of inputs and emerging as potent tools for capturing complicated inter-instance correlations.
Siamese Networks made up of weight-sharing twin networks, offer a convincing solution
for one-shot or few-shot similarity tasks, complementing previous methods by using
shared areas to learn about and quantify distances or similarities. This is especially useful
in situations where learning is taking place remotely.

We have used a Prototypical Network for our research study. Prototypical networks
are a simple yet effective few-shot learning algorithm [33]. Among all the available ar-
chitectures for few-shot learning, we used the prototype network in this study to tackle
the challenge. In few-shot learning [33,34], prototype networks generalize to new classes
using a metric-based methodology. According to [1], prototypical networks outperformed
other few-shot learning algorithms. To generate feature vectors and compute prototypes
for recognized classes, they learn an embedding function. It is possible to estimate the
similarity of classes accurately during classification by measuring the distance between
query feature vectors and class prototypes. In few-shot learning, a support set of N-labeled
samples

S = {(x1, y1), . . . , (xn, yn)} (8)
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is supplied, where each xiεRD is the dimensional feature vector D and each yi{1...K}εRD is
the label of xi. Sk stands for the support set’s classes. Prototype pk is calculated using an
embedding function fφRD → RM as follows:

pk =
1
|Sk| ∑

(xi ,yi)∈Sk

fφ(xi)
(9)

The distance function d(.) is used to determine distance during classification; the
likelihood that query point X belongs to class K may be represented as:

Pφ(y = k | x) = log

(
exp

(
−d
(

fφ(x), pk
))

∑k′ exp
(
−d
(

fφ(x), pk′
))) (10)

4. Experimental Result

The experimental approach and findings of our study focus on using Few-Shots
Learning with four different architectures: ResNet-18, ResNet-50, ConvNeXt Base, and
Large MobileNet V3. We used three types of preprocessing for our selected data. They are
STFT, Gammatone Transformation, and lastly, raw plotting of the audio signals.

4.1. Experimental Setup

We used Google Colab’s free tier as our workbench, a cloud-based platform that gave
us access to a Nvidia T4 GPU, 12 GB of RAM, and 15 GB of VRAM for our experiments. We
employed the Python programming language, leveraging popular libraries such as NumPy,
Pandas, TensorFlow, and Scikit-Learn to create machine learning models and conduct data
analysis.

4.2. Evaluation Metrics

The Evaluation Metrics we have used to validate our results are given below:
Accuracy: The classification accuracy of the model on the test dataset is the key performance
metric that is assessed. It’s calculated by dividing the total number of right predictions by
the total number of predictions produced by the model.

Accuracy =
TP + TN

TP + FN + TN + FN
(11)

Recall: Recall refers to the percentage of total positive samples or instances that were
properly anticipated to be in the positive category.

Recall =
TP

TP + FN
(12)

F1-Score: The harmonic mean of a class’s precision and recall is represented by the F1-Score.
It denotes the overall assessment of a model’s accuracy for that specific class.

F1-Score =
2× Precision × Recall

Precision + Recall
(13)

Among all three datasets, we implemented the following parameters for the MFPT
dataset, the CWRU dataset, and the MIMII dataset; as mentioned in Tables 3–5.

We incorporated the Keras early stopping API into the training process. This enabled
us to halt the training once the linear loss plateaued, significantly reducing both time and
computational resources.
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Table 3. Parameters for the MFPT dataset.

Number of classes in a task (N_WAY) 4

Number of support set images per class (N_SHOT) 2

Number of query set images per class (N_QUERY) 3

Number of evaluation tasks (N_EVALUATION_TASKS) 500

Number of training episodes (N_TRAINING_EPISODES) 5000

Number of validation tasks (N_VALIDATION_TASKS) 100

Table 4. Parameters for the CWRU dataset.

Number of classes in a task (N_WAY) 5

Number of support set images per class (N_SHOT) 2

Number of query set images per class (N_QUERY) 3

Number of evaluation tasks (N_EVALUATION_TASKS) 500

Number of training episodes (N_TRAINING_EPISODES) 5000

Number of validation tasks (N_VALIDATION_TASKS) 100

Table 5. Parameters for the MIMII dataset.

Number of classes in a task (N_WAY) 6

Number of support set images per class (N_SHOT) 2

Number of query set images per class (N_QUERY) 3

Number of evaluation tasks (N_EVALUATION_TASKS) 500

Number of training episodes (N_TRAINING_EPISODES) 5000

Number of validation tasks (N_VALIDATION_TASKS) 100

4.3. Preprocessing Comparison: STFT, Gammatone, Raw Plot for MFPT,CSWR, MIMII with
ResNet-18, ResNet-50, MobileNetV3-Large, ConvNeXt-Base

We explore three preprocessing methods: Gammatone, Short-Time Fourier Transform
(STFT), and raw data. We evaluate their effectiveness in the context of extracted infor-
mation, lightweight architecture, and limited data availability. All the above-mentioned
preprocessing techniques have been used in all three of our chosen datasets and have been
diligently trained with four different models, namely Residual Neural Network-18 (ResNet-
18), Residual Neural Network-50 (Resnet-50), MobileNetV3-Large, and ConvNeXt-Base.

Through rigorous experimentation, we observed that STFT consistently outperformed
the other preprocessing methods, showcasing several compelling advantages: STFT’s
comprehensive time-frequency representation enabled our few-shot learning models to
capture both transient and spectral features inherent in fault patterns. This contributed
to higher accuracy in fault classification, allowing our models to discern intricate fault
signatures more effectively. Figure 10 illustrates the results based on our selected prepro-
cessing methods run on four different models. First of all, in the MIMII dataset, STFT
achieves a 96.03% accuracy on average, whereas GammaTone has an average accuracy of
95.43%, and raw data has achieved 84.04% on average. However, in the MIMII fault dataset,
the average accuracy of the Raw method plummets to 84.04%, which is the lowest of all
selected preprocessing methods. Finally, in the Case Western Reserve University dataset,
STFT achieved 100% accuracy, leaving GammaTone behind with 95.56 and RAW behind
with 99.74%.
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Figure 10. Identification of accuracy % of the models with different preprocessing methods.

STFT provides a detailed time-frequency representation by dividing the signal into
short segments and computing the Fourier transform for each. This feature aligns well with
the dynamic nature of fault patterns, enabling our few-shot learning approach to capture
transient and evolving features more effectively compared with Gammatone filtering. Fault
diagnosis often relies on identifying distinct spectral signatures associated with different
fault types. STFT excels at retaining detailed spectral information, making it particularly
valuable when diagnosing complex industrial systems with varying fault frequencies.
Certain fault scenarios might involve intricate spectral variations that Gammatone filtering,
due to its simplicity, might struggle to capture adequately. STFT’s ability to handle complex
spectral patterns ensures that our model can accurately learn and differentiate between
these nuanced fault signatures. Adaptation to Diverse Fault Types: Our chosen fault
diagnosis datasets include a wide range of fault classes and operational conditions. The
versatility of STFT in capturing a range of spectral features enhances the adaptability
of our few-shot learning approach to the diverse fault types found in the datasets. In
scenarios where the temporal localization of fault patterns is crucial, STFT’s time-frequency
representation can provide insights into when and how fault signatures manifest over time.
This level of detail aids in pinpointing the exact onset and evolution of faults.

Among the three preprocessing techniques, although Gammatone filtering emerges
as the lightest option, STFT provides better feature extraction, which in turn increases
accuracy. Given the complex nature of fault patterns, the need for spectral specificity, and
the diversity of fault classes in our datasets, STFT emerged as the superior choice for our
research. While Gammatone filtering offers simplicity and dimensionality reduction, STFT’s
comprehensive time-frequency representation aligns more closely with the intricacies of
fault diagnosis tasks and is well-suited for our lightweight architecture goals.

4.4. Architecture Comparison: ResNet-18, ResNet-50, ConvNeXt-Base, and MobileNetV3-Large
with STFT for MFPT,CSWR, and MIMII

In this section, we present the results of our experiments using the Short-Time Fourier
Transform (STFT) preprocessing technique with four different architectures: ResNet-18,
ResNet-50, MobileNetV3-Large, and ConvNeXt-Base. We analyze the accuracy and F1-
score of these models to evaluate their performance in fault diagnosis using the STFT-
preprocessed data. Accuracy using STFT is illustrated in Figure 11.
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Figure 11. Accuracy % of different models with the data sets preprocessed with STFT.

The ResNet-18 model demonstrated remarkable performance with the STFT prepro-
cessed data. Achieving an accuracy of 100% in the CWRU dataset, 94.58% in the MFPT
dataset, 97.68% in the MIMII dataset, and an F1-score of 1 across all of the datasets, the
confusion metric is visualized in Figure 12. ResNet-18 showcased its capacity to effec-
tively learn and differentiate fault patterns in a few-shot learning setting. The balanced
architecture of ResNet-18 combined with the enriched feature representation from STFT,
contributed to its strong performance.

Figure 12. Confusion Matrix for ResNet-18 Architecture: MFPT Dataset, CSWR Dataset and MIMII
Dataset using STFT preprocessing.

ResNet-50, a deeper counterpart to ResNet-18, maintained its reputation for reliable
performance. With STFT-preprocessed data, it achieved an accuracy of 100% and an
F1-score of 1 in the CWRU and MIMII datasets; in the MFPT dataset, it achieved 94.3%
accuracy and 1 F1-score. The increased model complexity and capacity of ResNet-50 further
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harnessed the benefits of STFT’s comprehensive representation, resulting in enhanced fault
classification accuracy. The confusion metric is shown in Figure 13.

Figure 13. Confusion Matrix for ResNet-50 Architecture: MFPT Dataset, CSWR Dataset and MIMII
Dataset using STFT preprocessing.

ConvNeXt-Base, designed for efficient feature extraction, demonstrated its utility
when paired with STFT-preprocessed data. It achieved an accuracy of 100% with the
CWRU dataset, 94.82% with the MFPT dataset, and 100% with the MIMII dataset. It also
achieved an F1-score of 1 in the CWRU and MIMII datasets and 1 with the MFPT dataset,
illustrating its ability to leverage STFT’s enriched representations to identify fault patterns
effectively. The confusion metric is shown in Figure 14.

Figure 14. Confusion Matrix for ConvNeXt-Base Architecture: MFPT Dataset, CSWR Dataset and
MIMII Dataset using STFT preprocessing.
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MobileNetV3-Large, known for its efficiency, showcased its adaptability to STFT-
preprocessed data. In the CWRU dataset, it achieved 100% accuracy and 1 as an F1-score; in
the MFPT dataset, it achieved 86.32% accuracy and had an F1-score of 1; and in the MIMII
dataset, it achieved 86.44% accuracy and 1 as an F1-score, highlighting its effectiveness in
resource-constrained environments. The lightweight architecture of MobileNetV3-Large,
combined with STFT’s detailed feature extraction, enabled accurate fault classification even
with limited computational resources. The confusion metric is shown in Figure 15.

Figure 15. Confusion Matrix for MobileNetV3-Large Architecture: MFPT Dataset, CSWR Dataset
and MIMII Dataset using STFT preprocessing.

F1-Score for our research is shown below in Figure 16:

Figure 16. F1-score of the models in our tested datasets.
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From our research results, we found that MobileNetV3-Large stands out as a lightweight
model due to its innovative architectural design that prioritizes efficiency without compro-
mising accuracy. Although it shows less accuracy than other models in the MFPT dataset,
it can be enhanced with further investigation and research. Here’s why we consider
MobileNetV3-Large the most suitable model for our few-shot learning approach:

A key factor contributing to the lightweight design of MobileNetV3 Large is its use
of depthwise separable convolutions. Unlike traditional convolutions that process each
channel with a separate kernel, depthwise separable convolutions split the convolution into
two stages: depthwise and pointwise convolutions. This dramatically reduces the number
of computations, leading to a lighter model. Additionally, MobileNetV3-Large employs an
architecture carefully engineered for optimal performance. This design includes techniques
like inverted residual blocks, which minimize the computational cost by expanding and
reducing the number of channels judiciously. The network’s streamlined architecture
enhances efficiency while maintaining accuracy.

Finally, MobileNetV3-Large’s parameter count is considerably lower than that of
deeper architectures, for example, ResNet-50. Fewer parameters mean fewer computations
during both training and inference, contributing to its lightweight character. All of the
model’s parameters are summarized in Table 6.

Table 6. Model Parameters.

Model Approx. Trainable Parameters (in Millions)

MobileNetV3-Large 5

ResNet-18 11.2

ResNet-50 23.5

ConvNext-Base 14.4

4.5. Discussion

We have discussed the findings of our study in Tables 7–9. These tables cover three
different datasets, namely the Case Western Dataset, the MFPT dataset, and the MIMII
dataset, respectively. The datasets underwent a similar preprocessing procedure that
utilized the Short-Time Fourier Transform (STFT) and the Few-shot learning technique,
employing a prototypical network with a MobileNetV3-Large model architecture as its
backbone. The discrepancy in the number of training episodes was due to the early
stopping criteria, and our primary performance metrics were the accuracy and mean
F1 score. The performance on the Case Western Dataset stands out, boasting a flawless
accuracy of 100.00% and an impeccable mean F1 score of 1.00. These figures reflect the
model’s ability to successfully categorize faults in this dataset, demonstrating high precision
and recall. Turning our attention to the MFPT dataset, the model attains an accuracy of
86.32% alongside a mean F1 score of 1.00. While the accuracy metric is marginally lower
than the Case Western Dataset, the mean F1 score remains at its peak value, indicating
the model’s effective discrimination of fault classes within the MFPT Dataset. Likewise,
the model achieves an accuracy of 86.44% and a mean F1 score of 1.00 in the case of the
MIMII dataset. Although the accuracy figure aligns with the MFPT Dataset, the model’s
proficiency in distinguishing fault classes is consistently optimal. Accuracy across different
datasets is shown in Figure 17.

The noteworthy mean F1 score of 1.00 across all datasets underscores the model’s
excellence in precision and recall, critical attributes in fault classification tasks. While not
perfect, the accuracy results signify robust classification performance on real-world fault
datasets. In addition, the minor variations in the number of training episodes, owing to
dataset-specific early stopping criteria, emphasize the model’s adaptability to the unique
characteristics of each dataset. While the Case Western Dataset required 100 episodes, the
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MFPT and the MIMII datasets necessitated additional episodes (102 and 161, respectively)
to achieve their respective accuracy levels.

Figure 17. Accuracy across different dataset.

Table 7. Result with the CWRU Dataset.

Preprocessing STFT

Model Architecture MobileNetV3 Large

Number of Training Episodes 100 (due to early stopping)

Accuracy 100.00%

Mean F1 Score 1.00

Table 8. Result with the MFPT Dataset.

Preprocessing STFT

Model Architecture MobileNetV3 Large

Number of Training Episodes 102 (due to early stopping)

Accuracy 86.32%

Mean F1 Score 1.00

Table 9. Result with the MIMII Dataset.

Preprocessing STFT

Model Architecture MobileNetV3 Large

Number of Training Episodes 161 (due to early stopping)

Accuracy 86.44%

Mean F1 Score 1.00
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These outcomes underscore the potential of employing the MobileNetV3 Large archi-
tecture in conjunction with STFT preprocessing for fault classification tasks. The high mean
F1 scores and consistent accuracy levels across various datasets underscore the model’s
versatility. These findings hold practical implications for diverse industries, including
condition monitoring and predictive maintenance. A model with such robust fault classi-
fication capabilities can contribute significantly to the early detection and prevention of
critical equipment failures. Training episodes taken by each dataset are shown in Figure 18.

Figure 18. Training Episode across different datasets.

While the results are promising, further research is imperative to evaluate the model’s
performance across a broader spectrum of fault types and datasets. Moreover, investigating
alternative preprocessing techniques and model architectures may yield valuable insights
for potential enhancements. Different Few-shot learning algorithms could also be explored
to solidify the findings.

In conclusion, our study suggests that the combination of MobileNetV3-Large and
STFT preprocessing encompassed within prototypical networks and Few-shot learning
holds significant promise for machinery fault classification. The elevated mean F1 scores
and commendable accuracy levels confirm the model’s suitability for practical applications
in real-world scenarios.

5. Conclusions

This study highlights the promise of few-shot learning combined with the MobileNet
architecture for equipment failure diagnostics in its conclusion. A model that performed
well across many datasets was produced by carefully selecting architecture, preprocessing
methods, and hyperparameters. Our study contributes to the expanding body of knowledge
at the interface between machine learning and industrial applications and offers insightful
suggestions for improving fault detection and preventative maintenance techniques. While
working with the few-shot learning model, we found that FSL may have trouble dealing
with complicated problems that require in-depth comprehension and efficient information
transfer across various industrial contexts. These problems necessitate resource-intensive
fine-tuning and domain knowledge for maximum performance. Therefore, for our future
work, we aim to overcome this limitation of the model. We discovered that specialized
data augmentation, blending with conventional techniques, semi-supervised learning,
multimodal approaches, and domain adaptability should all be investigated to overcome
these limitations.
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