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Abstract: In the design of lightweight structures, both the dynamics and durability must be taken
into account. In this paper, a methodology for the combined optimization of structural dynamics,
lightweight design, and lifetime with discrete vibration engineering measures is developed and
discussed using a demonstration structure. A two-sided welded bending beam is excited at the centre
and optimal parameters for tuned mass dampers (TMD) are searched, satisfying the requirements
for the dynamic behaviour, the overall mass, and the lifetime of the weldings. It is shown that the
combination of a reduced order model with the implementation of the structural stress approach at
critical welds enables an efficient evaluation of certain design concepts in the time domain. Using
this approach, multi-criterial optimization methods are used to identify the best set of parameters of
the TMD to reduce the structural vibrations and enhance the durability.

Keywords: optimization; durability; structural dynamics; structural stress approach; fatigue

1. Introduction

In various industrial sectors, such as mechanical engineering, cranes, intra-logistics,
automotive, and agricultural engineering, the requirements on the vibration behaviour of
components and structures are constantly increasing since it affects performance, comfort,
and noise emission. At the same time, products must be optimized in terms of lightweight
design to save resources during production and operation while they still have to satisfy
various other requirements. For example, the overall stiffness or the maximum allowable
deflection needs to be considered or sufficient, static and cyclic strength needs to be verified,
and in some cases also the crash-worthiness needs to be addressed.

The optimization of such dynamically loaded structures is usually decoupled accord-
ing to the state of the art. However, such a recursive approach may lead to many design
cycles. All mechanical properties, e.g., structural dynamics and fatigue, are closely linked
and interdependent. Those relations can be seen as a typical multidisciplinary optimization
(MDO) problem. MDO is evolving with the growing complexity of modern engineering
problems. It involves different engineering domains to evaluate interactions within a
coupled optimization problem. Traditional design and domain optimization mainly focus
on optimal properties on component level and engineering sub-domains. As complexity
increases due to progress, even more interactions need to be considered. In addition,
lightweight structures are not just a hot topic, they are state-of-the-art. However, with the
goal of achieving the lightest possible structures, dynamic problems are steadily increasing.
This can correlate with reduced durability. Thus, structural dynamics should be addressed
together with fatigue investigations to enhance structural durability and system reliabil-
ity. MDO is well established, theoretically covered, and, for different types of problems,
investigated, e.g., [1–3]. Structural optimization with fatigue constraints can also be found,
e.g., [4,5]. However, just a few contributions are known which address structural dynamic
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fatigue correlation in terms of vibration engineering for lightweight structures and none of
them deals with parameter optimization of vibrational measures.

Zeiler demonstrated in [6] the correlation between structural dynamics and fatigue
performance in an automotive design optimization task using fatigue analysis and sen-
sitivity derivatives in the context of a MDO. Häusler and Albers provided a workflow
in [7] for optimization of the shape of a hole in a dynamically loaded plate and included
a fatigue analysis. The process involves a multi-body simulation whose results were ap-
plied to a finite element model as excitation in the time domain. The location of the inner
nodes of the hole were the optimization design points and could be moved according
to the stress distribution. A commercial software was then used for damage estimation.
Miao et al. [8] presented a multidisciplinary fatigue optimization method and evaluated
them on structural lightweight design of a railway carbody, including a fatigue assess-
ment. The multibody structure is first investigated numerically, starting with a multibody
simulation and afterwards evaluating the stress in a FE environment. They also com-
pared numerical and experimental results and concluded that MDO in terms of structural
dynamics and fatigue can improve lightweight design. Han et al. [9] propose a methodol-
ogy for structural topology optimization with stress minimization considering non-linear
continuum damage. Chen et al. [10] presented topology optimization methods with the pe-
nalization of elemental damage to achieve lightweight design by simultaneously restricting
the maximal damage. Faes et al. [11] show a reliability-based design optimization, taking
into account uncertainties. Martins et al. [12] provide a survey on different methods in mul-
tidisciplinary design optimization and classified them. They indicated that benchmarking
of different approaches is difficult—which leads to the approach of evolving a process by
starting the optimization procedure with a low order model. Additionally, they stated that
large-scale problems in MDO have only slow convergence. Here, reduced order models
can provide a benefit. For obtaining less computational effort in multidisciplinary design
optimization problems, Meng et al. [13] used a surrogate model for uncertainty evaluations
in MDO. Their investigations were made on a turbine blade considering aerodynamic
performance and structural reliability. They concluded that uncertainty investigation of
this coupled problem can be investigated more efficient using an MDO approach. An inter-
esting multidisciplinary design optimization approach for a gear transmission is presented
by Mahiddini et al. [14] with an analytical formulation based on product reliability and
economic aspects like product costs and customer preference. However, aspects of dynamic
behaviour and lightweight design are not addressed in that work.

Moreover, all these works do not focus on the durability of welds especially. Therefore,
the aim of this work is to present a method for evaluating and optimizing both the structural
dynamics and the durability of a lightweight structure with critical welds in the same
computational environment via the use of vibration measures.

2. Materials and Methods
2.1. Modelling of Dynamic System Behaviour

Modelling and simulation of dynamic systems are fundamental steps in a product
development process. In the mathematical description of these systems, balance equations
for energies, masses, and momentum can be derived with the help of basic physical
laws. This usually leads to ordinary differential equations (ODE). The ODEs are usually
generated by analytical or numerical methods and can be solved by various algorithms.
The general approach to the computational solution of higher order ODEs involves the
transformation to first order ODE systems. This increases the dimension of the system
matrices in proportion to the number of derivatives.

In structural mechanics, the representation form of a second-order system has proven
to be useful, since the assignment of the system matrices to the physical properties of the



Vibration 2023, 6 479

structure is unambiguous. The second-order system of equations can be represented as a
linear descriptor system or generalized control system (1).

Mü(t) + Bu̇(t) + Cu(t) = Binf(t) (1)

y(t) = Bout
1 u(t) + Bout

2 u̇(t) (2)

Here, t ∈ R+ is the time variable and the vector functions u : R → Rn, f : R → Rk,
and y : R → Rl describe the internal states, the inputs, and the outputs of the system.
The system order n represents the dimension of the system matrices. The number of inputs
or outputs is denoted by k and l. In structural systems, the real matrices M, B, C ∈ Rn×n

represent the mass, damping, and stiffness matrices, respectively. For systems with regular
mass matrix M, Equation (1) corresponds to a second order ODE system.

In practice, ODE systems with a huge amount of degrees of freedom (DOF) often arise
in the modelling of dynamic systems. In particular, this applies to numerical discretization
methods, e.g., Finite Element Method (FEM), and reduces the attractiveness for optimiza-
tion tasks or time domain simulations. Models with approximately the same accuracy and
considerably greater computational efficiency are often generated by model order reduction
(MOR) methods. The reduced order models (ROM) are then available for efficient analysis
or optimization tasks. For further details about numerical modelling, especially FEM and
the implementation, the reader is referred to the literature (e.g., [15,16]).

2.1.1. Model Order Reduction Methods

A large part of the currently established MOR techniques are projective methods,
where the output system of order n is projected into a subspace of order r. The prerequisites
for this are that the dynamics between input and output of the dynamical system are
preserved in a defined time or frequency range and that the methods are numerically
stable and efficient. Basically, the methods are distinguished with respect to the system
behaviour to be considered. The majority of the developed algorithms assume linear and
time-invariant systems.

In structural dynamics, the modal methods for MOR are among the most frequently
used approaches, since they enable a suitable approximation of the dynamic behaviour.
The basic idea of all modal methods is the transformation of physical coordinates into the
modal coordinate space. For this purpose, the eigenvectors of the FE model are calculated by
solving the eigenvalue problem and are combined in the modal matrix. The transformation
is then based on this same modal matrix and the calculated deformations of the overall
structure arise from the superposition of eigenvectors. This procedure is called modal
synthesis or modal superposition [17]. For systems with linear independent eigenvectors
and nonzero eigenvalues, the modal stiffness and modal mass matrices are diagonal. Thus,
the equations of the system in modal space are decoupled, i.e., the transfer function of the
overall system corresponds to the superposition of the transfer functions of decoupled
single-mass oscillators.

In the modal coordinate reduction the modal superposition is combined with modal
truncation. With the FE model, a reduced amount of eigenvectors is calculated and the
modal matrix is thus built from a reduced modal base. Since a transformation matrix with
a limited number of dynamic eigenmodes is used for this MOR, the static behaviour of
the ROM may exhibit an error [18], which corresponds to the static residuals of the modes
not considered.

2.1.2. Modal Approach

In modal truncation, the ODE system (1) is transformed into generalized or modal
coordinates. The transformation rule is

u(t) = Φw(t) (3)
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with the modal matrix Φ and the vector of modal degrees of freedom w(t). The time
dependent representation is omitted in the following in favour of better readability.

By solving the generalized eigenvalue problem

CΦi = λiMΦi (4)

with the system matrices from Equation (1) and the eigenvalues λi, the modal matrix
Φ = [Φ1, . . . , Φn] is calculated. Using this matrix as a projection matrix, a system of n
decoupled differential equations is obtained:

ΦTMΦẅ + ΦTBΦẇ + ΦTCΦw = ΦTBinf (5)

If the eigenvectors are mass-normalized and the damping matrix is approximated by
a linear combination of the stiffness and mass matrices, the following equation

Iẅ + diag(2ϑω0)ẇ + diag(ω2
0)w = ΦTBinf (6)

with the global damping ϑ and the natural frequencies ω0 applies. Equations (5) and (6)
describe the full model of dimension n with correspondingly many eigenvectors.

Since the system matrices are now diagonal and contain parameters to n decoupled
equations, rows and columns of the modal transformed matrices associated to an eigenvalue
can be truncated. The reduced modal basis Φr ∈ Rn×r is described only by the first r
eigenmodes. Using the reduced modal basis as transformation matrix, the physical degrees
of freedom

u = Φrw̄ + ε (7)

are approximated with an approximation error ε that depends on the selected number
of eigenmodes r. Based on Equation (1), the system description is derived with r � n
decoupled differential equations

M̄ ¨̄w + B̄ ˙̄w + C̄w̄ = ΦT
r Binf (8)

y = B̄out
1 w + B̄out

2 ẇ (9)

with the reduced system matrices

M̄ = ΦT
r MΦr, (10)

B̄ = ΦT
r BΦr, (11)

C̄ = ΦT
r CΦr ∈ Rr×r (12)

and
w̄ ∈ Rr. (13)

2.1.3. System Formulation

Since each modal deformation corresponds to a modal stress state [19], the output
matrix B̄out

1 can also be extended to stresses. The idea is based on the fundamental equation

n

∑
j=1

σjwj = σ (14)

with modal stresses σj in the particular mode j and the total stress σ. The modal coordinates
wj correspond to a weighting factor describing the influence of an individual modal stress
to the total stress. Compared to the modal reduced model (Section 2.1.2) the nodal stresses
are used instead of eigenvectors to build the output matrix. For the back transformation
from modal to physical stress values, the following transformation matrix is used.

Φσ = [σ1, . . . , σr] (15)
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This results in the final system representation according to Equations (8) and (9) with
the extended output matrix

B̄out
1 =

[
Φr
Φσ

]
(16)

in which the stress states are now calculated in addition to the deformation states.

2.2. Fatigue Strength Assessment
2.2.1. Linear-Elastic Approaches

In a fatigue assessment, linear elastically calculated stresses σS in the structure are
compared to endurable stresses σR that depend on the material strength. For constant
amplitude loading, the fatigue life N, representing the endurable number of cycles until a
fracture is expected, can be calculated by the equation of the S–N curve

N = NR
(

σR

σS

)k

(17)

where k is the slope of the S–N curve and NR is the number of endurable cycles for the
stress SR.

In case of dynamically loaded structures, not a constant but a variable stress amplitude
is expected. With an appropriate cycle-counting algorithm, e.g., such as described in
ASTM E1049-85 [20], different stress cycles ni with individual amplitudes σS

a,i and mean
values σS

m,i can be extracted. The damaging effect of these cycles be assessed by a linear
damage accumulation

D = ∑
i

Di = ∑
i

ni/Ni (18)

in which the damaging effect of each counted cycle is evaluated against the endurable
cycles Ni = for a given stress amplitude and mean stress using Equation (17). The approach
is visualized in Figure 1, where ∆σ is the stress used for the evaluation, e.g., noth stress σe,
hot-spot stress σhs. According to IIW [21], the slope k∗ of the S–N curve in the very high
cycle regime (N > Nk) is decreased to:

k∗ = 2k− 1. (19)

In Figure 1, ∆σ is the stress used for evaluation, e.g., hot-spot stress ∆σhs or notch
stress ∆σe. Further information on the assessment of variable amplitudes can be found
in [22].

Figure 1. Design S–N curve, example stress spectrum and damage accumulation procedure graphi-
cally exemplified for the load level i = 3.
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Furthermore, additional influencing factors, such as mean stresses, stress gradients, or
roughness need to be taken into account [23]. These factors are used to decrease or increase
the endurable fatigue strength by shifting the S–N curve up or down. The slope k of the
S–N curve is typically set constant.

2.2.2. Application for Welded Joints

Various approaches are available for the fatigue assessment of structures with welded
components [24]. The ones most often used are linear–elastic approaches, such as the
nominal stress, the structural stress or the notch stress approach [21].

For a numerical assessment of a large and complex structure, the structural stress
approach [25] is commonly used. A structural stress is used for the evaluation that is
extracted by an extrapolation of the surface stress to the failure critical weld toe [21]. Stresses
at two locations are used for the evaluation that have the distance of 0.4 · h and 1.0 · h from
the weld toe, where h is the material thickness, as shown in Figure 2. An extrapolation to
the weld toe

σhs = 1.66 · σ(x = 0.4 · h)− 0.67 · σ(x = 1.0 · h) (20)

leads to the so-called hot-spot stress σhs.

Structural stress �hs

0.4h

1.0h
h

x

Notch stress �e

r

Linear extrapolation

Figure 2. Determination of structural stresses at a weld.

The derived acting structural stresses can directly be evaluated against the S–N curve.
For the structural stress approach an endurable stress range of ∆σR

hs = 100 MPa at
NR = 2× 106 cycles can be used [21]. The slope for welded joints under stresses normal
to the weld in as-welded condition depends on the sheet thickness. For thick (h ≤ 7 mm)
welded sheets a slope of k = 3 and for thin sheets h > 7 mm a slope of k = 5 is rec-
ommended [26]. The knee point of the S–N curve is typically expected to be located at
Nk = 107 cycles.

Compared to other local approaches, such as the effective notch stress approach [21],
the structural stress approach has the advantage that stresses at only two locations need
to be evaluated. Of course, for real-world structures this evaluation has to be conducted
for every relevant cross section. So, depending on the complexity, hundreds, or even
thousands, of locations need to be considered.

2.3. Application Model

For the application of the proposed approach, a simple demonstrator is chosen. The ge-
ometry is inspired by a field sprayer which is typically used on tractors for, e.g., nutrient
distribution, see Figures 3 and 4. This low complexity model allows a perceivable inter-
pretation of the results. For point masses were added to the structure in order to obtain
low resonance frequencies while keeping the overall length at 1 m, considering a possible
realization as lab demonstrator. The model is symmetric, while each side is distributed into
three sections of different thicknesses. Construction steel material properties are considered
(E = 210 GPa and ν = 0.3). Additional specifications are noted in Table 1. The transition
regions due to the thickness change represent the welds w1 and w2, which are the focus of
the following investigations. At this stage of process development, only two input locations
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for measures are considered per side. For the optimization of the dynamic behaviour of
the structure, passive mass-stiffness-damping (mT , kt, ϑT) absorber (tuned-mass-damper
(TMD)) are included. Since the positions are fixed, the parameters of the TMD are of
interest instead of the optimal positioning. The design space of each parameter is defined
in Section 3.1.2.

Figure 3. Sketch of the demonstration model with boundary conditions and defined designations.
The length of the model is 1 m.

Figure 4. Demonstrator model: CAD representation and FE model with zoom to welding w1.
Symmetrical welding joints w1,2 and connection points for tuned mass dampers I, II.

Table 1. Additional model specifications.

Section Length Width Thickness Add. Mass Base Stiff.
m m m kg N/m

Outer 0.20 0.07 2× 10−3 0.5 -
Inner 0.25 0.07 4× 10−3 0.5 -
Mid 0.10 0.07 10× 10−3 - 1× 108

2.3.1. Finite-Element Model

Figure 4 shows the FE model of the demonstrator. The model was built using the
Software ANSYS [27]. The discretization of the model is based on a second-order approach
with hexahedron elements. The specifications of the mesh at the welds are designed after
recommendations in [21], as discussed in Section 2.2.2. The model consists of 4640 elements,
24,191 nodes, and 71,352 degrees of freedom. The outer and the inner sections are loaded
with an additional mass which is equally distributed (weighted Multi-Point Constraint
(MPC) interpolation (RBE3)) to all corresponding nodes of the area. The displacement of
the middle section is constrained in the symmetry plane (x = 0 and y = 0), excluding the z-
direction. No other displacement boundary conditions have been applied. As an excitation,
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a displacement base excitation zin(t) is chosen. It is considered that the fixing is achieved
by a stiff spring support, thus a spring with a longitudinal stiffness of kL = 1× 108 N/m is
implemented. The excitation is equal for all nodes of the lower surface of the middle area
using a MPC resulting in one global excitation point, which is connected to the spring kL.

At this point, no physical measurement data of a ground profile exists, so the input sig-
nal is synthetically constructed, as shown in Figure 5. The frequency content is dominated
by low-frequency behaviour, representing, e.g., a farmland ground.

Figure 5. Synthetic base excitation signal zin(t).

2.3.2. Verification

To verify that the results of the ROM are valid, a verification the FE solution is
computed using ANSYS. For this aim, a full transient simulation is conducted, which
represents the FOM. While the FOM is solved using an implicit scheme, the ROM is solved
with an explicit fourth-order Runge–Kutta algorithm [28] using MATLAB/SIMULINK
software environment [29]. For comparison, 1 s of the shown base excitation signal is taken
into account. The FE FOM simulation, as well as the ROM system simulation are performed
with a time step size of ts = 1× 10−4 s, which ensures numerically stable solutions covering
the resonance of the stiff spring (stability condition only for ROM). The ROM is established
after the description in Section 2.1.2. The used eigenvectors are obtained from a modal
analysis using ANSYS. The results, here the modal eigenvectors (displacements) and the
modal stresses, are extracted and organized as a state-space representation, as described
in Section 2.1.3. This first order system of linear equations can be evaluated in the time
domain. This is equal to a modal superposition transient analysis composed of modal states.
If the displacements u of the ROM are comparable to the displacements of the FOM uref,
then the stress states are also valid σ ≈ σref. This can be derived from the usual isotropic
stress–strain relationship following Equation (21). The stress tensor σ depends on the strain
tensor ε, as well as the material tensor C, and is calculated by the Frobenius inner product.

σ = 〈C, ε〉F (21)

The strains are the derivatives of the calculated displacements. The fourth order
material tensor depends on the material description. In case of linear–elastic, isotropic
behaviour, it is symmetric with 36 components while 12 entries are non-zero elements
which depend on only two of three parameters (E, G, ν), see, e.g., [30,31].

As a criterion for the amount of modes to consider, the effective mass is investi-
gated [32]. The applied displacement excitation is fully one-dimensional, thus only the
fraction in the direction of the excitation is relevant. It has been detected that the first
16 (modal) eigenvectors are necessary to achieve a valid ROM stress result compared to the
FOM solution. This amount of eigenmodes mobilize 98.8% of the total mass in z-direction
(cumulative mass fraction in z-direction). Taking more eigenmodes into account does not
lead to any further relevant change—they only enlarge the model size. This amount can
be further reduced by neglecting all modes in this range without any contribution to the
effective masses in z-direction. The total number of modes then is reduced to 10. Since a
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modal approach is used, the ROM consists of the modal eigenvectors. These are computed
using the FOM, so there is no mismatch between the eigenvectors for the points of interest.

To ensure that the ROM is able to approximate FOM results a verification stage is
necessary. The easiest and computationally most efficient way is to compare frequency
domain data. Figure 6 shows this for a normal stress transfer function at one exemplary
welding position up to 1000 Hz for magnitude and phase response. It can be seen that both
solutions are very well comparable, only slight differences occur in the higher frequency
domain. However, the following investigations are made within the time domain, thus a
time domain verification is also completed. Figure 7 shows the results of the FOM and the
ROM for the maximum principle stress at the weld, denoting the transition from the middle
to the inner section, excited by the base excitation input signal shown in Figure 5. The shown
1 s cutout verifies the ROM solution since the characteristics, as well as the amplitudes,
are very well comparable. The ROM can therefore be used in the optimization process,
presented in the following chapter. Again, slight differences are visible but comparing the
simulation times after Table 2, the advantage is predominant; the FOM takes roughly half
an hour (1907 s) to solve a single design point, optimization procedures are not expedient—
only the ROM enables this kind of procedure. The overall process then includes parameter
optimization using the ROM and concludes with a final verification solution using the
discovered optimal parameters with the FOM.

Figure 6. Normal stress σxx transfer function comparison for magnitude and phase response of the
FOM and the ROM using unit excitation for verification.

Figure 7. (Left) Comparison of the maximum principal stress solution of the inner node for the
calculation at welding w1. (Right) Detail view of left image. Excitation with signal shown in Figure 5.



Vibration 2023, 6 486

Table 2. Comparison of computing times for simulation of Tsim = 1 s with ts = 1× 10−4 s. FOM
solved with ANSYS. ROM solved with MATLAB/SIMULINK. ANSYS used 16 cores in distributed
memory parallel mode. MATLAB used four cores in shared memory parallel mode. Before the ROM
solution, a modal analysis must be performed once with ANSYS, which takes 9 s. The solvable system
formulation must also be established once and takes 23 s. The required time per iteration is the last
denoted time specification (+2 s). In addition, the computing time for Tsim = 30 s using the ROM
(=ROM 30 s) is noted in the last column to underline the ROM advantage.

Type FOM 1 s ROM ANSYS 1 s ROM 1 s ROM 30 s

Time 1907 s 812 s 9 s + 23 s + 2 s 9 s + 23 s + 19 s

3. Results and Discussion
3.1. Optimization

The overall goal of the optimization process is to find a set of parameters that mini-
mizes both the dynamic amplitudes and the damage values of the critical welds with a
minimum expense of additional mass. Since these demands are in conflict with each other
and cannot be minimized at the same time, the optimization problem can be seen as a
MDO task from a mathematical point of view, which can be denoted as a multi-criterial
optimization since several criteria are considered. However, to gain a good understanding
of the problem, the system is initially analysed in the three dimensions structural dynamics,
durability and lightweight design independently.

3.1.1. Mono-Criterial Optimization

Input for the damage accumulation are the counted hot-spot stress ranges ∆σhs,i using
ASTM 1049-85 based on the simulated stress-time course and the design S–N curve with
σR = 100 MPa and the slopes k = 3 and k∗ = 5. The damage D is evaluated with the linear
damage accumulation.

Four values are defined to asses each parameter set: A1 is the maximum displacement
range (peak to peak) at the outer tip within the given time frame, A2 is the mean displace-
ment at the same point, M is the overall mass and D is the damage value of the most critical
weld, that is the maximum of all damage values di. The equations for each value is given in
(22) to (25) with u denoting the difference in displacement in z-direction (Equation (26)).

A1 = max(u(t))−min(u(t)) (22)

A2 = mean(|u(t)−mean(u(t))|) (23)

M = m0 + 2 mT (24)

D = max(di) (25)

u(t) = zout(t)− zin(t) (26)

The calculation of A1 and A2 according to Equations (22) and (23) is visualized in
Figure 8 for exemplary time data of u and a simulation time of 5 s.

Figure 8. Visualization of the computation of A1 and A2 for an exemplary time data of u(t).
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Since each value should be as low as possible, various optimization algorithms can
be used to find optimal design parameters in a given design space. However, for a simple
structure as this a full factorial parameter variation can be performed with reasonable
computational effort. This typically gives a good understanding of the problem and
allows an illustrative 2D visualization in the case of only two design variables. Therefore,
the simulation model was run 21 × 21 = 441 times, while the absorber mass mT was
varied from 0 to 0.300 kg in steps of 0.015 kg and the absorber stiffness kT was varied from
100 N/m to 900 N/m in steps of 40 N/m. The damping ratio ϑT was kept constant at 3%,
which is a realistic average value for vibration absorbers with elastomer-based damping.

Figure 9 shows the relative values for A1, A2, M, and D for the full factorial parameter
variation (relative to the corresponding values of the initial system, denoted as A1,o, A2,o,
Mo, and Do). The optimal value is marked in each case and given in Table 3, together with
the corresponding design parameters mass mT , stiffness kT , and the related undamped
eigenfrequency of the absorber fT .

Figure 9. Full factorial parameter variation for mono-criterial optimization with two variable param-
eters and 21 × 21 evaluations. The white circles indicate the respective minima.

Table 3. Results of the mono-criterial optimization gained by full factorial calculation
(21 × 21 evaluations).

Goal mT kT fT A1/A1,o A2/A2,o M/Mo D/Dokg N/m Hz

A1 0.255 780 8.85 0.4297 0.4176 1.1275 0.3688
A2 0.135 580 10.50 0.5224 0.3959 1.0675 0.2930
M 0.000 - - 1.0000 1.0000 1.0000 1.0000
D 0.060 300 10.98 0.6242 0.4340 1.0300 0.2843

As observed, the single parameter optimization leads to very different optimal design
parameters. The value A1 can be reduced most effectively with an absorber mass of 0.255 kg
tuned to 8.85 Hz, while the mean displacement A2 is lowest for an absorber mass of 0.135 kg
tuned to 10.5 Hz. The best lightweight design has no absorber at all, and for the most
durable design an absorber mass of 0.060 kg tuned to 10.98 Hz is needed. Interestingly,
the design parameter set for the best dynamics differs from the one for the best durability,
which underlines that evaluating the damage of the structure together with its dynamic
behaviour is essential.
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With the results shown in Figure 9 the engineer can choose a proper set of design
parameters, taking into account the specific boundary conditions and requirements of the
application, and see, at a glance, the implications of a certain design regarding dynamics,
durability, and lightweight design.

3.1.2. Multi-Criterial Optimization

For multi-criterial optimization problems in the engineering context many different
techniques are known and described in the literature [33–35].

Here, the most straight forward approach with weighting functions for each target
value and an arithmetic summation of all four components is chosen, which mathematically
reduces the problem to the mono-criterial optimization of a cost function. The correspond-
ing equations are given in Equations (27)–(30).

For the maximum displacement difference A1 a step function is chosen to guarantee
that a certain threshold value A1,max is never exceeded, which may result from practical
considerations in the application ((27), with H denoting the Heaviside step function). For
the mean displacement A2, a quadratic weighting function is chosen with the optimization
parameter ζ. This accounts for the assumption that the vibration of the system should be as
low as possible at all times for a good performance (Equation (28)). For the overall mass
M, a linear weighting function is chosen with the optimization parameter ξ, assuming
that any additional mass is seen as disadvantageous in the application (Equation (29)).
For the damage D, again a step function is chosen with a threshold value dmax, taking
into account that in many engineering problems a minimum lifetime must be guaranteed,
but no further requirements regarding lifetime are made (Equation (29)). The formulation
of these weighting functions and the specification of the parameters can be adjusted to each
individual application scenario considering further requirements and boundary conditions
of the system.

SA1 = H(A1 − A1,max) (27)

SA2 = ζ(A2)
2 (28)

SM = ξ(M−m0) (29)

SD = H(D− dmax) (30)

The summation of the weighting functions results in the overall cost function S (31)
that needs to be minimized.

S = SA1 + SA2 + SM + SD (31)

The optimization parameters for this example are set to A1,max = 30 mm, ζ = 0.005
1/mm², ξ = 0.1 1/kg and dmax = 0.001 as an initial guess. The determination of suitable
values is not focused on here as the emphasis is on the methodology. Therefore, the values
in this context were chosen exemplary. In practice, engineering expertise, experience, and
economic considerations and design restrictions will be used in determining the values.
The consideration of individual example cases or a pairwise comparison can also be helpful
here. Since full factorial data are available, the goal function S can easily be visualized and
the minimum value identified. The surface plot of S is shown in Figure 10. The white areas
are invalid regions because the cost function is above 1. The parameters of the minimum
are given in the first row of Table 4.

A standard optimization algorithm is used to find an optimum of S. In this case,
the function fminsearch of Matlab is implemented, which is based on the simplex search
method of Lagarias et al. [36]. Upper and lower limits are additionally implemented and
the algorithm was confined to a maximum of 44 evaluations, that is 10% of the number
of evaluations of the full factorial simulation. Using the central point of the design space
as initial guess (mT = 0.150 kg, kT = 500 N/m), the algorithm yields a result that is worse
compared to the minimum found by the full-factorial search. This is due to the fact that
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the function S is not very smooth and the algorithm is susceptible to become caught in
local minima. Therefore, the minimum found by the full-factorial search was used as initial
guess for another optimization run, yielding now an improved design point. The values of
these two optimization runs are given in the second and third row of Tables 4 and 5.

Figure 10. Surface plot of objective function S based on full factorial parameter variation with two
variable parameters and 21 × 21 evaluations. The white circles indicate the minima found with
method I and III.

In the optimization runs, the damping ratio has been kept constant at 3%. Finally,
an optimization run with the damping ratio as free design variable (within 0.5 and 6%,
accounting for practical limitations) is performed, starting from the same design point as
before. The results of this optimization process are given in the last row of Tables 4 and 5.

Table 4. Results of the multi-criterial optimization based on the cost function S with different
optimization methods: I: full factorial search (2 variable parameters), II: fminsearch (2 variable
parameters, start values mT = 0.150 kg, kT = 500 N/m), III: fminsearch (2 variable parameters, start
values mT = 0.06 kg, kT = 340 N/m), IV: fminsearch (3 variable parameters, start values mT = 0.06 kg,
kT = 340 N/m, ϑT = 3%)

Method mT kT ϑT fT S Numb.
kg N/m % Hz - Eval.

I 0.0600 340.0 3.0 11.98 0.03443 441
II 0.0976 412.0 3.0 10.34 0.04260 44
III 0.0448 239.2 3.0 11.63 0.03096 485
IV 0.0581 300.4 5.9 11.44 0.02582 485

Table 5. Mono-criterial values of the results of the multi-criterial optimization based on the cost
function S with different optimization methods: I—full factorial search (2 variable parameters);
II—fminsearch (2 variable parameters, start values mT = 0.150 kg, kT = 500 N/m); III—fminsearch
(2 variable parameters, start values mT = 0.06 kg, kT = 340 N/m); and IV—fminsearch (3 variable
parameters, start values mT = 0.06 kg, kT = 340 N/m, ϑT = 3%)

Method A1/A1,o A2/A2,o M/Mo D/Do

I 0.6309 0.4267 1.0300 0.2925
II 0.5424 0.4329 1.0488 0.3009
III 0.5568 0.4227 1.0224 0.2666
IV 0.4670 0.3398 1.0291 0.2090

Finally, all optimization results obtained in this study are visualized in Figure 11 in
the three dimensional solution space regarding structural dynamics (in terms of mean
displacement A2), lightweight design (in terms of overall mass M) and durability (in terms
of damage D). On the left side, the conflict of goals between overall mass and displacement
reduction can be seen. Up to an additional mass of 7% an increasing displacement reduction
is possible with higher masses, clearly showing a typical Pareto frontier for these objectives
with the optimum found by method I being part of the front line. The Pareto frontier is
defined as the sum of all solutions for which any improvement in one objective can only
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take place if at least one other objective worsens [37]. The quick optimization run, starting
from the centre of the design space (method II), does not reach the Pareto frontier. However,
the successive optimization runs starting from the best full factorial value (method III and
IV) exceed the Pareto frontier. On the right side, the relationship between displacement
reduction and lifetime increase is comprehensible. By and large, a reduction in mean
displacement corresponds with the reduction in the damage value; however, this is not
true in general as, for some cases, a displacement reduction can also mean a reduction in
durability. The dashed line indicates the threshold dmax.

Figure 11. Visualization of all optimization results in the three dimensional solution space. The legend
applies to both graphs. The arrows indicate the optimization runs for method II, III, and IV.

The results of this simple example show the challenges of multi-criterial optimization.
As it can be seen, the full factorial analysis gives a good understanding of the problem and
is recommended if the required simulation capacity is available. A pure gradient-based
optimization with an arbitrary starting point runs the risk of ending in an unfavourable
local minimum due to the complexity of the cost function and should be used with care.
A combination of a coarse full-factorial search with a limited number of design parameters
and a subsequent gradient-based optimization starting from a previously found minimum
can yield satisfactory results with justifiable numerical effort. However, more complex
search algorithms that are designed to search for global minima like particle swarm, surro-
gate, or pattern search are also possible options [38]. As can be seen, numerical optimization
processes need many evaluations and can rapidly become time-consuming for complicated
structures in the time domain. In these cases, an evaluation of both the structural dynamics
and the durability is recommended in the frequency domain, which is typically accompa-
nied by a loss in accuracy in assessment [39], but which will lead to better optimization
results within a limited computation time.

4. Conclusions

In this paper, a numerical approach for optimizing lightweight structures that are
subjected to dynamic loads has been presented. This simulative approach takes into
account both the structural dynamics and the lifetime assessment of the most critical welds.
The focus has been on the method itself, which has been presented and discussed by means
of a simple structure with parameterized absorbers. For this aim, we demonstrated how to
establish a numerical valid reduced order model for stress evaluation in time from a full
order model and what advantages can be achieved. Furthermore, a general optimization
process was handled and specific results for mono-criteria and multi-criteria optimization
approaches were presented.

From the investigations, the following main conclusions can be drawn:

• Numerically efficient assessment of dynamically loaded structures with critical welds
is possible using reduced order model methods and structural stress approach;
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• For a limited number of design variables, a full factorial simulation helps to understand
the system and identify conflicting objectives between different criteria;

• If a single cost function is defined combining the different objectives, a careful selection
of the optimization algorithm and start values is recommended in order to avoid
trusting optimization results arising from local minima;

• Moreover, the robustness of the optimum should be analysed with respect to the opti-
mization parameters. In case of doubt, a robust, less good design point is preferable to
an optimal but very sensitive design point.

Current and future work is focused on applying this method to more practical struc-
tures and also to integrate techniques of parametric model order reduction in order to
consider a variation of, e.g., sheet thicknesses. Moreover, more sophisticated multi-criterial
optimization algorithms will be used which can also address and analyse the robustness
of the identified optimal design points. Beyond this, a more holistic approach will be
developed to simplify the initialization and optimization procedure for easy and safe
industrial handling.
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Abbreviations
The following abbreviations and symbols are used in this manuscript:

CAD Computer-Aided Design
DOF Degree Of Freedom
FE Finite Element
FEM Finite Element Method
FOM Full Order Model
MDO Multidisciplinary Optimization
MOR Model Order Reduction
MPC Multi-Point Constraint
ODE Ordinary Differential Equation
RBE Rigid Body Element
ROM Reduced Order Model
TMD Tuned Mass Damper
Nomenclature
A1 maximum displacement range
A2 mean displacement
N number of cycles
D damage
dmax damage threshold
E Young’s modulus
G shear modulus
ν Poisson’s ratio
k slope of S–N curve
h thickness of sheet metal
σ maximum principal stress
S overall cost function
SA1 structural dynamics cost function based on A1
SA2 structural dynamics cost function based on A2
SM lightweight cost function
SD durability cost function based on D
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t time
ts time step
Tsim simulation time
M mass
S dimensionless goal function
mT absorber mass
m0 mass of the base structure
kT absorber stiffness
fT absorber eigenfrequency
ϑT damping ratio of absorber
ζ optimization parameter in weighting function S2
ξ optimization parameter in weighting function SM
zin input displacement
zout output displacement
u relative displacement
wi welds
H Heaviside step function
σ second order stress tensor
ε second order strain tensor
C fourth order material tensor
u displacement
u displacement vector
w modal coordinate vector
C stiffness matrix
B damping matrix
M mass matrix
Bout output matrix
Bin input matrix
Φ modal matrix
Φσ modal stress matrix
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