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Abstract: To simulate a lightweight structure with integrated actuators and sensors, two-dimensional
finite elements are utilized. The study looks at the optimal location and active vibration control for
a piezoelectric smart flexible structure. Intelligent applications are commonly used in engineering
applications. In computational mechanics, selecting the ideal position for actuators to suppress
oscillations is crucial. The structure oscillates due to dynamic disturbance, and active control is used
to try to reduce the oscillation. Utilizing an LQR and Hinfinity controller, optimization is carried out to
determine the best controller weights, which will dampen the oscillation. Challenging issues arise
in the design of control techniques for piezoelectric smart structures. Piezoelectric materials have
been investigated for use in distributed parameter systems (for example airplane wings, intelligent
bridges, etc.) to provide active control efficiently and affordably. Still, no full suppression of the
oscillation with this approach has been achieved so far. The controller’s order is then decreased using
optimization techniques. Piezoelectric actuators are positioned optimally according to an enhanced
optimization method. The outcomes demonstrate that the actuator optimization strategies used in
the piezoelectric smart single flexible manipulator system have increased observability in addition to
good vibration suppression results.

Keywords: optimal placement; robust control; smart materials; Hinfinity control

1. Introduction

The terms “smart”, “intelligent”, and “adaptive” were first used to characterize the
newly developing field of study that included incorporating electroactive functional materi-
als into large constructions as in situ actuators and sensors in the middle of the 1980s [1–7].
In the past, electroactive materials were only employed in small- and micro-scale trans-
ducers and accurate mechatronics (electrical and mechanical) regulation systems. The
common notion of intelligent, smart, and adaptable materials or constructs suggests the
capability to be sharp, clever, fashionable, active, and advanced. In reality, however, real
intelligence or thinking cannot be achieved by materials or structures due to the lack of
artificial intelligence. Furthermore, the concept of a structure has been redefined as an
adaptive or active (lifelike) multifunctional construct of an electronic system with essential
abilities for diagnosis, self-sensing, and control [1–4]. Modeling and control are common
approaches in manufacturing systems [8,9].

Control theory is a common approach for the optimization of materials in the engineer-
ing field [10,11]. Additionally, robust control methods have been applied in smart materials
in the past [12]. Herein, we make use of piezoelectric components. When quartz crystals
were exposed to mechanical forces in 1880, the Curie brothers (Pierre and Jacques) detected
the creation of electric fields on the crystals (the Greek word piezo means “press”) [1–4].
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In general, piezoelectricity connects the electric and elastic fields by electromechanical
means. When a piezoelectric material reacts to mechanical strain or stress by generating
electric charges or voltages, this is known as the explicit piezoelectric effect. When electric
charges or fields are given to a material, the resulting mechanical stresses or strains have
the opposite of the piezoelectric effect [5–7,13]. For sensor applications, the direct effect
often serves as the foundation, while the opposite effect is used for precise manipulation
and actuation in control uses. It is actuated. Based on designs and configurations, or
whether mechanical expansions or reductions are used with or without lever systems,
the actuation stroke can range from nano- to micro- to millimeter scales. It should be
noted that piezoelectricity is a first-order action at low electric fields that results in strain
proportional to the electric field and displacement direction, dependent on the sign of the
electric field [4–7,13]. Many researchers are interested in piezoelectric materials and their
applications in mechanical structures [13–21]. In our paper, we investigate the optimal
placement of piezoelectric material in mechanical structures and their application in vi-
bration suppression using Linear–quadratic regulator (LQR) control and Hinfinity (H∞)
control methods. For example, the appropriate position could be selected by modeling the
equipment or simulating the process [22]. Many important researchers have dealt with the
problem of control in smart construction [23–25]. In this paper, the problem of topological
optimization of structures is presented [25], while in our thesis the modeling of the vector
and the complete suppression of oscillations are presented in detail.

Designing control methods for piezoelectric smart structures presents difficult prob-
lems. To offer active control effectively and economically, piezoelectric materials have
been researched for application in distributed parameter systems. Distributed sensors and
actuators made of piezoelectric materials with adaptive qualities can be utilized to actively
regulate dynamic systems. In this essay, we discuss the key considerations that structural
control engineers must make while developing trustworthy control methods for evaluating
resilience, optimum placement, and structural modeling under uncertainty.

Suppression of vibrations under dynamic and uncertain loading is a very serious
engineering problem. Vibrations are important in engineering systems, as they are con-
nected with the fatigue of the materials, which leads to catastrophic failures and the end
of life for parts. The application to simpler models allows the application of advanced
control techniques since the controller presented is of order 36. All simulations have been
completed in Matlab with advanced programming techniques.

In this work, we achieve full suppression of oscillations with two control strategies,
the Hinfinity control and the LQR. First, a smart structure is modeled with integrated
piezoelectric elements that act as both sensors and actuators. Afterward, an optimal
placement is made in their place. Modeling uncertainties as well as measurement noise
are taken into account, and then advanced control techniques are applied. The results are
presented both in the time domain and in the frequency domain. The following are the
benefits of this work:

- Modeling of intelligent constructs execution of control in oscillation suppression.
- Uncertainties in dynamic loading.
- Measurement noise.
- Appropriate selection of weights for complete suppression of oscillations.
- Using various choice places to stifle oscillations.
- Results in the frequency domain as well as the time-space domain.
- Introduction of the uncertainties in the construction’s mathematical model.

2. Modeling

This work deals with the reduction of oscillations using piezoelectric and advanced
control techniques. Two cases of piezoelectric placement are taken. In Figure 1 (the first
case), the actuators have been placed alternately, i.e., in positions 2 and 4. In Figure 2 (the
second case) the actuators have been placed at the end of the beam and concentrated in posi-
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tions 3 and 4, i.e., in the second half. The sensor output will be used for control actions [26].
The literature compared data-driven choices vs. simulation-based solutions [27–29].
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Figure 2. (The second case) the actuators have been placed at the end of the beam and concentrated
in positions 3 and 4.

The specific beam model simulated with two-dimensional finite elements has been
chosen because it can be modeled and advanced control techniques can be applied to it
that take into account modeling essentials such as unknown disturbances and uncertainties
of modeling. This particular model is a cantilever beam that can simulate an airplane
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wing or a bridge. With assumptions, the unknown disturbances may be the great force
of the wind or the earthquake. In this work, the force of the wind is taken into account.
In the literature given, relevant models have been used, but the results presented herein
are much better, compared to the other reports, because the oscillations are completely
suppressed. Suppression of vibrations under dynamic and uncertain loading is a very
serious engineering problem. The application to simpler models allows the application of
advanced control techniques since the controller presented is of order 36. All simulations
have been completed in Matlab with advanced programming techniques.

The dynamical description of the system is given by:

M
..
q(t) + D

.
q(t) + Kq(t) = fm(t) + fe(t) (1)

where fm is the global external loading mechanical vector, K is the global stiffness matrix, M
is the global mass matrix, and D is the viscous damping matrix. It is difficult to specify how
structural damping is determined because there are so many variables involved. To keep
things simple, the structural damping matrix D can be analyzed as either linearly combined
mass or stiffness (Rayleigh damping), which is D = αM + βK, or as mass proportional.
Here α and β are calculated in terms of the first and second normal mode of vibration, α
and β are 0.0005, and fe is the global control force vector resulting from electromechanical
coupling effects. Rotations wi and transversal deflectionsψi make up the unrelated variable
q(t), or

q(t) =


w1
ψ1
...

wn
ψn

 (2)

where n represents how many finite elements were employed in the analysis.
Let us (as is customary) translate to a state-space control interpretation.

X(t) =
[

q(t)
.
q(t)

]
.
x(t) =

[
02n×n

M−1(fm(t) + fe(t)

]
+

[ .
q(t)

−M−1D
.
q(t)−M−1Kq(t)

]
=

[
02n×n

M−1(fm + fe)(t)

]
+

[
02n×2n
−M−1K

I2n×2n
−M−1D

][
q(t)
.
q(t)

]
=

[
02n×n

M−1fm(t)

]
+

[
02n×n

M−1fe(t)

]
+

[
02n×2n
−M−1K

I2n×2n
−M−1D

][
q(t)
.
q(t)

]
.

(3)

Additionally, we define fe(t) = Fe × u(t) as, where (of size 2n × n) is the piezoelectric
force for a unit put on the appropriate actuator,

Where:

Fe =



0 0 0 0
cp −cp 0 0
0 0 0 0
0 cp −cp 0
0 0 0 0
0 0 cp −cp
0 0 0 0
0 0 0 cp


(4)
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and u(t) denotes the voltages on the actuators. Finally, the disturbance vector is the
mechanical force d(t) = fm(t). Then,

.
x(t) =

[
02n×2n I2n×2n
−M−1K −M−1D

]
x(t) +

[
02n×n

M−1F∗e

]
u(t) +

[
02n×2n
M−1

]
d(t)

= Ax(t) + Bu(t) + Gd(t)

= Ax(t) + [B G]

[
u(t)
d(t)

]
= Ax(t) + B ˜ũ(t).

(5)

With the output equation (displacements are just measured), we can improve this.

y(t) = [x1(t) x3(t) . . . xn−1(t)]T = Cx(t). (6)

The parameters of our system are in Table 1 and Figures 3 and 4. To measure the state
of the system, respective piezoelectric sensors are used. The voltage of the sensor outputs is
proportional to the nodal movements of the corresponding elements. Therefore, the output
of the system is given by Equation (6). In this example, four finite elements are used, so the
measurements are possible. In addition, the table C is as follows:

C = [1 0 0. . .0; −1 0 1 0. . .0; 0 0 −1 0 1. . .0; 0 0 0 0 −1 0 1. . .0].

Table 1. Factors of the smart beam.

Parameters Values

L, for Beam length 1.00 m

W, for Beam width 0.08 m

h, for Beam thickness 0.02 m

ρ, for Beam density 1600 kg/m3

E, for Young’s modulus of the Beam 1.5 × 1011 N/m2

bs, ba, for Pzt thickness 0.002 m

d31 the Piezoelectric constant 280 × 10−12 m/V
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3. Controller Synthesis

The challenge is to model the uncertainty in both the external disturbance and the
simulation model, while there is the optimal placement of the actuators. The benefits are
that infinite control considers uncertainties, complete suppression of oscillations, and the
results in the state space and the frequency domain. All simulations have been conducted
with advanced design techniques.

The aforementioned give ways for comparing and assessing controller performance
as well as analytical difficulties. However, a controller that achieves a certain behavior
in terms of the constructed singular value may be roughly synthesized. In this process
identified as the (D, G-K) iteration [18,30], the challenge of locating an optimal controller
K(s) such that µ(Fu(F(jω), Ks(jω)) ≤ β, ∀ω is transmuted into the difficulty of discovering
transfer function matrices D(ω) ∈ H and G(ω) ∈ H, such that,

sup
ω
σ

[(
D(ω)(Fu(F(jω), K(jω))D−1(ω)

γ
− jG(ω)

)(
I + G2(ω)

)− 1
2
]
≤ 1, ∀ω. (7)

Unfortunately, this approach does not ensure even discovering local maxima. Never-
theless, for complicated perturbations a technique known as the D-K iteration is accessible
(also executed in Matlab) [24,31,32]. It relates to the H∞ synthesis and frequently generates
good outcomes. The initial point is the maximum value of µ in terms of the scaled singular
value, where:

µ(N) ≤ min
D∈D

σ
(

DND−1
)

. (8)

The concept is to discover the controller that minimalizes the peak over frequency of
its upper bound [17], namely,

min
K

(
min
D∈D
‖DN(K)D−1‖∞

)
, (9)

by changing between minimalizing ‖DN(K)D−1‖∞ with regard to either K or D (while
keeping the other attached) [33–35].

1. K-step. Create a controller for the scaled issue. min
K
‖DN(K)D−1‖∞ with fixed D(s).

2. D-step. Find D(jω) to minimalize at each frequency σ
(

DND−1(jω)
)

with fixed N.
3. Fit the degree of each factor of D(jω) to a stable and the lowest phase transfer function

D(s) and move to Step 1.
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4. Results
4.1. Results in Simulation and Analysis of the Smart Structural Control

The presented problem takes as input the disturbance and measurement noise and
gives as output the controller voltages and displacement measurements. The equations and
structural diagrams presented analyze the equations used to model the specific problem of
the beam and are used in programming using Matlab.

Our goal is to identify the best transfer function N of the system.
Deriving the input-output relations for the first model is helpful for this purpose.[

u
e

]
= F(s)

[
d
n

]
⇒ z = F(s)w.

u and e are the outputs (control, error), and d, n are the inputs (disturbance, noise) as
illustrated in Figure 5.
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Where the beam is explained by the state space domain

.
x(t) = Ax(t) + [B G]

[
u(t)
d(t)

]
.

In the frequency domain, our system is as follows:

H(s) = (sI − A)−1, (10)

and J is utilized to select those states that we are concerned with controlling (which may be
altered from y). In the majority of the investigations, J will be:

J =


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

 (11)

We start by redrawing Figure 5 successively.
From Figure 6 it is easily seen that Tde (transfer function disturbance to error) is

Tde = J × (I − HBKC)−1H × G. (12)
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and
u = (I − KCHB)−1KCH × Gd + (I − KCHB)−1Kn (17)

or, [
u
e

]
=

[
(I−KCHB)−1KCHG (I−KCHB)−1K

J(I−HBKC)−1HG J(I−HBKC)−1HBK

][
d
n

]
(18)

and [
u
e

]
=

[
Fdu Fnu
Fde Fne

][
d
n

]
⇒ z = F(s)w. (19)

To continue, we adjust the weighting appropriately and redesign Figure 5 to suit our
specific problem:

Subsequently, we create a new representation of Figure 10 in the form of a two-port
diagram, similar to the layout shown in Figure 6 for comparison:
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In Figure 11, x and v are auxiliary signals.
We are looking for:

Qzw(s) = Pzw(s) + Pzu(s)K(s) (I − Pyu(s)K(s))−1Pyw(s) (20)

such that
z = Qzww = F(P, K)w. (21)

We want to locate P(s). The required transfer performers are:

ew = WeJx= WeJHv = WeJH(GWddw + Bu) = WeJHGWddw + WeJHBu, (22)

uw = Wuu, (23)

and
yn = Cx + Wnnw = CHv + Wnnw = CH(GWddw + Bu) + Wnnw=

CHGWddw + CHBu + Wnnw. (24)
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Combining all these givesuw
ew
yn

 =

 0 0 Wu
WeJHGWd 0 WeJHB

CHGWd Wn CHB

dw
nw
u

, (25)

or [
z

yn

]
=

[
Pzw Pzu
Pyw Pyu

][
w
u

]
, (26)

where:

Pzw =

[
0 0

WeJHGWd 0

]
, Pzu =

[
Wu

WeJHB

]
, Pyw =

[
CHGWd Wn

]
, Pyu = CHB. (27)

An additional step is required, however, to acquire the Qij’s. We achieve this utilizing
Equation (18) and noticing that:

d = Wddw, n = Wnnw, ew = Wee, uw = Wuu.

Hence, [
u
e

]
=

[
W−1

u uw
W−1

e ew

]
= F(s)

[
d
n

]
= F(s)

[
Wddw
Wnnw

]
⇒[

uw
ew

]
=

[
Wu

We

]
F(s)

[
Wd

Wn

][
dw
nw

] ,

or [
uw
ew

]
=

[
Wu(I−KCHB)−1KCHGWd Wu(I−KCHB)−1KWn

WeJ(I−HBKC)−1HGWd WeJ(I−HBKC)−1HBKWn

][
dw
nw

]
. (28)

Therefore, the matrices in

z = Qzww or
[

u
e

]
=

[
Q11 Q12
Q21 Q22

][
d
n

]
.
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Regarding the formulation in the state space, we express P as a form of natural
partitioning:

P(s) =

A B1 B2
C1 D11 D12
C2 D21 D22

 =

[
Pzw(s) Pzu(s)
Pyw(s) Pyu(s)

]
, (29)

(where the condensed format has been utilized), while the related form for K is:

K(s) =
[

AK BK
CK DK

]
.

Equation (29) describes the equations:

.
x(t) = Ax(t) +

[
B1 B2

][w(t)
u(t)

]
[

z(t)
y(t)

]
=

[
C1
C2

]
x(t) +

[
D11 D12
D21 D22

][
w(t)
u(t)

]
and

.
xK(t) = AKxK(t) + BKy(t)

u(t) = CKxK(t) + DKy(t).

To locate the matrices in question, we solve the feedback loop and apply the related
equations (Figure 12):
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To obtain the arrangement in state space form, we incorporate the outputs, inputs,
states, and input/output to the controller:

.
xF = AxF + (Gd + Bu), x = IxF

.
xu = Auxu + Buu, uw = Cuxu + Duu

.
xe = Aexe + BeJx, ew = Cexe + DeJx

.
xnw = Anwxnw + Bnwnw, n = Cnwxnw + Dnwnw

.
xdw = Adwxdw + Bdwdw, d = Cdwxdw + Ddwdw

y = Cx + n.

(30)
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Let

x =


xF
xu
xe

xnw
xdw

, y = y , w =

[
dw
nw

]
, z =

[
uw
ew

]
, u = u.

Replacing the internal signals d, n, e και x from 30 yields
.
xF.
xu.
xe.

xnw.
xdw

 =


A 0 0 0 GCdw
0 Au 0 0 0

Be J 0 Ae 0 0
0 0 0 Anw 0
0 0 0 0 Adw




xF
xu
xe

xnw
xdw

+


GDdw 0

0 0
0 0
0 Bnw

Bdw 0


[

dw
nw

]
+


B
Bu
0
0
0

u,

[
uw
ew

]
=

[
0 Cu 0 0 0

DeJ 0 Ce 0 0

]
xF
xu
xe

xnw
xdw

+ 0
[

dw
nw

]
+

[
Du
0

]
u,

and

y =
[
C 0 0 Cnw 0

]


xF
xu
xe

xnw
xdw

+
[
0 Dnw

][dw
nw

]
+ 0u.

Therefore, the matrices are:

A1 =


A 0 0 0 GCdw
0 Au 0 0 0

BeJ 0 Ae 0 0
0 0 0 Anw 0
0 0 0 0 Adw

, B1 =


GDdw 0

0 0
0 0
0 Bnw

Bdw 0

, B2 =


B

Bu
0
0
0

,

C1 =

[
0 Cu 0 0 0

DeJ 0 Ce 0 0

]
, D11 = 0, D12 =

[
Du
0

]
,

and
C2 =

[
C 0 0 Cnw 0

]
, D21 =

[
0 Dnw

]
, D22 = 0.

As can be observed, the state vector in this design has a size of 16 + 4 + 4 + 4 + 8 =
36. The controller model K(s)’s size will likewise be determined by this. This sum will be
decreased in the proper sequence if the particular weight matrices are constant. Next, we
suppose uncertainty in the M and K matrices of the form:

K = K0(I + kpI2n×2nδK)

M = M0(I + mpI2n×2nδM). (31)

Furthermore, since, D = 0.0005(K + M), a suitable form for D is

D = 0.0005[K0(I + kpI2n×2nδK) + M0(I + mpI2n×2nδM)]=

D0 + 0.0005[K0kpI2n×2nδK + M0mpI2n×2nδM].
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On the other hand, since in general,

D = αK + βM.

To keep things simple, the structural damping matrix D can be analyzed as either
linearly combined mass or stiffness (Rayleigh damping), in here α and β are calculated in
terms of the first and second normal mode of vibration, α and β are 0.0005. D could be
stated similarly to K, M, as

D = D0(I + dpI2n×2nδD).

In the pertinent matrices, we inject uncertainty in the form of proportion deviation.
Since length can be accurately measured, this equation for uncertainty is appropriate in our
situation. Uncertainty is more probable to result from terms besides the primary matrices.
Here it will be assumed that:

∆∞
def
= ‖

[
In×nδK 0n×n
0n×n In×nδM

]
‖

∞
< 1.

Hence, mp and kp are employed to scale the proportion value and the zero subscript
represents nominal values.

(It is prompted that for matrix An×m the norm is determined via ||A||∞ = max
1≤j≤m

∑n
j=1
∣∣aij
∣∣).

With these designations Equation (1) becomes

M0
(
I + mpI2n×2nδM

) ..
q(t)+K0

(
I + kpI2n×2nδK

)
q(t) +

[
D0 + 0.0005

[
K0kpI2n×2nδK + M0mpI2n×2nδM

]] .
q(t) = fm(t) + fe(t)

⇒ M0
..
q(t)+D0

.
q(t) + K0q(t) =

−
[
M0mpI2n×2nδM

..
q(t) + 0.0005

[
K0kpI2n×2nδK + M0mpI2n×2nδM

] .
q(t) + K0kpI2n×2nδKq(t)

]
+ fm(t) + fe(t)

⇒ M0
..
q(t)+D0

.
q(t)+K0q(t) = D̃qu(t) + fm(t) + fe(t),

(32)

where:

qu(t) =

 ..
q(t)
.
q(t)
q(t)


D̃ = −

[
M0mp K0kp

][I2n×2nδM 02n×2n
02n×2n I2n×2nδK

][
I2n×2n 0.0005I2n×2n 02n×2n
02n×2n 0.0005I2n×2n I2n×2n

]
=

= G1 · ∆ · G2.

Writing 32 in state space form gives

.
x(t) =

[
02n×2n I2n×2n
−M−1K −M−1D

]
x(t) +

[
02n×n

M−1 f ∗e

]
u(t) +

[
02n×2n
M−1

]
d(t) +

[
02n×6n

M−1G1 · ∆ · G2

]
qu(t)

= Ax(t) + Bu(t) + Gd(t) + Gu G2qu(t).

In this approach, we consider the original matrices’ uncertainty as an additional
uncertainty factor. To convey our system in the form of Figure 4, consider Figure 13.
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The matrices E1, and E2 are used to extract:

qu(t)
de f
=

 ..
q(t)
.
q(t)
q(t)

.

Since

γ =

[ .
q(t)
..
q(t)

]
and β =

∫ [ .
q(t)
..
q(t)

]
dt =

[
q(t)
.
q(t)

]
,

appropriate choices for E1 and E2 are:

E1 =

02n×2n I2n×2n
I2n×2n 02n×2n
02n×2n 02n×2n

, E2 =

02n×2n 02n×2n
02n×2n 02n×2n
I2n×2n 02n×2n

.

The idea is to find an N such that:qu
ew
uw

 = N

pu
dw
nw

, N =

Npuqu
Ndwqu

Nnwqu

Npuew Ndwew Nnwew

Npuuw Ndwuw Nnwuw

 =

[
N11 N12
N21 N22

]
,

or in the notation of Figure 4, [
qu
w

]
= N

[
pu
z

]
.

Now Ndwew , Nnew , Ndwuw , and Nnwuw are known from Equation (28). For the rest, we
will employ a method identified as “pulling out the ∆’s”. To this end, we split the loop at
points pu, and qu (which will be employed as extra inputs/outputs correspondingly) and
use the auxiliary signals α, β, and γ.

To obtain the transfer function Ndwqu (from dw to qu):

qu = G2(E2β+ E1γ) = G2

(
E2

1
s + E1

)
γ

γ = GWddw + Bu + A 1
s γ = GWddw + BKC 1

s γ + A 1
s γ ⇒ γ =

(
I− BKC 1

s −A 1
s

)−1
GWddw

Hence,

Ndwqu= G2

(
E2

1
s
+ E1

)(
I− BKC

1
s
−A

1
s

)−1
GWd
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Now, Npuqu
, Npuew , and Npuuw are similar to Ndwqw

Ndwew , and Ndwuw with GWd
replaced by Gu, i.e.,

Npuqu
= G2

(
E2

1
s
+ E2

)(
I− BKC

1
s
−A

1
s

)−1
Gu,

Npuew = WyJH
[
I + B

[
K(I−CHBK)−1CH

]
Gu,

Mpuuw = WUK(I−CHBK)−1CHGu.

Ultimately, to find Nnwqu

qu = G2(E2β+ E1γ) = G2

(
E2

1
s + E1

)
γ

γ = Bu + A 1
s γ = BK(Wnnw + y) + A 1

s γ = BKWnnw + BKC 1
s γ + A 1

sγ

⇒ γ =
(

I− BKC 1
s −A 1

s

)−1
BKWnnw.

Hence,

Nnwqu
= G2

(
E2

1
s
+ E1

)(
I− BKC

1
s
−A

1
s

)−1
BKWn.

Collecting all the above yields the transfer function of the structure N:G2

(
E2

1
s + E1

)(
I − BKC 1

s − A 1
s

)−1
Gu G2

(
E2

1
s + E1

)(
I − BKC 1

s − A 1
s

)−1
GWd G2

(
E2

1
s + E1

)(
I − BKC 1

s − A 1
s

)−1
BKWn

We JH
[

I + BK(I −CHBK)−1 CF
]

Gu We J(I −HBKC)−1 HGWd We J(I −HBKC)−1 HBKWn

WuK(I −CHBK)−1 CFGu Wu(I −KCHB)−1 KCHGWd Wu(I −KCHB)−1 KW

 (33)

Having acquired N for the beam problem, all recommended controllers K(s) can be
compared utilizing the constructed singular value relations. The above operations were
calculated to find the transfer function (N) which is used in programming in the Matlab
programming tool.

4.2. Results for the Open Loop (Initial Condition without Control)

The open loop system is displayed in Figure 14. Using Equations (2) and (3) the
transfer function from disturbance to position is

Ho(s) = C(sI − A)−1G. (34)
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The system is stable with the e-values of A at

1.0 × 100.007 ×

[−3.497882663196082

−1.371177496104841
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−0.546611094980835

−0.215249175898536

−0.061335753206233

−0.015936656985647

−0.001837409669158

−0.000026475315963 + 0.000099444326281i

−0.000026475315963 − 0.000099444326281i

−0.000224428822398

−0.000202541835285

−0.000200654281462

−0.000200186003921

−0.000200011436140

−0.000200029176256

−0.000200073204937].
Firstly, we note that the A matrix is badly conditioned with condition number c = 5.62

× 10−0.013. This means some preconditioning would be beneficial to sensitive calculations
(like pole placement). A solution to this issue is to stabilize the system matrix. Matlab
delivers the routine [36–38] [T, S] = balance(A) which creates a diagonal alteration matrix T
whose elements are integer powers of 2, and matrix B such that

A = TST−1.

As a result, some of the bad conditioning is transferred to T. Letting

z = T−1x⇒x = Tz,

Equation (3) in the frequency domain, becomes:

Tz(t) = ATz(t) + Bu(t) + Gd(t)
⇒ z(t) = T−1ATz(t) + T−1Bu(t) + T−1Gd(t)

= Sz(t) + B̂u(t) + Ĝd(t).

Another problem arises from the very small size of the minimum eigenvalue which
defines the minimal time constant of the system, which in turn dictates sampling intervals
used in simulations. These sampling intervals should be smaller than the minimum time
constant. When this happens, arrays involved for example in lsim simulations become
noticeably big, and particular care must be taken if the simulation time is large. Also,
the system is both manageable and noticeable (in fact the system is both controllable and
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observable with fewer inputs and measurements). A probable measure of the difficulty of
regulating the system is the frequency-dependent condition number κ(jω), defined by

κ(jω) =
σ(Ho( jω))

σ(Ho( jω))
.

A high condition number implies that the system is “close” to losing its full rank, i.e.,
close to not fulfilling the property of operational controllability (that is the ability of the
output to follow any preassigned trajectory over a provided time interval). Values close to
1 are desirable. Figure 15 shows the condition number for our system.
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Figure 15. Condition number of the system.

As can be seen, the condition number is rather high at low frequencies, indicating that
at those frequencies the system would be rather difficult to control [17,39,40]. This suggests
that balancing would also be beneficial in this respect.

Responses to various inputs are in Figures 16–18. These are Matlab simulations. These
are simulations prior to applying the control in the beam. They are the initial conditions.
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Figure 18. Responses for unit white noise for every node of the structure. The curves almost coincide;
thus, the different curves cannot be clearly distinguished in the graphs.

In Figure 16 we see the responses of the structure for unit mechanical load 1 N, at
each node of the model separately. Figure 17 shows the responses of the structure for unit
electric 1 Volt charge while Figure 18 is for unit white noise. In this work, we achieve full
suppression of oscillations with two control strategies, the Hinfinity control and the LQR.
First, a smart structure is modeled with integrated piezoelectric elements that act as both
sensors and actuators. Afterward, an optimal placement is made. Modeling uncertainties
as well as measurement noise are taken into account, then advanced control techniques are
applied. The results are presented both in the time domain and in the frequency domain.

4.3. Results with LQR Control

It is commonly known [41] that a controller must have a zero at infinity (i.e., integrate)
to completely remove continuous input disturbances. An integrator’s role as a disturbance
estimator is another helpful interpretation. Consequently, we do not anticipate an LQR
controller to have a zero steady-state error. The structure of LQR control with diminished
order observer is revealed in Figure 19.
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Here,
K = lim

t→∞
K(t),

where:
u(t) = −K(t)x̂(t) (35)

minimalizes the weighted performance index of

J =
∫ ∞

0

(
x̂T(t)Qx̂(t) + uT(t)Ru(t)

)
dt,

and Q and R are design weight matrices.
The necessary equations are:[

C
T

]−1

=
[
P M

]
, Tarbitrary[

CAP CAM
TAP TAM

]
=

[
Â11 Â12
Â21 Â22

][
CB
TB

]
=

[
B̂1
B̂2

]
F = Â22−LÂ12, H = FL + Â21−LÂ11, G = B̂2−LB̂1, N = P + ML

.
w(t) = Fw(t) + Hy(t) + Gu(t), (36)

and
x̂(t) = Mw(t) + Ny(t). (37)

Here matrix L is chosen to regulate:

.
z(t) =

[
A 0
J 0

]
z(t) +

[
B
0

]
v(t) (38)



Vibration 2023, 6 995

and .
z̃(t) =

(
Â22 − LÂ12

)
z̃(t). (39)

The calculation is carried out by specifying the pole positions λL [42].
To compare structured µ values for the overall system, we need to express the LQR

controller as a transfer function.
Let us find x̂(s) using Equation (37).
Form Equation (36),

.
w (t) = Fw(t) + Hy(t) + Gu(t)⇒ sw(s) = Fw(s) + Hyn(s) + Gu(s) (40)

and
⇒ w(s) = (sI− F)−1[Hyn(s) + Gu(s)]. (41)

To find the input-output relation for the LQR controller use 41,

u(s) = −K
{[

N + M(sI− F)−1H
]
yn(s) + M(sI− F)−1Gu(s)

}
⇒
[
I + KM(sI− F)−1G

]
u(s) = −K

[
N + M(sI− F)−1H

]
yn(s)

⇒ u(s) = −
[
I + KM(sI− F)−1G

]−1
K
[
N + M(sI− F)−1H

]
yn(s), (42)

or
u(s) = KLQyn(s), (43)

where:
KLQ = −

[
I + KM(sI− F)−1G

]−1
K
[
N + M(sI− F)−1H

]
. (44)

With this relation, our LQR control structure can be depicted more compactly as shown
in Figure 20,
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Figure 20. Beam LQR control. 
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Where H(s) = (sI − A)−1 is the beam’s transfer function.
Matrix L is a design matrix. Its e-values are chosen so that the observer subsystem is

about twice as fast as the observed plant. For our simulations we used

ΛL = 1.0× 100.007×
[2.7423 −0.4304 −0.0318 −0.000051 + 0.002i −0.000051− 0.002i −0.00045 + 0.000053i −0.00045− 0.000053i −0.00039 + 0.00001i −0.00039− 0.00001i −0.000401 −0, 0004003 −0.0004004]T.

These values were found by trial and error, given the bad numerical properties of the
system. Furthermore, a robust pole placement algorithm, implemented in Matlab was used.

In the simulations, artificial noise of amplitude equal to a random percentage (in the
interval −1 to +1) of the measured values was added. The results of the simulations are
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shown in Figures 21 and 22. The results presented are for the second case of actuator
placement. In Figure 21 we can witness the dislocation of the free end of the beam with
control (closed loop, green line) and without control (open loop, blue line) when the
mechanical force is 10 N at the free end of the constructs. The displacement for the closed
loop is almost zero. In Figure 22 we can notice the control voltages for the previous closed-
loop displacements. The piezoelectric limits are 500 Volts and the control voltages we used
are 30 Volts.
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4.4. Results with Hinfinity Control 
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4.4. Results with Hinfinity Control

Various tests were performed. We expect to improve our performance if we exploit
the frequency dependence of the signals [43].
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Figure 23 shows the Bode diagrams of the diagonal elements of the weight matrixes
of Hinfinity control, where the matrixes have been obtained after optimization. Nominal
performance is depicted in Figures 24–28. The resulting controller is order 36. The max
singular value for this controller is 0.074. In Figure 24b the performance of the controller
is significant since it appears that there is a significant improvement in the error noise for
frequencies above 1000 Hz. Moreover, Figure 24a shows the noteworthy enhancement of
the effect of disturbances on the error up to the frequency of 1000 Hz.
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For all the next simulations a dynamical mechanical force is used, a real wind force
which is taken from the Hellenic Mediterranean University in Heraklion, Crete in the
energy laboratory of the Mechanical Engineering Department. In Figure 25 we can see
the displacement for the first places of piezoelectric patches with and without control
(Figures 1 and 3). The blue line is the displacement without control (open loop), and the
green line is the displacement with control (closed loop). In Figure 26 we have the same
diagram for different places of the piezoelectric patches for all the nodes of the structures
(Figures 2 and 4). The results are excellent; the displacement is almost zero and the beam
keeps in equilibrium. In Figure 27 we take the rotation for the second placement of the
piezoelectric patches with (green line) Hinfinity control and without control (blue line).
The results are excellent. In order to achieve them, the weights used had to be selected
using optimization methods. Figure 28 shows the Singular values for the nominal and the
worst case of the structures.
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model and the creation of the transfer function for the specific problem. The results are
obtained after programming in the Matlab platform and using the Simulink software tool.

Control theory employing Hinfinity (H∞) techniques is used to synthesize controllers
for stabilization with assured performance. By expressing the control problem as a mathe-
matical optimization problem and then identifying the controller that resolves this opti-
mization, a control designer can employ Hinfinity techniques. In comparison to classical
control techniques, H∞ techniques have the advantage of being easily adaptable to prob-
lems involving multivariate systems with cross-coupling between channels. Hinfinity
techniques’ drawbacks include the level of mathematical sophistication required for suc-
cessful application and the requirement for a passably accurate model of the system to be
controlled. Keep in mind that the resultant controller may not always be the best and is just
the optimum solution with regard to the required cost function. The closed-loop impact
of a perturbation may be reduced using H∞ methods. Depending on how the problem
is phrased, the impact will either be assessed in terms of stability or performance. The
issue of control in intelligent structures has been addressed by a number of significant
researchers [23–25]. While the modeling of the vector and the thorough suppression of
oscillations are provided in detail in our research, the challenge of topological optimization
of structures is covered in this study [25].

The article has made a great contribution to the following:

1. On the modeling of uncertainty in smart constructions.
2. In the creation of advanced control techniques.
3. In the complete suppression of vibrations under dynamic loading.
4. Analytical explanation of the equations used in programming.
5. Advanced programming techniques have been used to make the simulations.
6. The model has been worked both in simulation and in advanced programming.
7. It is not possible in one article to present both the modeling and the experimental

results in such detail. For this reason, they will be presented in future research papers.
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In this article, we wanted to emphasize the analysis and composition of the beam
model in an analytical way and for this reason, all equations are given in detail. It is very
difficult to give the experimental results as well because it will greatly increase the size of
the work.

6. Conclusions

Combining LQR and Hinfinity control, this research investigates the ideal positioning
of actuators in intelligent structures. The resistance of the Hinfinity controller to parametric
uncertainty is seen in problems with vibration suppression. The benefits of active vibration
suppression and robust control in the dynamics of intelligent structures are well illustrated
in this work. Hinfinity control has a number of advantages when examining dependable
control systems. Hinfinity control allows for the minimization of oscillations even for
different places of actuators. Numerical modeling shows that the recommended methods
for reducing vibrations in piezoelectric smart structures are successful. By demonstrating
the use of Hinfinity regulation in both the frequency domain and state space, this essay
explored the benefits of robust control in intelligent architecture. There are a number of
papers considering the optimal placement of actuators. Most of them are neglected in the
literature review [23–25].

To conclude, this work has contributed to the following:

- Modeling of intelligent constructs execution of control in oscillation suppression.
- Using various choice places to stifle oscillations.
- Results in the frequency domain as well as the time-space domain.
- Introduction of the uncertainties in the construction’s mathematical model.
- The integration of smart structures using methods for optimal placement and ac-

tive control.
- Uncertainties in dynamic loading.
- Measurement noise, appropriate selection of weights for complete suppression of

oscillations.

The application to simpler models allows the application of advanced control tech-
niques since the controller presented is of order 36. All simulations have been conducted
in Matlab with advanced programming techniques. Experimental investigation was not
of the interest of this paper. All equations are provided in detail because the goal of this
research was to stress the analysis and composition of the beam model using a very ana-
lytical approach. Giving experimental data is highly challenging since it will significantly
lengthen the process.
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Nomenclature

M Mass Matrix ψi(t) Displacement deflection
K Stiffness Matrix x(t) The state vector of our system
D Viscous damping Matrix y(t) Output vector of our system
fe(t) piezoelectric force d31 Piezoelectric constant
n Number of nodes in finite element formulation cp Piezoelectric constant
u(t) Control voltages of actuators K(s) Hinfinity Controller of the system
Fe Matrix with piezoelectric constant KlQ LQR controller of the system
wi(t) Rotation deflection P(s) Augment Plant of the smart system
µ Singular value e(t) The error of the system
d(t) Disturbances of the system n(t) Noise of the system
A, B, G, H Matrices of our system D, G-K D-K interaction in the frequency domain
Tde, Tne,
Tdu, Tnu

The transfer function disturbance error, noise error,
disturbance control, noise control

We The error Weight for Hinfinity control

Wn The noise Weight for Hinfinity control Wu The control Weight for Hinfinity control
Wd The disturbance Weight for Hinfinity control N The transfer function for the smart system
∆ The Uncertainty of the system δM t The Uncertainty terms for the mass matrix
δκ The Uncertainty terms for the stiffness matrix kp, mp Numerical constant from zero to one

J
Matrix which is utilized to select states that we are
concerned with controlling

Q, R The weight vectors for LQR control

κ(jω) Frequency-dependent condition number F Fractional transformation
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