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Abstract: The evaluation of the vibration behavior of railway vehicle car bodies based on the results
of numerical simulations requires the adoption of an appropriate theoretical model of the suspension
which considers the important factors that influence the vibration level of the car body. In this paper,
the influence of the secondary suspension model on the vertical vibration behavior of the railway
vehicle car body is investigated, based on the results of numerical simulations on the frequency
response functions of the acceleration, the power spectral density of the acceleration and the root
mean square of the acceleration of the car body. Numerical simulation applications are developed
based on a rigid-flexible coupled vehicle model with seven degrees of freedom, corresponding to
car body vibration modes: bounce, pitch, and first vertical bending mode, and bogie vibration
modes: bounce and pitch. Four different models of secondary suspension are integrated into the
vehicle model, namely a reference model and four analysis models. Analysis models include systems
through which the pitch vibration of the bogies is transmitted to the car body, influencing its vibration
behavior and, respectively, a system that takes the relative angular displacement between the car body
and the bogie and a system that models the transmission system of the longitudinal forces between
the bogie and the car body are analyzed. The effects of these two systems on the vibration behavior
of the railway vehicle car body are analyzed both for each system separately and together. In the
conclusions of the paper, the influence of the secondary suspension model on the vibration level at
the resonance frequencies of the vertical bending of the car body and the pitch of the bogie is pointed
out. It also highlights the important contribution of the transmission system of the longitudinal forces
between the bogie and the car body in transmitting pitch vibrations of the bogies to the car body,
with effects on the vibration level of the car body at high speeds.

Keywords: railway vehicle; suspension model; car body; vertical vibration; numerical simulation;
geometric filtering effect

1. Introduction

Considering the importance from the perspective of operation safety, ride quality
and ride comfort, the problem of the vibration behavior of the railway vehicle has always
represented a major concern of engineers and researchers in the field [1]. In the conditions
in which the requirements for increasing the speed and the dynamic performance of
railway vehicles are getting bigger, vibration behavior is maintained as a permanent
current research topic.

Research on the vibration behavior of railway vehicles can be approached both theoret-
ically and experimentally. Approached from a theoretical perspective, the research is based
on the simulation of the vibration behavior of the railway vehicle. There are challenges
in the modeling stage of the railway in the development of numerical simulation applica-
tions [2–4]. The railway vehicle is a complex oscillating system with a specific vibration
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regime, characterized by rigid vibration modes and structural vibration modes, which
may develop as independent vibrations or may be coupled to each other. The vibration
behavior depends both on the vehicle’s vibration characteristics and on the combined effect
of the various excitation sources [5–9]. Irregularities of the rolling surfaces, corrugation
and constructive discontinuities of the rail, and deviations from the circularity of the wheel
(eccentricity, ovality, polygonization, flattening) represent sources of excitation of the vibra-
tions of railway vehicles [10–15]. The representation of all these aspects that influence the
vibration behavior of the railway vehicle in a theoretical model is a particularly difficult
task which involves the development of complex software applications and very long
simulation times.

Generally, the degree of complexity of the vehicle model is established in accordance
with the specific aspects of the studied problem. Simple models are useful research tools
for explaining some basic phenomena of the railway vehicle’s vibration behavior. To obtain
results with a high degree of reliability, it is necessary to adopt complex models which
consider several important factors that influence the vehicle’s vibration level. For example,
in evaluating the ride comfort performance of high-speed vehicles, the accuracy of the
model is highly dependent on the car body modeling. Studies have shown that the ride
comfort performance of the railway vehicle at high speeds evaluated based on a “rigid car
body” model is overestimated, compared to the results obtained with a “flexible car body”
model [16,17].

The vibration behavior of the railway vehicle is greatly influenced by the suspension;
therefore, the accuracy of the vehicle model and the simulation results will essentially
depend on the suspension modeling [18–20]. The Kelvin–Voigt system is usually used
to model the suspension consisting of a coil spring in parallel with a hydraulic damper.
This model is frequently used for modeling the vertical suspension of railway vehicles. A
Kelvin–Voigt system is used to model the primary suspension corresponding to an axle, and
the secondary suspension corresponding to a bogie is also represented by a single Kelvin–
Voigt system; both systems work on translation in the vertical direction. Such models are
frequently found in studies on the reduction or control of vertical vibrations of the railway
vehicle [21–25], particularly of high-speed railway vehicles [26–33], in studies aimed at
improving ride comfort and ride quality [34–39], or in those regarding the influence of car
body vibrations on the dynamic interaction in the pantograph–catenary system [40,41].

The vibration behavior of the vehicle car body depends both on its own vibration
modes and on the vibrations of the bogies which are transmitted through the secondary
suspension to the car body and coupled with its vibrations. The representation of the
secondary suspension by a single Kelvin–Voigt system, which models the vertical stiffness
and damping, has the disadvantage that it only ensures the transmission to the car body
of the bounce vibrations of the bogies which couple with the bounce and vertical bending
vibrations of the car body. Under these conditions, the pitch vibrations of the bogies
develop as independent vibrations which are not transmitted to the car body. In reality, the
pitch vibrations of the bogies are transmitted to the car body and coupled with its pitch
and vertical bending vibrations. To consider the effects of bogie pitch vibrations on the
vibration behavior of the car body in the secondary suspension model, system models that
facilitate the transmission of bogie pitch vibrations to the car body must be introduced.
One such system is the transmission system of the longitudinal forces between the bogie
and the car body, which can be represented in the secondary suspension model by a Kelvin–
Voigt system for longitudinal translation. In previous research, the authors introduced this
system into the secondary suspension model in several studies that focused on railway
vehicle vibrations and their effects on ride comfort [42–44]. The secondary suspension
model consisting of the two Kelvin–Voigt systems for vertical and longitudinal translation,
respectively, can be completed with a Kelvin–Voigt system for rotation that also contributes
to the transmission of pitch vibrations of the bogies to the car body. Through this system,
the relative angular displacement between the car body and bogie is represented. The
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secondary suspension model consisting of the three Kelvin–Voigt systems is an original
model that can be found in several of the authors’ previously published papers [16,45–47].

In this paper, the problem of modeling the secondary suspension of the railway vehicle
is approached in an original way, namely from the point of view of the influence on the
evaluation of the vibration behavior of the railway vehicle car body based on numerical
simulations. The problem is investigated with a rigid–flexible coupled vehicle model
which considers the rigid vibration modes of the car body—bounce and pitch, the first
vertical bending mode, and the rigid vibration modes of the bogies—bounce and pitch.
Four different models of secondary suspension are integrated into the vehicle model. The
first model is a simple model, considered as the reference model, consisting of a single
Kelvin–Voigt system for vertical translation by which the stiffness and vertical damping
of the secondary suspension are represented. The other three models are analysis models,
obtained by composing in different variants the reference model with the Kelvin–Voigt
systems described above, through which the pitch vibrations of the bogies are transmitted
to the car body, respectively the Kelvin–Voigt system for longitudinal translation and the
Kelvin–Voigt system for rotation. The first analysis model is an original model consisting
of the reference model and the Kelvin–Voigt system for rotation. Another model consists of
the reference model and the Kelvin–Voigt system for longitudinal translation. The third
analysis model brings together all three Kelvin–Voigt systems as described above.

The evaluation of the influence of the secondary suspension model on the vertical
vibration behavior of the railway vehicle car body is carried out based on the frequency
response functions of the acceleration, the power spectral density of the acceleration, and
the root mean square of the acceleration. In this context, the influence of the rigidity of the
rotation system and the longitudinal system on the vibration regime of the vehicle car body
is analyzed.

2. Railway Vehicle Model
2.1. Description of the Vehicle Model

Figure 1 shows the mechanical model for the study of vertical vibrations of a four-axle
passenger railway vehicle with two suspension stages travelling at constant velocity on a
track with vertical irregularities. The vehicle model is a rigid–flexible coupled type model.
The vehicle car body is modeled by a free-free equivalent beam, with a constant section
and uniformly distributed mass of Euler–Bernoulli type. The chassis of the two bogies and
the four wheelsets are represented by rigid bodies.
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The vertical vibration modes of the car body are bounce zc, pitch θc and the first
vertical bending mode; and the vibration modes of the two bogies are bounce zb1,2 and
pitch θb1,2. The car body has mass mc and inertia moment Jc. Each bogie has mass mb and
inertia moment Jb.

The vertical irregularities of the track impose vertical displacements of the wheelsets,
denoted by zw1...4. Since the eigenfrequencies of the considered vertical vehicle vibration
modes are much lower than the frequencies of the wheelset–track system, the perfectly
rigid track was considered.

The secondary suspension is represented by four different models: one reference
model and three analysis models (Figure 2). The first model (model A) is a simple, reference
model consisting of a Kelvin–Voigt system for translation in the vertical direction, with
stiffness 2kzc and damping constant 2czc. The second model (model B) consists of model A
and a Kelvin–Voigt system for rotation, with angular stiffness 2kθc and damping constant
2cθc, which takes the relative angular displacement between the car body and bogie. Model
C results from the composition of model A with a Kelvin–Voigt system for longitudinal
translation, which models the transmission system of the longitudinal forces between the
bogie and the car body. This system is positioned at a distance hc from the medium fiber of
the car body and at a distance hb from the center of gravity of the bogie and has the elastic
constant 2kxc and the damping constant 2cxc. The fourth model (model D) is a complete
model consisting of three Kelvin–Voigt systems for vertical translation, for rotation and for
longitudinal translation.
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Figure 2. The secondary suspension model.

The primary suspension corresponding to a wheelset is modeled by a Kelvin–Voigt
system for vertical translation, with elastic constant 2kzb and damping constant 2czb.

The longitudinal base of the secondary suspension is 2ac, and the longitudinal base of
the primary suspension is 2ab. Distances lc1,2 = lc/2 ± ac define the support points of the
car body on the secondary suspension, where lc is the length of the car body.

The vertical displacement wc(x,t) of a section of the car body at a distance x from the
origin of the reference system at time t is the result of the superposition of the three modes
of vibration–bounce, pitch and the first vertical bending mode,

wc(x, t) = zc(t) +
(

x − lc
2

)
θc(t) + Xc(x)Tc(t) (1)

where Tc(t) is the time coordinate and Xc(x) is its eigenfunction of the first vertical bend-
ing mode

Xc(x) = sinβx + sinhβx − sinβlc − sinhβlc
cosβlc − coshβlc

(cosβx + coshβx) (2)

with
β = 4

√
ω2

cρc/(Ec Ic) (3)
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which checks the characteristic equation,

cosβlc coshβlc − 1 = 0, (4)

where: ωc is the natural angular frequency of the first vertical bending mode of the car
body; ρc = mc/lc represents the mass of the beam per unit length; EcIc is the bending
stiffness, where Ec is the longitudinal modulus of elasticity, and Ic is the moment of inertia
of the cross-section of the beam.

2.2. The Equations of Motion

The general form of the equation of motion of the car body is obtained using the
Euler–Bernoulli beam theory, and the equations of motion for bounce, pitch and vertical
bending are obtained by the method of modal analysis [48]. The bounce and pitch equations
of the two bogies are deduced using the fundamental laws of mechanics.

Corresponding to each of the four models of the secondary suspension, a system
of seven equations of motion of the vehicle results (see Appendices A–D), which can be
written in the matrix of the form:

M
..
q + C

.
q + Kq = P

..
z
. w

+ R
.
zw (5)

where q represents the vector of displacement coordinates, zw is the vector of non-homogeneous
terms. Matrices M, C and K are inertia, damping and stiffness matrices.

In the following subsections, the general forms of the equations of motion of the car
body and bogies corresponding to each of the four models adopted for the secondary
suspension are presented. It is specified that the form of the car body bounce and bogie
bounce equations of motion (see Equations (8) and (12)) is not influenced by the secondary
suspension model. To avoid a repetitive presentation, these equations are only presented
in Section 2.2.1. Instead, the car body vertical bending equation and the pitch equations of
the car body and bogies change depending on the secondary suspension model, as will be
shown next.

2.2.1. The Equations of Motion for Model A of the Secondary Suspension

The equation of motion of the car body has the general form

EI
∂4wc(x, t)

∂x4 + µIc
∂5wc(x, t)

∂x4∂t
+ ρc

∂2wc(x, t)
∂t2 =

2

∑
i=1

Fzciδ(x − lci) (6)

where δ(.) is Dirac’s delta function, µ is the structural damping coefficient, and Fzc1,2
represents the vertical forces from the secondary suspension,

Fzc1,2 = −2czc

[
∂wc(lc1,2, t)

∂t
− .

zb1,2

]
− 2kzc[wc(lc1,2, t)− zb1,2] (7)

Through the method of modal analysis, from Equation (6), the equations of motion of
bounce, pitch and the vertical bending of the car body are obtained:

mc
..
zc =

2

∑
i=1

Fzci (8)

Jc
..
θc =

2

∑
i=1

Fzci

(
lci −

lc
2

)
(9)

mmc
..
Tc + cmc

.
Tc + kmcTc =

2

∑
i=1

FzciXc(lci) (10)
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In Equation (10), mmc represents the modal mass of the car body, cmc is modal damping
of the car body, and kmc is modal stiffness of the car body and is calculated with the relations:

mmc = ρc

L∫
0

X2
c dx, cmc = µIc

L∫
0

(
d2Xc

dx2

)2

dx, kmc = Ec Ic

L∫
0

(
d2Xc

dx2

)2

dx (11)

The bounce and pitch equations of bogies are of the form:

mb
..
zb1 =

2

∑
j=1

Fzbj − Fzc1, mb
..
zb2 =

4

∑
j=3

Fzbj − Fzc2 (12)

Jb
..
θb1 = ab

2

∑
j=1

(−1)j+1Fzbj, Jb
..
θb2 = ab

4

∑
j=3

(−1)j+1Fzbj (13)

where Fzb1,2 and Fzb3,4 represent the forces from the primary suspension of the wheelsets 1
and 2, respectively wheelsets 3 and 4,

Fzb1,2 = −2czb(
.
zb1 ± ab

.
θb1 −

.
zw1,2)− 2kzb(zb1 ± abθb1 − zw1,2) (14)

Fzb3,4 = −2czb(
.
zb2 ± ab

.
θb2 −

.
zw3,4)− 2kzb(zb2 ± abθb2 − zw3,4) (15)

The final form of the equations of motion is shown in Appendix A. It is noted that,
in the case of the secondary suspension model A, the pitch vibrations of the bogies are
manifested as independent vibrations, and the bounce, pitch and vertical bending vibrations
of the car body are coupled with the bounce vibrations of the bogies.

2.2.2. The Equations of Motion for Model B of the Secondary Suspension

The equation of motion of the car body has the general form:

Ec Ic
∂4wc(x, t)

∂x4 + µIc
∂5wc(x, t)

∂x4∂t
+ ρc

∂2wc(x, t)
∂t2 =

2

∑
i=1

Fzciδ(x − lci) +
2

∑
i=1

Mci
dδ(x − lci)

dx
(16)

where Mc1,2 represents the moments due to the secondary suspension,

Mc1,2 = −2cθc

(
∂2wc(lci, t)

∂x∂t
−

.
θb1,2

)
− 2kθc

[
∂wc(lci, t)

∂x
− θb1,2

]
(17)

The equations of motion of the pitch and the vertical bending of the car body are

Jc
..
θc =

2

∑
i=1

Fzci

(
lci −

lc
2

)
−

2

∑
i=1

Mci (18)

mmc
..
Tc + cmc

.
Tc + kmcTc =

2

∑
i=1

FzciXc(lci) +
2

∑
i=1

Mci
dXc(lci)

dx
(19)

The equations of motion of the pitch of the bogies are

Jb
..
θb1 = ab

2

∑
j=1

(−1)j+1Fzbj − Mc1, Jb
..
θb2 = ab

4

∑
j=3

(−1)j+1Fzbj − Mc2 (20)

The final form of the equations of motion is shown in Appendix B. By introducing the
rotation system into the secondary suspension model, the pitch vibrations of the bogies are
transmitted to the car body and coupled with the pitch and vertical bending vibrations of
the car body. As the pitch and vertical bending vibrations of the car body are coupled to
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the bounce vibrations of the car body and bogies, a coupling also occurs between the pitch
vibrations of the bogies and the bounce vibrations of the vehicle.

2.2.3. The Equations of Motion for Model C of the Secondary Suspension

The equation of motion of the car body has the general form:

Ec Ic
∂4wc(x, t)

∂x4 + µIc
∂5wc(x, t)

∂x4∂t
+ ρc

∂2wc(x, t)
∂t2 =

2

∑
i=1

Fzciδ(x − lci)− hc

2

∑
i=1

Fxci
dδ(x − lci)

dx
(21)

where Fxc1,2 represents the longitudinal forces from the secondary suspension,

Fxc1,2 = 2cxc

(
hc

∂2wc(lc1,2, t)
∂x∂t

+ hb
.
θb1,2

)
+ 2kxc

(
hc

∂wc(lc1,2, t)
∂x

+ hbθb1,2

)
(22)

The pitch and vertical bending equations of the car body take the form:

Jc
..
θc =

2

∑
i=1

Fzci

(
lci −

lc
2

)
+ hc

2

∑
i=1

Fxci (23)

mmc
..
Tc + cmc

.
Tc + kmcTc =

2

∑
i=1

FzciXc(lci)− hc

2

∑
i=1

Fxci
dXc(lci)

dx
(24)

The pitch equations of the bogies take the form:

Jb
..
θb1 = ab

2

∑
j=1

(−1)j+1Fzbj − hbFcx1, Jb
..
θb2 = ab

4

∑
j=3

(−1)j+1Fzbj − hbFcx1 (25)

The final form of the equations of motion is shown in Appendix C. Through the longi-
tudinal system contained in the C model of the secondary suspension, the pitch vibrations
of the bogies are transmitted to the car body, resulting in the coupling of this vibration
mode with the other vibration modes of the vehicle, as described in the previous section.

2.2.4. The Equations of Motion for Model D of the Secondary Suspension

The equation of motion of the car body corresponding to model D of the suspension
has the general form:

Ec Ic
∂4wc(x, t)

∂x4 + µIc
∂5wc(x, t)

∂x4∂t
+ ρc

∂2wc(x, t)
∂t2 =

2

∑
i=1

Fzciδ(x − lci) +
2

∑
i=1

(Mci − hcFxci)
dδ(x − lci)

dx
, (26)

The pitch and vertical bending equations of the car body are the form:

Jc
..
θc =

2

∑
i=1

Fzci

(
lci −

lc
2

)
−

2

∑
i=1

(Mci − hcFxci) (27)

mmc
..
Tc + cmc

.
Tc + kmcTc =

2

∑
i=1

FzciXc(lci) +
2

∑
i=1

(Mci − hcFxci)
dXc(lci)

dx
(28)

The pitch equations of the bogies are

Jb
..
θb1 = ab

2

∑
j=1

(−1)j+1Fzbj − Mc1 − hbFcx1, Jb
..
θb2 = ab

4

∑
j=3

(−1)j+1Fzbj − Mc2 − hbFcx1 (29)

The final form of the equations of motion is shown in Appendix D. In these cases, the
pitch vibrations of the bogies are transmitted to the car body through both systems included
in the secondary suspension model—the rotation system and the longitudinal system.
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3. Calculation of Frequency Response Functions of the Car Body

For the calculation of the frequency response functions of the car body, it is considered
that the vertical irregularities of the track are of harmonic form with wavelength Λ and
amplitude zw0. Next to each wheelset, the vertical irregularities of the track are described
by the functions:

zw1,2(x) = zw0 cos
2π

Λ
(x + ac ± ab); zw3,4(x) = zw0 cos

2π

Λ
(x − ac ± ab) (30)

where x = Vt is the coordinate of the center of the car body.
The functions zw1...4 is written as harmonic time functions of the form:

zw1,2(t) = zw0 cosω
(

t +
ac ± ab

V

)
; zw3,4(t) = zw0 cosω

(
t − ac ∓ ab

V

)
(31)

where ω = 2πV/Λ represents the angular frequency induced by the vertical irregularities
of the track.

It is assumed that the response of the vehicle is also harmonic with the same angular
frequency as the frequency as that induced by the excitation by the vertical irregularities of
the track. In this hypothesis, the coordinates describing the movements of the vehicle can
be written in the general form:

qk(t) = Qk cos(ωt + αk), cuk = 1 ÷ 7 (32)

where Qk is the displacement amplitude, and αk is the phase of the coordinate k compared
to the vertical irregularities of the track respect to the vehicle center.

In the system of Equation (5), the complex value associated with the real ones are
introduced (for i2 = −1):

zw1...4(t) = Zw01...w04eiωt (33)

qk(t) = Qkeiωt, fork = 1 ÷ 7 (34)

with

q1(t) = zc(t) = Zc0eiωt, q2(t) = θc(t) = Θc0eiωt, q3(t) = Tc(t) = Tc0eiωt,

q4(t) = zb1(t) = Zb01eiωt, q5(t) = zb2(t) = Zb02eiωt,

q6(t) = θb1(t) = Θb01eiωt, q7(t) = θb2(t) = Θb02eiωt,

where Zw01...w04, Zc0, Θc0, Tc0, Zb01,b02, Θb01,02 are the complex amplitudes:

Zw01 = Zw0ei(2π/V)(ac+ab), Zw02 = Zw0ei(2π/V)(ac−ab), Zw03 = Zw0ei(2π/V)(−ac+ab),
Zw04 = Zw0ei(2π/V)(−ac−ab)

Zc0 = Zceiαzc , Θc0 = Θc0eiαθc , Tc0 = TceiαTc , Zb01,b02 = Zb01,b02eiαzb1,zb2 ,
Θb01,b02 = Θb01,b02eiαθ1,θ2 .

A linear system of non-homogeneous algebraic equations is thus obtained:

(−ω2M + A)
¯
Q = B (35)

The following notations are introduced:

αzc = 2(iωczc + kzc), αxc = 2(iωcxc + kxc), αθc = 2(iωcθc + kθc)
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αm2 = iωcm2 + km2, αzb = 2(iωczb + kzb).

The vectors Q and B are of the form:

Q = [Q1 Q2 . . . . Q7]
T

B = αzb



0
0
0

exp[iω(ac + ab)/V] + exp[iω(ac − ab)/V]
exp[iω(ac + ab)/V]− exp[iω(ac − ab)/V]

exp[iω(−ac + ab)/V] + exp[iω(−ac − ab)/V]
exp[iω(−ac + ab)/V]− exp[iω(−ac − ab)/V]


The matrices M and A are of the form:

M = diag(mc Jc mm2 mb mb Jb Jb)

A =



2αzc 0 2εαzc −αzc 0 −αzc 0
0 A1 0 −acαzc A3 −acαzc A3

2εαzc 0 A2 −εαzc λA3 −εαzc −λA3
−αzc −acαzc −εαzc 2αzb + αzc 0 0 0
−αzc acαzc −εαzc 0 2αzb + αzc 0 0

0 A3 λA3 0 0 A4 0
0 A3 −λA3 0 0 0 A4


in which the terms A1 . . . 4 change depending on the model of the secondary suspension
as follows:

- for model A,

A1 = 2a2
c αzc, A2 = αm2 + 2ε2αzc, A3 = 0, A4 = 2a2

bαzb.

- for model B,

A1 = 2a2
c αzc + 2αθc, A2 = αm2 + 2ε2αzc + 2λ2αθc, A3 = −αθc, A4 = 2a2

bαzb + αθc.

- for model C,

A1 = 2a2
c αzc + 2h2

c αxc, A2 = αm2 + 2ε2αzc + 2h2
c λ2αxc, A3 = hchbαxc, A4 = 2a2

bαzb + h2
bαxc.

- for model D,

A1 = 2a2
c αzc + 2h2

c αxc + 2αθc, A2 = αm2 + 2ε2αzc + 2h2
c λ2αxc + 2λ2αθc,

A3 = hchbαxc − αθc, A4 = 2a2
bαzb + h2

bαxc + αθc.

From the system of Equation (34), the frequency response functions of the acceleration
of the vehicle car body corresponding to the three modes of vibration, bounce, pitch, and
vertical bending are obtained:

Hzc(ω) = −ω2 Zco(ω)

Zwo
, Hθc(ω) = −ω2 Θc0(ω)

Zwo
, HTc(ω) = −ω2 Tc0(ω)

Zwo
(36)
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The response function of the acceleration of the car body at some point x located on
the longitudinal axis of the car body that passes through its center of mass is calculated
with the relation:

Hc(x,ω) = Hzc(ω) +

(
lc
2
− x
)

Hθc(ω) + Xc(x)HTc(ω) (37)

Relation (36) can be customized to calculate the acceleration response function at the
middle of the car body (for x = lc/2) or above the supporting points of the car body on the
secondary suspension corresponding to one of the two bogies (for x = lc1,2):

Hcm(ω) = Hc

(
lc
2

,ω
)
= Hzc(ω) + Xc

(
lc
2

)
HTc(ω) (38)

Hcb1,cb2(ω) = Hc(lc1,2,ω) = Hzc(ω)± acHθc(ω) + Xc(lc1,2)HTc(ω) (39)

4. Calculation of the Power Spectral Density of the Acceleration of the Car Body

The general calculation relation of the power spectral density of the acceleration of the
car body is

Gc(x,ω) = G(ω)
∣∣Hc(x,ω)

∣∣2 (40)

where the frequency response function of the acceleration of the car body Hc(x,ω) was
previously defined (see Equation (36)), and G(ω) is the power spectral density of the vertical
track irregularities. For the average statistical properties of European railways, the power
spectral density described by the relation [49]

G(ω) =
AΩ2

c V3

[ω2 + (VΩc)
2][ω2 + (VΩr)

2]
(41)

is considered representative. The notations in relation (36) have the following significance:
Ω is the wavenumber, Ωc = 0.8246 rad/m, Ωr = 0.0206 rad/m; A is a constant that depends
on the quality of the track (for a good-quality track A = 2119·10−7 radm and for a low-quality
track A = 6124·10−7 radm).

Relation (39) can be adapted to calculate the power spectral density of the acceleration
at the middle of the car body or above the support points of the car body on the secondary
suspension corresponding to one of the two bogies, as follows:

Gcm(ω) = G(ω)
∣∣Hcm(ω)

∣∣2 (42)

Gcb1,2(ω) = G(ω)
∣∣Hcb1,2(ω)

∣∣2 (43)

Based on the dynamic response expressed in the form of the power spectral density of
the car body acceleration, the root mean square of the acceleration can be calculated with
the general relation

ac(x) =

√
1
π

∫
Gc(x,ω)dω (44)

which can be customized to calculate the root mean square of the acceleration at the middle
of the car body or above the support points of the car body on the secondary suspension,

acm =

√
1
π

∫
Gcm(ω)dω (45)

acb1,2 =

√
1
π

∫
Gcb1,2(ω)dω (46)
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5. Evaluation of the Vertical Vibration Behavior of the Railway Vehicle Car Body
Based on Numerical Simulations
5.1. Parameters of the Numerical Model of the Railway Vehicle

The reference parameters of the railway vehicle used in the numerical simulations are
presented in Table 1.

Table 1. Parameters of the numerical model of the railway vehicle.

The Parameters of the Car Body and the Bogies

Car body mass mc = 34,000 kg

Bogie mass mb = 3200 kg

Car body inertia moment Jc = 1,963,840 kg·m2

Bogie inertia moment Jb = 2048 kg·m2

Car body length lc = 26.4 m

Car body wheelbase/bogie wheelbase 2ac = 19 m; 2ab = 2.56 m

The elevations of the transmission system of the longitudinal
forces between the bogie and the car body hc = 1.3 m; hb = 0.2 m

Bending stiffness EcIc = 3158 × 109 Nm2

Modal parameters of the car body

Modal mass mmc = 35,224 kg

Modal stiffness kmc = 88.998 MN/m

Modal damping cmc = 53.117 kNs/m

Primary suspension parameters

Vertical stiffness of the primary suspension kzb = 1.1 MN/m

Vertical damping of the primary suspension czb = 13.05 kNs/m

Secondary suspension parameters

Vertical stiffness of the secondary suspension kzc = 0.6 MN/m

Vertical damping of the secondary suspension czc = 17.22 kNs/m

Pitch stiffness of secondary suspension kθc = 128 kN/m

Damping stiffness of secondary suspension cθc = 1 kNm

Stiffness of the transmission system of the longitudinal forces
between the bogie and the car body kxc = 10 MN/m

Damping of the transmission system of the longitudinal forces
between the bogie and the car body cxc = 25 kNs/m

5.2. Numerical Simulation Results and Discussion

In this section, the results of the numerical simulations regarding the influence of
the secondary suspension model on the vertical vibration behavior of the railway vehicle
car body are presented. The numerical simulation applications were developed in the
MATLAB software environment. The vibration behavior of the car body is evaluated based
on the acceleration frequency response functions, the acceleration power spectral density
and the root mean square acceleration of the car body, for the four models of the secondary
suspension—model A, model B, model C and model D.

Figure 3 shows the frequency response functions of the acceleration of the car body
at its middle (diagram a) and above the support point on the secondary suspension cor-
responding to bogie 1 (diagram b), at a velocity of 200 km/h, for the four secondary
suspension models. The peaks corresponding to the eigenfrequencies of the vehicle’s
vibration modes are highlighted on both diagrams. The values of the eigenfrequencies of
the vibration modes of the car body and bogies are centralized in Table 2. It is observed
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that the eigenfrequencies of the bounce and vertical bending of the car body and the eigen-
frequencies of the bounce and pitch of the bogie do not change for any of the three analysis
models relative to the reference model A. The eigenfrequency of the pitch vibration of
the car body is maintained at 1.46 Hz in the case of the B model. By introducing into the
model of the secondary suspension of the longitudinal system in models C and D, the
eigenfrequency of the car body pitch increases to 1.72 Hz.

Vibration 2023, 6, FOR PEER REVIEW  12 
 

 

 

Figure 3. The acceleration frequency response function at 200 km/h: (a) at the middle of the car- 

body; (b) above the support points of the car body on the secondary suspension of bogie 1. 

Table 2. Eigenfrequencies of the vibration modes of the vehicle car body and bogies. 

Vibration Mode Suspension Model Frequency [Hz] 

Carbody bounce  Model A, Model B, Model C, Model D 1.17 Hz 

Carbody pitch 
Model A, Model B 1.46 Hz 

Model C, Model D 1.72 Hz 

Carbody vertical bending Model A, Model B, Model C, Model D 8 Hz 

Bogie bounce  Model A, Model B, Model C, Model D 6.65 Hz 

Bogie pitch Model A, Model B, Model C, Model D 9.63 Hz 

In addition to the peaks corresponding to the eigenfrequencies of the vehicle’s vibra-

tion modes, a series of minima of the response functions corresponding to the geometric 

filtering effect are highlighted. The geometric filtering effect is an important characteristic 

of the vertical vibrations of railway vehicles, analyzed in several papers [7,39,50–52]. In 

short, the geometric filtering effect is the result of the phase shifts between the vertical 

movements of the wheelsets generated by track irregularities; these phase shifts are due 

to the distance between the wheelsets and the velocity of the vehicle. Geometric filtering 

has a selective character, depending on the velocity, and has a differentiated efficiency 

along the vehicle car body. Due to the geometric filtering effect, a sequence of maxima and 

minima appear in the response of the vehicle car body, depending on the distance between 

the wheelsets (the wheelbase of the car body and the wheelbase of the bogie) and the 

velocity. The maxima correspond to the situation in which geometric filtering does not 

work, and the minima appear in the form of anti-resonance frequencies corresponding to 

the geometric filtering frequencies. If the anti-resonance frequencies coincide with the ei-

genfrequencies of one of the vehicle’s vibration modes, its influence is greatly reduced. 

Thus, the change in the weights of the vehicle’s vibration modes depending on the velocity 

is explained. By this, the fact that the vibration regime does not intensify continuously 

with the increase of the velocity is also understood, as will be shown later (see Figures 7 

and 8). 

From the point of view of the vibration level of the car body, the influence of the 

suspension model is manifested, for all three analysis models, at the frequency of 8 Hz—

the eigenfrequency of the vertical bending vibrations of the car body. The pitch vibration 

of the car body is, however, only influenced in the case of the C and D models of the 

secondary suspension. This can be explained by a weak coupling between the pitch vibra-

tion of the bogies and the pitch vibration of the car body in the case of the B model of the 

secondary suspension. It is also noted that the vibration level of the car body increases 

significantly at the frequency of 9.63 Hz—the eigenfrequency of the pitch vibration of the 

Figure 3. The acceleration frequency response function at 200 km/h: (a) at the middle of the car-
body; (b) above the support points of the car body on the secondary suspension of bogie 1.

Table 2. Eigenfrequencies of the vibration modes of the vehicle car body and bogies.

Vibration Mode Suspension Model Frequency [Hz]

Carbody bounce Model A, Model B, Model C, Model D 1.17 Hz

Carbody pitch Model A, Model B 1.46 Hz
Model C, Model D 1.72 Hz

Carbody vertical bending Model A, Model B, Model C, Model D 8 Hz
Bogie bounce Model A, Model B, Model C, Model D 6.65 Hz
Bogie pitch Model A, Model B, Model C, Model D 9.63 Hz

In addition to the peaks corresponding to the eigenfrequencies of the vehicle’s vibra-
tion modes, a series of minima of the response functions corresponding to the geometric
filtering effect are highlighted. The geometric filtering effect is an important characteristic
of the vertical vibrations of railway vehicles, analyzed in several papers [7,39,50–52]. In
short, the geometric filtering effect is the result of the phase shifts between the vertical
movements of the wheelsets generated by track irregularities; these phase shifts are due to
the distance between the wheelsets and the velocity of the vehicle. Geometric filtering has a
selective character, depending on the velocity, and has a differentiated efficiency along the
vehicle car body. Due to the geometric filtering effect, a sequence of maxima and minima
appear in the response of the vehicle car body, depending on the distance between the
wheelsets (the wheelbase of the car body and the wheelbase of the bogie) and the velocity.
The maxima correspond to the situation in which geometric filtering does not work, and the
minima appear in the form of anti-resonance frequencies corresponding to the geometric
filtering frequencies. If the anti-resonance frequencies coincide with the eigenfrequencies
of one of the vehicle’s vibration modes, its influence is greatly reduced. Thus, the change in
the weights of the vehicle’s vibration modes depending on the velocity is explained. By
this, the fact that the vibration regime does not intensify continuously with the increase of
the velocity is also understood, as will be shown later (see Figures 7 and 8).
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From the point of view of the vibration level of the car body, the influence of the
suspension model is manifested, for all three analysis models, at the frequency of 8 Hz—the
eigenfrequency of the vertical bending vibrations of the car body. The pitch vibration of the
car body is, however, only influenced in the case of the C and D models of the secondary
suspension. This can be explained by a weak coupling between the pitch vibration of the
bogies and the pitch vibration of the car body in the case of the B model of the secondary
suspension. It is also noted that the vibration level of the car body increases significantly at
the frequency of 9.63 Hz—the eigenfrequency of the pitch vibration of the bogie, only in the
case of the C and D models of the suspension. The conclusion is that the longitudinal system
in the secondary suspension is the one that has an important contribution in transmitting
the pitch vibrations of the bogies to the car body, while the rotation system contributes less.
In model D, the contribution of the two systems does not add up, since the two systems
work in antiphase. All these observations are also highlighted in the case of the acceleration
power spectral density, presented in the diagrams in Figure 4.
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Figure 4. Power spectral density of acceleration at 200 km/h: (a) at the middle of the car body;
(b) above the support points of the car body on the secondary suspension of bogie 1.

According to diagram (a) of Figure 4, at the middle of the car body, the secondary
suspension model influences the vibration level at the eigenfrequencies of the vertical
bending of the car body and the bogie pitch. For the velocity of 200 km/h, at the frequency
of vertical bending, at 8 Hz, all three analysis models—model B, model C and model D,
lead to an increase in the vibration level of the car body compared to the reference model
A. At the bogie pitch frequency of 9.63 Hz, only analysis models C and D significantly
influence the vibration level of the car body, which increases compared to the vibration level
corresponding to the reference model A. As shown, above the support point of the car body
on the secondary suspension (diagram b), the C and D models of the secondary suspension
influence the eigenfrequency of the car body pitch, which increases from 1.46 Hz to 1.73 Hz
due to the longitudinal system.

Based on these last observations, it is interesting to analyze how the stiffness of the
system for rotation and, respectively, the stiffness of the longitudinal system, influence the
vibration regime of the car body at the eigenfrequencies of vertical bending of the car body,
bogie pitch and car body pitch.

The diagrams in Figure 5 show the influence of the stiffness of the system for rotation
contained in model B of the secondary suspension and on the vibration level of the car body
in model D at the eigenfrequency of the vertical bending (8 Hz) and at the eigenfrequency
of the bogie pitch (9.63 Hz) at a velocity of 200 km/h. The increased stiffness of the rotation
system in model B leads to an increase in the vibration level of the car body at the frequency
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of 8 Hz. In model D, which also includes the longitudinal system (kxc = 10 MN/m), increas-
ing the rotational stiffness of the system results in a reduction in the vibration level of the
car body at both 8 Hz and 9.63 Hz, due to compensation effect as a result of the opposite
action of the two systems working in antiphase.

Vibration 2023, 6, FOR PEER REVIEW  2 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. The influence of the angular stiffness of the secondary suspension on the power spectral
density of acceleration: (a) at the middle of the car body; (b) above the support points of the car body
on the secondary suspension of bogie 1.

Based on the diagram (a) in Figure 6, the influence of the stiffness of the longitudinal
system, included in the C model of the secondary suspension, on the vibration level of
the car body at the eigenfrequency of the vertical bending of the car body and at the
eigenfrequency of the pitch vibration of the bogie is analyzed. When increasing the stiffness
of the longitudinal system, important increases in the vibration level are obtained at both
eigenfrequencies. For example, at the frequency of 8 Hz, compared to reference model
A, the increase of the acceleration power spectral density is 43.34% for kxc = 10 MN/m,
115.29% for kxc = 15 MN/m and 154.95% for kxc = 15 MN/m. In the case of model D, for
kθc = 128 kN/m, the increase of the vibration level is lower: 5.71% for kxc = 10 MN/m,
74.28% for kxc = 15 MN/m and 114.28% for kxc = 20 MN/m. Diagram (b) of Figure 6
highlights the increase of the eigenfrequency of the car body pitch when the stiffness of the
longitudinal system in the C model of the secondary suspension increases from 1.72 Hz
(for kxc = 10 MN/m) to 1.81 Hz (for kxc = 15 MN/m) and at 1.89 Hz (for kxc = 20 MN/m)
without significant changes in the vibration level.

The results presented in Figures 4–6 regarding the increase the vertical bending vibra-
tion level of the car body at 200 km/h for suspension analysis models B, C and D relative to
reference model A are not generally valid for any velocity due to geometric filtering effect,
and this is highlighted in Figure 7.
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suspension of bogie 1.

In Figure 7, the power spectral density of the acceleration for the four models is
represented over a speed range between 10 km/h and 250 km/h, at the eigenfrequency
of the vertical bending of the car body. As previously mentioned, it is also observed
here that the vibration level of the car body does not increase continuously with velocity.
Over the entire speed range, the power spectral density alternately has maxima and
minima corresponding to the geometric filtering velocities. It is interesting to note that the
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geometric filtering velocities change depending on the suspension model. Compared to
the suspension reference model A, model B does not introduce significant changes of the
geometric filtering velocities. In contrast, in the case of model C, the geometric filtering
velocities change significantly, and this trend is also preserved in the case of model D.
Under these conditions, since the vibration level of the car body changes according to
the geometric filtering velocities, and they change according to the secondary suspension
model, it is difficult to establish a clear trend regarding the influence of the suspension
model on the vertical bending vibration level of the vehicle car body. The general trend
is that the level of vertical bending vibration of the car body increases for models B, C
and D of the secondary suspension compared to model A, as at the velocity of 200 km/h
(see Figure 8). However, at some velocities, the vibration level of the car body is higher in
the A model than in the other three models. For example, according to Figure 8 in which
the power spectral density of the car body at the frequency of 8 Hz is represented, at the
velocity of 190 km/h, the vibration level of the car body is higher for model A than for
models C and D; at 240 km/h, it is higher than for the B model.
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Figure 8. Example regarding the vibration level of the car body depending on the secondary sus-
pension model and velocity at the eigenfrequency of the car body vertical bending (8 Hz): (a) at the
middle of the car body; (b) above the support points of the car body on the secondary suspension of
bogie 1.

Figure 9 shows the power spectral density of the acceleration for the four models at
the bogie pitch frequency. It is also noted here that for models C and D, the geometric
filtering velocities change significantly compared to the reference model A. As previously
shown, the vibration level of the car body at the eigenfrequency of the bogie pitch vibration
increases significantly for C and D suspension models.

The root mean square of acceleration is an important quantity from the point of view
of evaluating the vibration behavior of the railway vehicle. Based on the root mean square
of acceleration, the dynamic performance of the railway vehicle can be evaluated in terms
of ride quality and ride comfort.

Figure 10 shows the root mean square of the acceleration of the car body for the
velocity range of 10 to 250 km/h for the reference numerical parameters of the railway
vehicle model. The effects of geometric filtering on the root mean square of the car body
acceleration, which does not increase continuously with velocity, can also be observed here.
The geometric filtering effect is more pronounced in the middle of the car body, where
the geometric filtering effect due to the bogie wheelbase and the geometric filtering effect
produced by the car body wheelbase are combined. Above the secondary suspension,
the geometric filtering effect is less effective because it is exclusively due to the geometric
filtering effect given by the bogie wheelbase.
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Figure 9. Power spectral density of acceleration at the natural frequency of the bogie pitch (9.63 Hz):
(a,a’) at the middle of the car body; (b,b’) above the support points of the car body on the secondary
suspension of bogie 1.

Regarding the influence of the secondary suspension model on the vibration behavior
of the car body, it is highlighted that the rotation system included in the B suspension
model does not significantly affect the vertical vibration level of the car body. The influence
of the longitudinal system included in the C model of the suspension on the vibration
level of the car body is more pronounced in the middle of the car body at velocities above
100 km/h. Above the secondary suspension, the influence of the C model of the suspension
on the vibration level is noticeable at velocities above 200 km/h. For example, at the middle
of the car body (diagram a), at a velocity of 165 km/h, the acceleration for model C is
139.98% higher than the acceleration obtained for the reference model A; At a velocity of
250 km/h, it is 47.22% greater. Above the supporting point of the car body on the secondary
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suspension (diagram b), at a velocity of 165 km/h, the root mean square of acceleration
for model C is 4.87% higher than for model A, and at a velocity of 250 km/h by 18.46%.
The values of the root mean square of the acceleration for the model D are not significantly
different from those corresponding to model C.
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Figure 10. The root mean square of acceleration: (a) at the middle of the car body; (b) above the
support points of the car body on the secondary suspension of bogie 1.

As can be seen in Figure 11, increasing the stiffness of the rotating system does not
significantly affect the root mean square of acceleration values of model B; for model D,
the reduction in vibration level is modest. For example, in the middle of the car body,
when increasing the stiffness kθc from 128 kN/m to 300 kN/m, the root mean square of the
acceleration for model D decreases from 0.20 m/s2 to 0.19 m/s2 at a velocity of 165 km/h,
and from 0.33 m/s2 to 0.32 m/s2 for a velocity of 250 km/h.
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The influence of the stiffness of the longitudinal system, included in models C and
D of the secondary suspension, on the root mean square of acceleration is highlighted in
Figure 12. As previously shown, the influence of the longitudinal system on the vibration
level of the car body is manifested especially at high speeds, and the increase in the
stiffness of this system increases this effect even more. In the middle of the car body, when
the stiffness kxc increases from 10 MN/m to 20 MN/m at a velocity of 165 km/h, the
acceleration increases from 0.22 m/s2 to 0.32 m/s2; at 250 km/h, the acceleration increases
from 0.34 m/s2 to 0.52 m/s2. Above the secondary suspension, at a velocity of 165 km/h,
the acceleration of the car body increases from 0.29 m/s2 to 0.32 m/s2, and at 250 km/h, it
increases from 0.40 m/s2 to 0.79 m/s2.
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Figure 12. The influence of the longitudinal stiffness of the secondary suspension on the root mean
square of acceleration: (a) at the middle of the car body; (b) above the support points of the car body
on the secondary suspension of bogie 1.

Finally, it should be mentioned that the theoretical results obtained with the D model
of the secondary suspension were previously validated experimentally [53,54].

6. Conclusions

In the paper, the influence of the secondary suspension model in the evaluation of
the vertical vibration behavior of the railway vehicle car body was analyzed based on
numerical simulations. For this, a rigid–flexible coupled vehicle model was used, in which
four different models of secondary suspension were integrated–a reference model (model
A) and three analysis models (model B, model C and model D). The three analysis models
include systems through which the pitch vibrations of the bogies are transmitted to the
car body; a system that takes the relative angular displacement between the car body and
the bogie and a system that models the transmission system of the longitudinal forces
between the bogie and the car body were also studied. Under these conditions, the pitch
vibrations of the bogies couple to the pitch and vertical bending vibrations of the car body
and through them with the bounce vibrations of the car body and bogies. The effects of
these two systems on the vibration behavior of the railway vehicle car body were analyzed
both for each system separately, for model B and model C, and studied together with
model D.
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Based on the results of the numerical simulations regarding the frequency response
functions of the acceleration and the power spectral density of the acceleration, the follow-
ing relevant conclusions can be synthesized:

1. The influence of the model of the secondary suspension is especially manifested on the
vertical bending vibrations of the car body. For all three suspension analysis models,
there is a general tendency to increase the level of vertical bending vibration compared
to the reference suspension model. This trend may be affected by the geometric
filtering effect and by the geometric filtering velocities that change according to the
suspension model.

2. The pitch vibrations of the car body are influenced only by the transmission system
of the longitudinal forces between the bogie and the car body and are included in
models C and D of the secondary suspension. It manifests itself by increasing the
eigenfrequency of the pitch vibration without important changes in vibration level.

3. The vibration level of the car body increases significantly at the eigenfrequency of
the pitch vibrations of the bogie for models C and D of the suspension. Under
these conditions, it can be concluded that the longitudinal system in the secondary
suspension has an important contribution in transmitting the pitch vibrations of the
bogies to the car body, while the rotation system contributes less.

From the point of view of the influence of the model of the secondary suspension on
the vibration behavior of the car body, evaluated based on the root mean square of the
car body acceleration, it is noted that the longitudinal system, introduced in the model
C and model D of the secondary suspension, significantly changes the vertical vibration
level of the car body, especially in the middle of it. At high speeds, there are significant
increases of the car body acceleration, which can reach up to about 140% and can increase
more depending on the stiffness of the longitudinal system.

These conclusions are useful in future research in which problems of evaluating the
dynamic performance of the railway vehicle are addressed in terms of ride quality and
ride comfort.
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Appendix A

Final form of the equations of motion for model A of the secondary suspension:

- the equations of motion of the car body,

mc
..
zc + 2czc[2

.
zc + 2ε

.
Tc − (

.
zb1 +

.
zb2)] + 2kzc[2zc + 2εTc − (zb1 + zb2)] = 0 (A1)

Jc
..
θc + 2czcac[2ac

.
θc − (

.
zb1 −

.
zb2)] + 2kzcac[2acθc − (zb1 − zb2)] = 0 (A2)
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mmc
..
Tc + cmc

.
Tc + kmcTc + 2czcε[2

.
zc + 2ε

.
Tc − (

.
zb1 +

.
zb2)] + 2kzcε[2zc + 2εTc − (zb1 + zb2)] = 0 (A3)

- the equations of motion of the bogies,

mb
..
zb1 + 4czb

.
zb1 + 4kzbzb1 + 2czc(

.
zb1 −

.
zc − ac

.
θc − ε

.
Tc)

+2kzc(zb1 − zc − acθc − εTc) = 2czb(
.
zw1 +

.
zw2) + 2kzb(zw1 + zw2)

(A4)

mb
..
zb2 + 4czb

.
zb2 + 4kzbzb2 + 2czc(

.
zb2 −

.
zc + ac

.
θc − ε

.
Tc)

+2kzc(zbi − zc + acθc − εTc) = 2czb(
.
zw3 +

.
zw4) + 2kzb(zw3 + zw4)

(A5)

Jb
..
θb1 + 4czba2

b

.
θb1 + 2kzbab[2abθb1 − (zw1 − zw2)] = 4czbab(

.
zw1 −

.
zw2) + 4kzbab(zw1 − zw2) (A6)

Jb
..
θb2 + 4czba2

b

.
θb2 + 4kzba2

bθb2 = 2czbab(
.
zw3 −

.
zw4) + 2kzbab(zw3 − zw4) (A7)

The notation ε was introduced based on the symmetry properties of the eigenfunc-
tion Xc(x),

Xc(lc1) = Xc(lc2) = ε. (A8)

Appendix B

For model B of the secondary suspension, the final forms of the motion equations are

- the equations of motion of the car body,

mc
..
zc + 2czc[2

.
zc + 2ε

.
Tc − (

.
zb1 +

.
zb2)] + 2kzc[2zc + 2εTc − (zb1 + zb2)] = 0 (A9)

Jc
..
θc + 2czcac[2ac

.
θc − (

.
zb1 −

.
zb2)] + 2kzcac[2acθc − (zb1 − zb2)]

+2cθc[2
.
θc − (

.
θb1 +

.
θb2)] + 2kθc[2θc − (θb1 + θb2)] = 0

(A10)

mmc
..
Tc + cmc

.
Tc + kmcTc + 2czcε[2

.
zc + 2ε

.
Tc − (

.
zb1 +

.
zb2)] + 2kzcε[2zc + 2εTc − (zb1 + zb2)]

+2cθcλ[2λ
.
Tc − (

.
θb1 −

.
θb2)] + 2kθcλ[2λTc − (θb1 − θb2)] = 0

(A11)

- the equations of motion of the bogies,

mb
..
zb1 + 4czb

.
zb1 + 4kzbzb1 + 2czc(

.
zb1 −

.
zc − ac

.
θc − ε

.
Tc)

+2kzc(zb1 − zc − acθc − εTc) = 2czb(
.
zw1 +

.
zw2) + 2kzb(zw1 + zw2)

(A12)

mb
..
zb2 + 4czb

.
zb2 + 4kzbzb2 + 2czc(

.
zb2 −

.
zc + ac

.
θc − ε

.
Tc)

+2kzc(zbi − zc + acθc − εTc) = 2czb(
.
zw3 +

.
zw4) + 2kzb(zw3 + zw4)

(A13)

Jb
..
θb1 + 4czba2

b

.
θb1 + 4kzba2

bθb1 + 2cθc(
.
θb1 −

.
θc − λ

.
Tc) + 2kθc(θb1 − θc − λTc)

= 2czbab(
.
zw1 −

.
zw2) + 2kzbab(zw1 − zw2)

(A14)

Jb
..
θb2 + 4czba2

b

.
θb2 + 4kzba2

bθb2 + 2cθc(
.
θb2 −

.
θc + λ

.
Tc) + 2kθc(θb2 − θc + λTc)

= 2czb(
.
zw3 −

.
zw4) + 2kzbab(zw3 − zw4)

(A15)

The notation λ was introduced based on the symmetry properties of the eigenfunction
Xc(x),

dXc(lc1)

dx
= −dXc(lc2)

dx
= λ (A16)
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Appendix C

For model C of the secondary suspension, the final forms of the motion equations are

- the equations of motion of the car body,

mc
..
zc + 2czc[2

.
zc + 2ε

.
Tc − (

.
zb1 +

.
zb2)] + 2kzc[2zc + 2εTc − (zb1 + zb2)] = 0 (A17)

Jc
..
θc + 2czcac[2ac

.
θc − (

.
zb1 −

.
zb2)] + 2kzcac[2acθc − (zb1 − zb2)]

+2cxchc[2hc
.
θc + hb(

.
θb1 +

.
θb2)] + 2kxchc[2hcθc + hb(θb1 + θb2)] = 0

(A18)

mmc
..
Tc + cmc

.
Tc + kmcTc + 2czcε[2

.
zc + 2ε

.
Tc − (

.
zb1 +

.
zb2)] + 2kzcε[2zc + 2εTc − (zb1 + zb2)]

+2cxchcλ[2hcλ
.
Tc + hb(

.
θb1 −

.
θb2)] + 2kxchcλ[2hcλTc + hb2(θb1 − θb2)] = 0

(A19)

- the equations of motion of the bogies,

mb
..
zb1 + 4czb

.
zb1 + 4kzbzb1 + 2czc(

.
zb1 −

.
zc − ac

.
θc − ε

.
Tc)

+2kzc(zb1 − zc − acθc − εTc) = 2czb(
.
zw1 +

.
zw2) + 2kzb(zw1 + zw2)

(A20)

mb
..
zb2 + 4czb

.
zb2 + 4kzbzb2 + 2czc(

.
zb2 −

.
zc + ac

.
θc − ε

.
Tc)

+2kzc(zbi − zc + acθc − εTc) = 2czb(
.
zw3 +

.
zw4) + 2kzb(zw3 + zw4)

(A21)

Jb
..
θb1 + 4czba2

b

.
θb1 + 4kzba2

bθb1 + 2cxchb[hb
.
θb1 + hc(

.
θc + λ

.
Tc)] + 2kxchb[hbθbc + hc(θc + λTc)]

= 2czbab(
.
zw1 −

.
zw2) + 2kzbab(zw1 − zw2).

(A22)

Jb
..
θb2 + 4czba2

b

.
θb2 + 4kzba2

bθb2 + 2cxchb[hb
.
θb2 + hc(

.
θc − λ

.
Tc)] + 2kxchb[hbθbc + hc(θc − λTc)]

= 2czbab(
.
zw3 −

.
zw4) + 2kzbab(zw3 − zw4)

(A23)

Appendix D

For the D model of the secondary suspension, the equations of motion are of the form:

- the equations of motion of the car body,

mc
..
zc + 2czc[2

.
zc + 2ε

.
Tc − (

.
zb1 +

.
zb2)] + 2kzc[2zc + 2εTc − (zb1 + zb2)] = 0 (A24)

Jc
..
θc + 2czcac[2ac

.
θc − (

.
zb1 −

.
zb2)] + 2kzcac[2acθc − (zb1 − zb2)]

+2cxchc[2hc
.
θc + hb(

.
θb1 +

.
θb2)] + 2kxchc[2hcθc + hb(θb1 + θb2)]

+2cθc[2
.
θc − (

.
θb1 +

.
θb2)] + 2kθc[2θc − (θb1 + θb2)] = 0

(A25)

mmc
..
Tc + cmc

.
Tc + kmcTc + 2czcε[2

.
zc + 2ε

.
Tc − (

.
zb1 +

.
zb2)] + 2kzcε[2zc + 2εTc − (zb1 + zb2)]

+2cxchcλ[2hcλ
.
Tc + hb(

.
θb1 −

.
θb2)] + 2kxchcλ[2hcλTc + hb2(θb1 − θb2)]

+2cθcλ[2λ
.
Tc − (

.
θb1 −

.
θb2)] + 2kθcλ[2λTc − (θb1 − θb2)] = 0

(A26)

- the equations of motion of the bogies,

mb
..
zb1 + 4czb

.
zb1 + 4kzbzb1 + 2czc(

.
zb1 −

.
zc − ac

.
θc − ε

.
Tc)

+2kzc(zb1 − zc − acθc − εTc) = 2czb(
.
zw1 +

.
zw2) + 2kzb(zw1 + zw2)

(A27)

mb
..
zb2 + 4czb

.
zb2 + 4kzbzb2 + 2czc(

.
zb2 −

.
zc + ac

.
θc − ε

.
Tc)

+2kzc(zbi − zc + acθc − εTc) = 2czb(
.
zw3 +

.
zw4) + 2kzb(zw3 + zw4)

(A28)

Jb
..
θb1 + 4czba2

b

.
θb1 + 4kzba2

bθb1 + 2cxchb[hb
.
θb1 + hc(

.
θc + λ

.
Tc)] + 2kxchb[hbθb2 + hc(θc + λTc)]

+2cθc(
.
θb1 −

.
θc − λ

.
Tc) + 2kθc(θb1 − θc − λTc) = 2czbab(

.
zw1 −

.
zw2) + 2kzbab(zw1 − zw2)

(A29)

Jb
..
θb2 + 4czba2

b

.
θb2 + 4kzba2

bθb2 + 2cxchb[hb
.
θb2 + hc(

.
θc − λ

.
Tc)] + 2kxchb[hbθbc + hc(θc − λTc)]

+2cθc(
.
θb2 −

.
θc + λ

.
Tc) + 2kθc(θb2 − θc + λTc) = 2czbab(

.
zw3 −

.
zw4) + 2kzbab(zw3 − zw4)

(A30)
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53. Sebeşan, I.; Dumitriu, M. Validation of the theoretical model for the study of dynamic behavior on vertical direction for railway

vehicles. Ann. Fac. Eng. Hunedoara Int. J. Eng. 2014, 12, 153–160.
54. Dumitriu, M. On-line running tests for validating the numerical simulations of the vertical dynamic behavior in railway vehicles.

Appl. Mech. Mater. 2014, 657, 609–613. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1177/1464419319856191
https://doi.org/10.1177/0954409716657372
https://doi.org/10.1515/meceng-2016-0008
https://doi.org/10.1080/14484846.2020.1802918
https://doi.org/10.1080/00423114.2020.1794014
https://doi.org/10.24200/sci.2019.50946.1930
https://doi.org/10.3390/app10228167
https://doi.org/10.1243/09544097JRRT272
https://doi.org/10.1016/j.ymssp.2020.107336
https://doi.org/10.1080/00423114.2020.1752922
https://doi.org/10.1080/00423114.2017.1330962
https://doi.org/10.4028/www.scientific.net/AMM.880.207
https://doi.org/10.3390/app11093953
https://doi.org/10.1515/meceng-2017-0014
https://doi.org/10.4028/www.scientific.net/AMR.787.542
https://doi.org/10.4028/www.scientific.net/AMM.657.609

	Introduction 
	Railway Vehicle Model 
	Description of the Vehicle Model 
	The Equations of Motion 
	The Equations of Motion for Model A of the Secondary Suspension 
	The Equations of Motion for Model B of the Secondary Suspension 
	The Equations of Motion for Model C of the Secondary Suspension 
	The Equations of Motion for Model D of the Secondary Suspension 


	Calculation of Frequency Response Functions of the Car Body 
	Calculation of the Power Spectral Density of the Acceleration of the Car Body 
	Evaluation of the Vertical Vibration Behavior of the Railway Vehicle Car Body Based on Numerical Simulations 
	Parameters of the Numerical Model of the Railway Vehicle 
	Numerical Simulation Results and Discussion 

	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

