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Abstract: Patients undergoing cancer treatments and/or suffering from metastatic bone lesions
experience various skeletal-related events (SREs), substantially reducing functional independence
and quality of life. Therefore, researchers are working towards developing new interventions by
harnessing the bone’s innate anabolic response to mechanical stimulations. Whole body vibration
(WBV) has recently gained interest due to its nature of being safe, effective, and easy to perform.
In this review, we will summarize the most cutting-edge vibration studies of cancer models and
bone-cancer cell interactions. We will also discuss various parameters, including age, vibration
settings, and differences between bone sites, which may affect vibration efficacy. Studies have shown
that WBV improves bone mineral density (BMD) and bone volume in patients and mice with cancer.
WBV also reduces tumor burden and normalizes bone vasculature in mice. At the cellular level,
vibration promotes interactions between bone cells and cancer cells, which reduce osteoclastogenesis
and inhibit cancer metastatic potential. Hence, WBV could potentially serve as a new intervention or
adjuvant treatment to attenuate cancer progression while preserving bone health.
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1. Cancers Affect Bone Health

Cancer is a leading cause of death and a critical public health issue. It is mainly driven
by unstable genetic mutations in cells, resulting in uncontrolled cell proliferations and
eventual metastases to other organs. The occurrence of metastases is the primary cause of
treatment failure and cancer-related deaths [1–3]. Bones are a common secondary site for
the metastases of breast and prostate cancer. Approximately 70% of advanced-stage breast
and prostate cancer patients suffer from bone metastases, an unusually high occurrence
rate for a secondary site of cancer [1,2]. Although less common, bone metastases can still
occur in patients with thyroid, lung, or bladder cancer [3].

Bones provide a fertile “soil” for cancer cells throughout various stages of the metastatic
cascade [4,5]. Briefly, bone marrow stromal cells and osteoblasts attract cancer cells to the
bone via the secretion of chemokines [5]. Meanwhile, primary tumors secrete extracel-
lular vesicles and growth factors to form a pre-metastatic niche, which primes the bone
for colonization [4–8]. Metastatic cancer cells interact with osteoclasts and osteoblasts to
establish a “vicious cycle”, thereby altering bone homeostasis and fueling tumor growth.
In cancer-induced osteolytic lesions (commonly found in multiple myeloma and breast
cancer metastases), cancer cells stimulate osteoclastic bone resorption primarily through
PTHrP (also known as PTHLH) or RANKL [9,10]. Bone degradation releases embedded
growth factors (e.g., TGF-β, IGFs, VEGFs, BMPs, and FGFs), which, in turn, promote cancer
proliferation [9,10]. In cancer-induced osteoblastic lesions (commonly found in prostate
cancer metastases), tumor-derived factors (e.g., FGFs, IGFs, ET1, and BMPs) stimulate
osteoblastic bone formation [8,9]. Osteoblasts subsequently support tumor progression by
secreting growth factors (e.g., TGF-β, IL6, and VEGFs) [8]. Notably, recent studies have
shown that osteocytes, the major regulators of bone homeostasis, also interact with cancer
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cells [9,11–17]. For example, osteocytes could activate Notch signaling in myeloma cells,
accelerating cancer cell proliferation [11]. Under mechanical stimulation, osteocytes directly
and indirectly (via endothelial cells or osteoclasts) regulate breast cancer metastatic poten-
tial [12–14,16,17]. In addition to bone cells, tumor-derived factors (e.g., G-CSF) can remodel
the bone marrow vasculature to support metastases [18,19]. The highly vascularized bone
microenvironment further promotes and prolongs cancer survival [20].

Patients with hormone receptor-positive tumors may be administered anti-estrogen
therapies for breast or ovarian cancer [21–24] or anti-androgen therapies for prostate can-
cer [25–27] to starve tumors of estrogens or androgens, respectively. However, estrogens
protect against bone loss by reducing osteoclast formation [21–23]. During hormone treat-
ment, lowered estrogen levels cause a disproportional increase in osteoclast activity, thus
inducing substantial bone loss [21–23]. Similarly, prostate cancer patients who undergo
anti-androgen therapy suffer from bone loss, as androgens enhance osteoblast activity and
help to maintain bone mass [25–27]. Other common treatments for many cancer types
(e.g., breast, prostate, ovarian, pediatric cancer, and multiple myeloma) involve chemother-
apy, radiotherapy, or a combination of both. Although they are effective in shrinking
tumors, these standard treatments have been demonstrated to impact bone health in cancer
patients [28,29]. More specifically, recent studies indicate that chemotherapy and radiother-
apy induce cell senescence. These senescent cells subsequently release molecular signals
that disrupt bone remodeling [30,31]. Moreover, chemotherapy can attenuate osteogenic
differentiation while promoting bone resorption, resulting in the dysregulation of bone
homeostasis [32,33]. On the other hand, radiation decreases the number of osteoblasts and
their differentiation, ultimately causing disturbances to bone growth and the incomplete
healing of bone damage [34,35].

Ultimately, patients undergoing cancer treatments and/or suffering from metastatic
bone lesions experience various skeletal-related events (SREs), including pain, bone frac-
tures, spinal cord compression, loss of mobility, and hypercalcemia [10,28,29,36], resulting
in substantially reduced functional independence and quality of life.

2. Mechanical Stimulation and Specifically Vibration

Current standard cancer treatments induce severe bone damage in cancer
patients [28,29,36] who may already be at a high risk of bone loss due to bone metastases
or hormonal fluctuations [10,28]. As such, cancer treatments are often accompanied by the
administration of bisphosphonates or denosumab to ameliorate bone loss and fractures.
However, long-term and high-dose usage increases bone brittleness and can induce rare
but severe conditions, such as osteonecrosis of the jaw [37,38]. Therefore, researchers are
working towards developing new interventions by harnessing the bone’s innate anabolic
response to mechanical stimulations.

The bone is an active and dynamic tissue with the ability to continuously adapt to
mechanical stimulation. Physical activity or exercise not only maintains bone homeostasis
but also reduces the risk of developing cancer [39]. Moreover, it is beneficial both during
and after cancer treatments. Studies have shown that high levels of physical activity
can reduce cancer progression and the patient’s mortality [40–42]. Moderate-to-vigorous
exercise can mitigate adverse side effects of cancer treatments and decreases the risk of
SREs in cancer patients [42,43]. In murine cancer models, exercise reduces bone lesions
and tumor formations [44,45]. Nevertheless, exercise is often physically challenging for
bedridden or elderly patients. This physical inactivity further accelerates the rate of bone
degradation, exacerbating cancer progressions. As an alternative to exercise, whole body
vibration (WBV) has recently gained attention due to its safety, effectiveness, and ease of
performance. Notably, WBV has been shown to be effective in improving bone mineral
density (BMD) and reducing fracture risks in patients [46–48]. Even for bedridden patients,
vibration therapy can potentially preserve bone integrity with or without the condition of
weight bearing [49,50].
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In this review paper, we will summarize vibration studies involving cancer models
(Figure 1) in clinical trials (Table 1) [51–56], in animal studies (Table 2) [57–59], and in vitro
studies examining bone-cancer cell interactions (Table 3) [16,17,60]. We will also discuss
various parameters that may affect vibration efficacy, including age, vibration settings, and
differences between bone sites.
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Figure 1. Effects of mechanical vibration on cancer patients, murine cancer models, and bone-cancer
cell interactions. Created with BioRender.com.

Table 1. Effects of mechanical vibration on cancer patients.

Treatment
Vibration

Magnitude
and Frequency

Vibration
Duration Age Cancer Major Findings

Mogil et al.
2016 [51] WBV 0.3 g; 32–37 Hz

10 min/session;
2 sessions/day;
7 days/week

for 1 year

Mean 14 Pediatric
cancer

- Total-body BMD ↑
- Tibial trabecular bone ↑
- Osteocalcin, P1NP, BSAP
↑ (trend)
- RANKL ↑
- Circulating osteocalcin
correlated with change in
total-body BMD

Almstedt et al.
2016 [52]

Resistance
cardio training

+ WBV
20–25 Hz

30–45 s/day;
3 days/week
for 26 weeks

Mean 63 Breast
cancer

- BMD at spine, hips, and
whole body ↑
- P1NP ↓
- CTX ↓ (trend)

BioRender.com
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Table 1. Cont.

Treatment
Vibration

Magnitude
and Frequency

Vibration
Duration Age Cancer Major Findings

Baker et al.
2018 [53] WBV 0.3 g; 27–32 Hz

20 min/session;
3 sessions/
week for
12 weeks

Mean 62 Breast
cancer

- No differences for
markers of bone
formation/resorption,
physical functioning, body
composition
- No changes in BMD

Seefried et al.
2020 [54] WBV 1.5–3 mm;

7–30 Hz

30 min/session;
2 sessions/

week for 3 or
6 months

Median 62 Precancer

- Physical functioning ↑
- No differences in tibial
BMD
- Sclerostin, NTX of
collagen type 1, TRACP5b
↑ (trend)
- DKK1, P1NP ↓ (trend)
- Total ALP ↓

de Sire et al.
2021 [55] Exercise + WBV

20.44 m/s2

(2.1 g with
g = 9.81 m/s2);

30 Hz

50–60 min/
session;

3 sessions/week
for 4 weeks

Mean 52 Breast
cancer

- Physical performance ↑
- Muscle strength ↑
- Pain ↓

Note: trend: non-significant difference with p > 0.05. ↑: increased. ↓: decreased.

Table 2. Effects of mechanical vibration on cancer animal models.

Vibration
Magnitude and

Frequency

Vibration
Duration Age Cancer Major Findings

Pagnotti et al.
2012 [57]

0.3 g; 90 Hz

15 min/day;
5 days/week for

a year
3 months Ovarian

cancer

- Trabecular bone volume of proximal
tibia and L5 vertebrae ↑
- L5 vertebrae was more plate-like
- Marrow-derived MSCs ↓
- Overall tumor incidence and metastatic
lesions ↓ (trend)

Pagnotti et al.
2016 [58]

15 min/day;
5 days/week for

8 weeks
7 weeks Multiple

myeloma

- Trabecular bone volume in the femur ↑
but not in the tibia
- Cortical bone volume in the femur ↑
- Transcortical perforations in the femur ↓
- Trabecular bone volume and trabecular
connectivity density in the L5 vertebrae ↑
- Serum TRACP5b ↓
- Tumor expansion and myeloma cells ↓
- Necrotic tumor of tibial marrow ↓

Matsumoto
et al. 2022

[59]

20 min/day;
5 days/week for

3 weeks
8 weeks Breast

cancer

- Osteolytic bone loss ↓
- BMD of cortical and trabecular bones ↑
- Serum osteocalcin ↑ (trend)
- Vessel diameter ↓, vessel number
density ↑ (trend), and vessel diameter
heterogeneity ↓

Note: trend: non-significant difference with p > 0.05. ↑: increased. ↓: decreased.
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Table 3. Effects of mechanical vibration on bone-cancer cell interactions.

Vibration
Magnitude and

Frequency
Vibration Duration Cells Exposed to

Vibration Cancer Experimental
Set-Up Major Findings

Yi et al. 2020
[60] 0.3 g; 90 Hz

20 min/bout; 1 or
2 bouts/day for

3 days
MDA-MB-231, MCF-7 breast cancer

Conventional
cell cultures

- PTHLH, IL11, RANKL ↓
- Osteoclastogenesis ↓
- FASL-mediated cancer apoptosis ↑
- Cancer invasion ↓more with
twice-daily vibration
- Cancer cell stiffness ↑

Lin et al.
2022 [16]

0.3 g; 60 Hz

1 h
MLO-Y4 osteocytes;

MDA-MB-231
breast cancer

MDA-MB-231
breast cancer

- Nuclear translocation of YAP ↑
- Vibration + Yoda1: nuclear
translocation of YAP ↑↑
- Vibration ± Yoda1:
osteoclastogenesis ↓
- Vibration + Yoda1: cancer migration ↓

Song et al.
2022 [17] 1 h/day for 3 days

MLO-Y4 osteocytes;
HUVECs;

MDA-MB-231
breast cancer

Microfluidic
platform

- COX-2, Piezo1 ↑
- RANKL and RANKL/OPG ↓
- Piezo1 knockdown in osteocytes:
vibration-stimulation of COX-2, OPG ↓
- Cancer extravasation ↓
- Vibration + Yoda1: cancer
extravasation ↓↓ on Day 2 but no on
Day 4

Note: ↑: increased. ↓: decreased. ↑↑: more increased. ↓↓: more decreased.

3. Vibration Effects on Cancer Models and Bone-Cancer Cell Interactions

The effects of vibration on cancer patients (Table 1) [51–56], cancer animal models
(Table 2) [57–59], and bone-cancer cell interactions (Table 3) [16,17,60] are summarized
below (Figure 1). Specifically, we examine vibration safety, summarize vibration effects on
bone health (i.e., BMD, bone volume, bone remodeling, and bone turnovers), and elucidate
the impacts of vibration on tumor burden and progression, bone vascularization, and
mesenchymal stem cells (MSCs).

3.1. Safe to Perform

In studies examining WBV effects on cancer patients, no adverse effects were reported
for children, adolescents [51,56], adults, or the elderly [52–55]. However, in an exploratory
feasibility study, it was proposed that while no WBV-related adverse events were reported,
there were two incidents of bleeding in patients with low platelets (<30,000/µL) [56].
When a 30,000 platelets/µL of blood threshold was established, no additional incidents
occurred [56]. While Baker et al. reported that vibration was well tolerated, one patient
experienced syncope, and another reported increased arm swelling [53]. These events
were classified as minor, and all participants were able to continue with the vibration
intervention.

In animal studies, mice with ovarian cancer underwent long-term (1 year) WBV (0.3 g,
90 Hz), but the longevity was unperturbed by WBV [57]. In general, WBV has been reported
as safe for cancer patients and animals.

3.2. Bone Mineral Density (BMD) and Bone Volume

Current clinical studies report varying effects of WBV on BMD and bone volume
(Table 1). WBV did not change BMD or bone volume in aged cancer patients (~62 years
old) [53,54]. However, in young cancer survivors (~14 years old), WBV (0.3 g, 32–37 Hz) was
found to increase their BMD and tibial trabecular bone by 11.2% [51]. In a study examining
the effects of combined aerobic and resistance training on bone health, the authors reported
significant improvements in BMD at the spine, hip, and whole body in postmenopausal
cancer survivors [52]. Specifically, WBV (20–25 Hz) was included as two stations in a
circuit-style resistance training regimen [52]. While the authors concluded that the observed
osteogenic effects may be due to the vibration, it is more likely that improvements in BMD
were attributed to the combined effects of both exercise and vibration. These results were
further supported by a pilot study demonstrating that the combination of exercise and
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WBV significantly reduced pain and improved muscle strength and physical performance
in breast cancer patients [55].

More beneficial effects can be observed in animal studies (Table 2). In a murine
model of ovarian cancer, WBV (0.3 g, 90 Hz) improved trabecular bone volume in the
proximal tibia and the L5 vertebrae [57]. Moreover, vibration made the L5 vertebrae more
plate-like, which is more resilient and stronger than rod-like structures [57]. In mice with
multiple myeloma, WBV (0.3 g, 90 Hz) increased trabecular and cortical bone volume and
reduced transcortical perforations caused by myeloma-induced osteolysis in the femur [58].
Trabecular bone volume and trabecular connectivity density in the L5 vertebrae were also
higher in the WBV group [58]. Furthermore, WBV (0.3 g, 90 Hz) reduced osteolytic bone
loss and elevated the mean BMD of cortical and trabecular bones in mice with breast
cancer [59]. These studies suggest that WBV improves both bone mass and structural
quality in young cancer patients and in murine cancer models.

3.3. Bone Remodeling and Turnover Markers

Several studies have examined the effects of WBV on bone turnover in clinical trials
(Table 1) [51,53,54]. In postmenopausal women with breast cancer, WBV (0.3 g, 27–32 Hz)
did not alter the expression of bone turnover markers [53]. However, in childhood cancer
survivors, WBV (0.3 g, 32–37 Hz) promoted the expression of bone formation markers (i.e.,
osteocalcin, P1NP, and BSAP), which matched the increases in BMD and trabecular bone
percentages [51]. Notably, vibration also increased the level of bone resorption markers (i.e.,
mean RANKL), indicating enhanced osteoclast activity and bone turnover [51]. Seefried
et al. also reported that WBV (1.5–3 mm, 7–30 Hz) increased the levels of sclerostin and
bone resorption markers (i.e., NTX of collagen type 1 and TRACP5b) while reducing the
levels of total ALP, DKK1, and P1NP [54]. The reduced level of P1NP were also observed in
breast cancer survivors under combined exercise and vibration (20–25 Hz) treatment [52].
These changes in biomarkers indicate that WBV indeed induces adaptive and anabolic
responses by promoting bone turnover.

Bone anabolic responses stimulated by WBV have been reported in animal studies
as well (Table 2). In myeloma-injected mice, elevated serum-bound TRACP5b induced by
myeloma was suppressed by vibration (0.3 g, 90 Hz) [58], indicating that WBV can reduce
bone resorption and potentially normalize bone remodeling in the face of cancer-specific
perturbations. Additionally, Matsumoto et al. measured the level of serum osteocalcin, a
marker of bone turnover, in mice with breast cancer [59]. The authors reported a higher
level of osteocalcin in the vibration group (0.3 g, 90 Hz) [59], suggesting the potential
contribution of WBV in inducing bone anabolic responses while regulating cancer-induced
bone loss.

At the cellular level, vibration can directly regulate bone effector cells involved in bone
remodeling. Vibration has been shown to modulate osteogenic markers in osteoblastic cells
by upregulating ALP, RUNX2, and OPG while downregulating RANKL [61–65]. However,
the literature presents mixed results regarding RANKL expression in osteocytes. In studies
conducted by Song et al. and Lau et al., vibration (0.3 g, 60 Hz) decreased the levels of
transcriptional and secreted RANKL in osteocytes (Table 3) [17,66]. In contrast, Sakamoto
et al. (0.5 g, 48.3 Hz) reported a significant increase in RANKL expression, and Thompson
et al. (0.7 g, 90 Hz) did not observe a difference in RANKL expression [67,68]. These
inconsistent findings may be attributed to variations in vibration settings, cell models, and
the incubation period after vibration exposure. In addition to directly regulating bone
cells, vibration can promote cellular interactions involved in bone remodeling. Several
studies applied vibration (0.3 g, 60 Hz) to osteocytes to investigate their role in regu-
lating osteoclastogenesis (Table 3) [16,66]. The authors found that vibration-stimulated
osteocytes reduced osteoclast formation [16,66]. Moreover, Yi et al. applied vibration
(0.3 g, 90 Hz) to breast cancer cells and studied cancer cell regulation of osteoclastogenesis
(Table 3) [60]. The authors observed that vibration reduced osteoclast formation through
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cancer cell signaling [60]. Taken together, these studies indicate that vibration can suppress
osteoclastogenesis through both cancer cell and osteocyte signaling.

3.4. Tumor Burden and Progression

Animal studies have shown that vibration could directly affect tumor burden and
progression in bone (Table 2). Primary lesions caused by ovarian cancer and peripheral
metastases were apparent in both vibration (0.3 g, 90 Hz) and static groups. However, the
overall tumor incidence and metastatic lesions were reduced by WBV [57]. WBV (0.3 g,
90 Hz) also decreased the myeloma cell population, suppressed tumor expansion, and
reduced the presence of necrotic tumor in the tibial marrow [58].

At the cellular level, vibration (0.3 g, 90 Hz) suppressed breast cancer invasion and
the expression of osteolytic factors (i.e., PTHLH, IL11, and RANKL) (Table 3) [60]. Vibra-
tion also enhanced cancer cell stiffness by upregulating the production of LINC complex
components, thereby reducing cancer metastatic potential [60]. On the contrary, another
study demonstrated that vibration (0.15 g, 90 Hz) did not affect breast cancer migration [69].
Moreover, Song et al. used a microfluidic co-culture platform to mimic the bone-cancer
microenvironment and apply vibration (0.3 g, 60 Hz) to multiple cell types, including
osteocytes, human umbilical vein endothelial cells (HUVECs), and breast cancer cells
(Table 3) [17]. While vibration did not significantly impact cancer invasion under mono-
culture conditions, breast cancer extravasation (i.e., transendothelial cancer invasion) was
reduced in co-culture with osteocytes. These results suggest that osteocytes play a critical
role in regulating endothelial cancer cell interactions under vibration [17].

3.5. Vascularization

The structure of the bone marrow vasculature has a vital role in the tumor microen-
vironment. An abnormal and heterogeneous vasculature caused by cancer metastasis
promotes tumor progression and affects the delivery of antitumor drugs [70,71]. The hetero-
geneous vasculature can also result in heterogeneous perfusion, leading to localized tissue
hypoxia. The hypoxia environment makes tumors more aggressive and metastatic [72,73].
Matsumoto et al. demonstrated that WBV (0.3 g, 90 Hz) could reverse the abnormal
changes in the marrow vasculature in a murine model of breast cancer bone metastasis [59].
Specifically, WBV decreased vessel diameter and reduced diameter heterogeneity, thereby
improving tumor perfusion and oxygenation (Table 2) [59].

In vitro, mechanical stimulations can modulate endothelial cell functions through
osteocyte signaling. For example, one study showed that flow-stimulated osteocytes
reduced endothelial permeability and cancer adhesion onto endothelial monolayers [13].
Recently, Song et al. studied osteocyte regulation of breast cancer invasion with and without
endothelial cells under vibration (0.3 g, 60 Hz) using a microfluidic co-culture platform [17].
The inclusion of a 3D monolayer of endothelial cells not only improved the physiological
relevance of the cancer tissue model but also further inhibited cancer invasion [17]. This
result suggests that vibration may affect endothelial cells, leading to cellular crosstalk that
alters cancer cell behaviors. As endothelial cells closely interact with both cancer and bone
cells [13,74,75], future studies are needed to investigate their functions under vibration.

3.6. Mesenchymal Stem Cell (MSC) Population

The MSC population serves as a double-edged sword in the tumor microenvironment,
both promoting [76] and suppressing [77] tumor growth. In mice with multiple myeloma,
increased tumor burden was associated with an elevated MSC population, which could be
lowered by WBV (0.3 g, 90 Hz) (Table 2) [57]. These data suggest that vibration reduces the
MSC population by driving MSCs towards the formation of bone tissue. This speculation
was supported by another mice study, in which MSCs showed a tendency to differentiate
into connective tissues such as bones rather than adipose and neoplastic tissues under
vibration [78]. In vitro studies have also shown that vibration induces osteogenic differ-
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entiation of MSCs by upregulating the expression of osteogenic markers, such as RUNX2,
osterix, type 1 collagen, osteocalcin, and ALP [79–82].

4. Parameters Contributing towards Vibration Efficacy

Although vibration has been shown to potentially preserve bone health and suppress
tumor progression, mixed results are presented in the literature. In the following sections,
we discuss various parameters, including age, vibration settings (i.e., magnitude, frequency,
and rest periods), and differences between bone sites, which may affect vibration efficacy.

4.1. Age

Postmenopausal women encounter a reduction in estrogen levels, which can result
in the development of osteoporosis and a considerable elevation in fracture risk. Encour-
agingly, emerging research suggests that vibration therapy holds promise in mitigating
bone deterioration in this population. Specifically, significant improvements in bone
turnover [83], BMD [46–48], and bone stiffness [84] were observed in postmenopausal
women exposed to WBV. Studies have shown that the involvement of estrogen receptor
α-signaling under estrogen deficiency could potentially enhance bone sensitivity to vibra-
tion [85,86]. Conversely, young and healthy adults (19–38 years old) exposed to WBV (2–8 g,
25–45 Hz) demonstrated no effects on bone mass, bone structure, and overall strength [87].
Furthermore, the beneficial effects of vibration have also been reflected in aged bone
cells [88–90]. For instance, vibration (0.3 g, 90 Hz) stimulated the expression of osteogenic
genes in aged rat-derived bone marrow MSCs [88]. Vibration (0.7 g, 90 Hz) also increased
cell proliferation, restored oxidoreductase activity (i.e., G6PD and NADP-ME1 proteins),
and reduced senescence-associated beta-galactosidase (SA-βgal) activity in late passage
(P60) primary MSCs [89]. Despite differences in vibration settings, aged participants or
cells exhibit greater improvements under vibration interventions, whereas their younger
and healthier counterparts may not benefit from vibration, as they have no need to adapt
to vibration [91].

For cancer patients with a poor baseline of bone health (Table 1), WBV appears to
have a greater impact on bones in children [51] than in postmenopausal women [53]. In
cancer studies, WBV increased BMD and tibial trabecular bone percentage in young cancer
survivors (~14 years old; WBV: 0.3 g, 32–37 Hz) [51] but not in postmenopausal breast
cancer patients (~62 years old; WBV: 0.3 g, 27–32 Hz) receiving aromatase inhibitors [53].
Notably, the lack of beneficial effects in postmenopausal women may be attributed to
ongoing aromatase inhibitor therapy or the short duration of exposure to vibration [53].
Alternatively, it is more likely that there is a decline in bone mechanosensitivity with
increasing age.

Age dependency is more prominent in animal studies. The beneficial effects of vibra-
tion on bone health were observed in young and adult animals, including sheep [92–94],
rats [95,96], and mice [97,98]. In addition, several studies compared vibration efficacy
in young adult animals to aged animals. WBV (0.3/1 g, 90 Hz) increased bone mineral
content (BMC) in 7-month-old but not 22-month-old mice [98]. In another study involving
9-month-old rats, WBV (0.3 g, 35 Hz) promoted fracture healing in osteoporotic bones only
in week 2 and week 3 [96]. As the rats became more advanced in age, the beneficial effects
of vibration were not observed in week 8 [96]. These data suggest that vibration does not
demonstrate similar beneficial effects in aged animal models compared to young adult
animal models.

Inconsistencies in the effects of vibration due to age can also be observed in vitro. For
example, vibration (0.7 g, 90 Hz) only demonstrated an upregulation of transcriptional
ALP in the early passage (P12–15) primary MSCs but not in the late passage cells (P60) [89],
suggesting passage-dependent effects of vibration. Aged osteocytes and osteoblasts are less
responsive to fluid flow, implying that their mechanosensitivity is altered over time [99,100].
It is possible that age-related degeneration of the intricate lacunocanalicular network (LCN)
changes the LCN architecture and impairs fluid dynamics [101], thereby affecting its
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ability to transmit mechanical signals. Alternatively, aging could induce changes in the
morphology of osteocytes [102], which are the major mechanosensing bone cells [103,104],
resulting in impaired osteocyte mechanotransduction and subsequent biological responses.

To overcome the mechanosensing barrier for the elderly, Yoda1 has recently gained
attention. Yoda1 is an activator of Piezo1, a mechanosensitive ion channel highly expressed
in bone cells [105–107]. Studies have revealed that the loss of Piezo1 in mice makes
bones small and weak and impairs their response to fluid flow [106,107]. At the cellular
level, Piezo1 knockdown in osteocytes blunted their response to vibration by reducing
the expression of mechanosensitive genes (i.e., COX2 and OPG) [17]. On the other hand,
the chemical activation of Piezo1 by Yoda1 stimulated the expression of mechanosensitive
genes and increased intracellular calcium concentration [106]. Therefore, researchers
believe that Yoda1 can potentially enhance the effects of vibration (Table 3). A recent
study showed that Yoda1 further enhanced the effects of vibration (0.3 g, 60 Hz) on YAP
translocation in osteocytes [16]. With the help of Yoda1, vibration-stimulated osteocytes
decreased osteoclastogenesis and further reduced breast cancer migration [16]. The Yoda1
enhancement effect was further validated by a microfluidic study, which demonstrated that
Yoda1 accelerated the effects of vibration (0.3 g, 60 Hz), reducing breast cancer extravasation
at early time points [17]. These studies provide evidence that Yoda1 can enhance the
vibration-induced inhibition of osteoclastogenesis and breast cancer metastatic potential,
paving the way to elevate bone mechanosensitivity for the elderly.

4.2. Vibration Settings
4.2.1. Magnitude and Frequency

When considering theory alone, Wolff’s law states that bone remodeling is triggered
wherever load is placed [108,109]. For vibration, the beneficial effects are dependent
on the selected settings. Clinical studies have shown that low-magnitude vibration can
increase BMD [47,84,110]. Notably, low-magnitude (LM, ≤1 g) high-frequency (HF, ≥30
Hz) vibration was found to be optimal for patients with compromised bone quality [84]
but not for those with healthy bones [111]. Pre-osteoporotic postmenopausal women
displayed improvements in tibial stiffness and increases in trabecular BMD following
exposure to LMHF vibration (0.3 g, 30 Hz) [84]. In contrast, healthy postmenopausal
women exhibited no changes under LMHF vibration (0.3 g, 30–90 Hz) [111]. In addition to
WBV with LMHF, other settings, including low-magnitude low-frequency (LMLF) vibration
and high-magnitude low-frequency (HMLF) vibration, have also been shown to promote
bone health [83,110]. For instance, LMLF vibration (0.3 g, 12 Hz) significantly reduced
bone resorption by decreasing NTx/Cr levels [83]. A meta-analysis revealed that HMLF
vibration could improve BMD of the lumbar spine similar to LMHF vibration [110].

Conflicting results have been also observed in cancer patients (Table 1). While LMHF
vibration was effective for childhood cancer survivors [51], it was insufficient to generate
an osteogenic stimulus in postmenopausal breast cancer survivors receiving aromatase
inhibitors [53]. In addition to the age difference, aromatase inhibitors are known to greatly
reduce bone quality [21–23], to the extent that even physical activity did not result in
significant improvements in bone health [112]. As such, the intensity and duration of WBV
may need to be much higher and longer to overcome the significant bone loss induced
by aromatase inhibitors. Of note, a precancer study highlighted the potential benefits of
increasing magnitude (1.5–3 mm) and frequency (7–30 Hz) over time [54]. Improvements
in physical functioning and bone metabolism may be due to the gradual adaptation to
mechanical stimulation, thereby enhancing the biochemical and structural bone properties.
In summary, an effective regimen of WBV treatment in clinical trials is not well established.
This lack of knowledge may be primarily attributed to various factors, such as age and
disease conditions, which are hard to control in patients.

Unlike clinical trials, it is well established that LMHF vibration promotes bone health
in animals with (Table 2) [57–59] and without cancer [98,113–115]. However, these ben-
eficial effects may depend on the specific magnitude and frequency. A study in turkeys
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demonstrated a linear dose–response in labeled bone surface expansion with increasing
magnitude from 0.1 g to 0.9 g (at 30 Hz) [113], whereas another study showed a non-dose-
dependent phenomenon [114]. In this study, mice exposed to 0.1 g and 1 g WBV had
significant improvements in trabecular bone volume compared to those exposed to 0.3 g
(at 45 Hz) [114]. In contrast, Lynch et al. did not find that 1 g WBV produced more anabolic
effects than 0.3 g (at 90 Hz), as both magnitudes effectively improved BMC in mice [98].
In terms of frequency, Judex et al. reported that 90 Hz WBV effectively stimulated bone
formation, increased trabecular bone volume, and thickened trabeculae compared to 45 Hz
(at 0.15 g) in rats [115]. There are mixed results regarding magnitude dependency, and only
a few are focused on finding the optimal frequency; hence, more studies are needed.

At the cellular level, selecting an optimal magnitude and frequency depends on the
cell types and desired outcomes. In rat-derived bone marrow MSCs, vibration promoted
the expression of osteogenic genes (i.e., RUNX2 and osteocalcin) most significantly at
0.3 g and 90 Hz among all tested settings [88]. In MLO-Y4 osteocytes, RANKL levels
for osteoclast formation were most significantly reduced at 60 Hz compared to 30 Hz or
90 Hz (at 0.3 g) [66]. Another study demonstrated that vibration at 5.0 m/s2 (0.51 g, where
g = 9.81 m/s2) and 60 Hz was the most effective setting for osteogenesis by upregulating
RUNX2, type 1 collagen, and ALP expressions in MC3T3-E1 osteoblasts [61]. In cancer cells,
vibration at 0.3 g and 90 Hz decreased breast cancer invasion [60]. However, Song et al.
(0.3 g, 60 Hz) and Olcum et al. (0.15 g, 90 Hz) reported no negative impacts of vibration
on breast cancer invasion (in mono-culture conditions) and migration, respectively [17,69].
These seemingly contradictory observations were possibly due to variations in vibration
settings, durations, and experimental assays.

4.2.2. Rest Periods

Zhang et al. demonstrated that a 7-day insertion, in which vibration (0.25 g, 35 Hz,
15 min/day) for 7 days was followed by a 7-day rest, significantly increased the rate of
bone formation and improved micromechanical properties in rats [116]. However, in a
recent rat study, three bouts of daily vibration (0.25 g, 35 Hz, 5 min/bout) separated by 4 h
between each bout more effectively promoted fracture healing than the aforementioned
7-day rest insertion, indicating that osteogenic accumulation may be weakened by the long
period of rest [117].

The benefits of inserting rest periods also can be observed at the cellular level. Twice-
daily vibration (0.3 g, 90 Hz, 20 min/bout) separated by 3 h of rest decreased breast cancer
invasion more than once-daily vibration treatment (Table 3) [60]. Therefore, including rest
periods between vibration treatments could improve vibration efficacy.

4.3. Bone Site-Specific

The transmissibility of vibration mainly depends on the participant’s posture on
the platform. An upright, erect posture enhances the effects on the lumbar spine [46,51],
whereas a semi-squat stance with flexed knees reduces transmission through the spine to the
head and concentrates the effects of vibration at the hip [48]. Lai et al. reported a significant
increase in the BMD of the lumbar spine in participants following vibration exposure (3.2 g,
30 Hz) in a fully standing posture [46]. In contrast, Gusi et al. instructed participants to
stand on the platform with a 60-degree angle of flexion [48]. Vibration (12.6 Hz) increased
BMD at the femoral neck, but no changes were reported in the lumbar spine [48]. Despite
differences in vibration settings, both studies involved postmenopausal women with similar
age ranges and selection criteria, further emphasizing the impact of posture on the effects
of vibration. Generally, more positive effects can be found in appendicular skeletons, which
are closer to the site of vibration than axial skeletons. However, in a murine cancer model,
beneficial effects of vibration (0.3 g, 90 Hz) were also found in axial skeletons (i.e., L5
vertebrae) [57,58], suggesting a significant contribution from circulatory factors.

The anabolic effects of vibration are specific to the region of the skeleton. For example,
sheep exposed to WBV (0.3 g, 30 Hz) exhibited a higher rate of bone formation and a greater
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mineralizing surface in the trabecular bone but not in the cortical bone [93,94]. Similarly, in
rats exposed to WBV (90 Hz), more significant effects were observed in the trabecular bone
compared to the cortical bone [118]. These findings can be attributed to the characteristics
of the trabecular bone, which has a larger surface area exposed to bone marrow and blood
flow and contains a greater number of bone cells, leading to a higher metabolic activity and
a faster bone remodeling rate [119,120]. Hence, the trabecular bone is more responsive and
malleable to mechanical stimulation than the cortical bone [93,94].

Finally, there is evidence of spatial and volume differences in bone marrow not only
within a specific bone but also between different bones [121,122]. These variations may in-
fluence cancer progression and the efficacy of vibration. For instance, in mice with myeloma,
tumor necrosis was observed in the tibia but not in the femur [58]. This dissimilarity may
be because the volume of marrow in the femur is approximately twice that of the tibia, and
tumor necrosis begins after crowding out the bone marrow, resulting in varying rates of
cancer progression [58]. Encouragingly, WBV (0.3 g, 90 Hz) was found to reduce the tumor
necrosis in the tibia marrow, demonstrating its potential in delaying cancer progression
(Table 2) [58]. However, in terms of overall bone health, vibration improved trabecular
bone volume in the femur but not in the tibia (Table 2) [58]. One plausible explanation is the
comparatively lower volume of bone marrow in the tibia, which potentially leads to greater
cancer progression but with a limited number of MSCs available for osteogenic differentia-
tion and bone reformation [58,122]. Alternatively, structural and morphological differences
between the femur and the tibia can also lead to distinct responses to vibration [58,122].
Consequently, skeletal adaptation to vibration is bone-site specific.

5. Conclusions

For cancer patients, the cumulative effects of diseases, standard treatments (i.e., hor-
mone therapy, chemotherapy, and radiotherapy), and physical inactivity are detrimental to
bones [10,28,29,36]. While cancer-associated SREs could be alleviated by exercise [39–43],
it is often physically challenging for bedridden or elderly patients. This paper highlights
existing evidence on how vibration, an exercise surrogate, benefits cancer-related bone
diseases (Figure 1). WBV has been shown to improve bone quality and quantity as well
as enhance bone turnover in patients (Table 1) [51,52,54] and mice (Table 2) [57–59] with
cancer. Additionally, WBV has demonstrated the ability to reduce tumor burden and
normalize bone vasculature altered by cancer metastases in mice (Table 2) [57–59]. LMHF
vibration has also been shown to promote interactions between bone cells and cancer
cells, which ultimately reduce osteoclastogenesis and inhibit cancer metastatic potential
(Table 3) [16,17,60].

To date, it has been observed that LMHF vibration promotes bone health in animal
cancer models (Table 2) [57–59], whereas clinical trials yield mixed results (Table 1) [51–56].
The divergence in findings could be attributed to differences in vibration settings and,
most importantly, inherent biological dissimilarities, such as variations in size and bone
properties, which affect vibration transmissibility. Furthermore, animal studies have
examined several factors, such as tumor burden [57,58], bone vascularization [59], and
MSC population [57] as outcome measures alongside bone health, whereas clinical cancer
studies focus solely on bone health. Hence, more clinical trials are needed to investigate
vibration effects on cancer progression. Moreover, there has been a predominant emphasis
in vibration research on osteolytic bone metastases, particularly those arising from breast
cancer. It is imperative to conduct investigations encompassing diverse cancer types and
their associated bone metastases. Additionally, several studies have shown that vibration
influences muscle cytokines by increasing irisin [123] while decreasing myostatin [124].
Therefore, it would be valuable for future cancer studies to delve into the impact of vibration
on muscle cytokines and explore their relationship with cancer. In this review paper, we
expounded upon various parameters, including magnitude, frequency, age, and differences
between bone sites, which may affect vibration efficacy. Nevertheless, the extent to which
these parameters alter vibration efficacy remains unknown. More in-depth studies are
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needed to determine the optimal magnitude and frequency of vibration for inhibiting
cancer progression and maintaining bone health.

Research on vibration is still ongoing and growing. In an effort to further elucidate
vibration efficacy, several clinical trials are actively recruiting participants to investigate
vibration effects on vertebral BMD [125], bone rigidity [126], and overall joint motility
following cancer treatments [127]. Additionally, further studies are being conducted to
explore the cellular mechanisms and interactions under vibration, as well as the effects
of WBV on murine cancer models. Due to its nature of being safe, effective, and easy to
perform, WBV can potentially serve as a new intervention or adjuvant therapy to combat
cancer-associated bone diseases.

Author Contributions: Conceptualization, X.S.; writing—original draft preparation, X.S., A.S., K.S.
and C.-Y.L.; writing—review and editing, X.S., A.S., K.S., C.-Y.L. and L.Y.; supervision, L.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Council of
Canada (NSERC, Grant No. 06465-14).

Data Availability Statement: No new data were created.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

3D Three-dimensional
ALP Alkaline phosphatase
BMC Bone mineral content
BMD Bone mineral density
BMPs Bone morphogenetic proteins
BSAP Bone-specific alkaline phosphatase
COX2 Cyclooxygenase 2
CTX C-terminal telopeptide
DKK1 Dickkopf-related protein 1
ET1 Endothelin 1
FASL First apoptosis signal ligand
FGFs Fibroblast growth factors
G-CSF Granulocyte colony-stimulating factor
G6PD Glucose-6-phosphate dehydrogenase
HMLF High-magnitude low-frequency
HUVECs Human umbilical vein endothelial cells
IGFs Insulin-like growth factors
IL11 Interleukin 11
IL6 Interleukin 6
LCN Lacunocanalicular network
LINC Linker of nucleoskeleton and cytoskeleton
LMHF Low-magnitude high-frequency
LMLF Low-magnitude low-frequency
MSCs Mesenchymal stem cells
NADP-ME1 Nicotinamide adenine dinucleotide phosphate-dependent malic enzyme 1
NTX N-terminal telopeptide
OPG Osteoprotegerin
P1NP Procollagen type 1 N-terminal propeptide
PTHrP/PTHLH Parathyroid hormone-related protein/hormone-like hormone
RANKL Receptor activator of nuclear factor kappa-B ligand
RUNX2 Runt-related transcription factor 2
SA-βgal Senescence-associated beta-galactosidase
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SREs Skeletal-related events
TGF-β Transforming growth factor-beta
TRACP5b Tartrate-resistant acid phosphatase 5b
VEGFs Vascular endothelial growth factors
WBV Whole body vibration
YAP Yes-associated protein

References
1. Pulido, C.; Vendrell, I.; Ferreira, A.R.; Casimiro, S.; Mansinho, A.; Alho, I.; Costa, L. Bone metastasis risk factors in breast cancer.

Ecancermedicalscience 2017, 11, 715. [CrossRef]
2. Gandaglia, G.; Abdollah, F.; Schiffmann, J.; Trudeau, V.; Shariat, S.F.; Kim, S.P.; Perrotte, P.; Montorsi, F.; Briganti, A.;

Trinh, Q.D.; et al. Distribution of metastatic sites in patients with prostate cancer: A population-based analysis. Prostate 2014, 74,
210–216. [CrossRef]

3. Macedo, F.; Ladeira, K.; Pinho, F.; Saraiva, N.; Bonito, N.; Pinto, L.; Gonçalves, F. Bone metastases: An overview. Oncol. Rev. 2017,
11, 321. [CrossRef] [PubMed]

4. Akhtar, M.; Haider, A.; Rashid, S.; Dakhilalla, A.; Al-Nabet, M.H.; Paget, S. Paget’s “seed and soil” theory of cancer metastasis:
An idea whose time has come. Adv. Anat. Pathol. 2019, 26, 69–74. [CrossRef]

5. Weilbaecher, K.N.; Guise, T.A.; McCauley, L.K. Cancer to bone: A fatal attraction. Nat. Rev. Cancer 2011, 11, 411–425. [CrossRef]
[PubMed]

6. Yuan, X.; Qian, N.; Ling, S.; Li, Y.; Sun, W.; Li, J.; Du, R.; Zhong, G.; Liu, C.; Yu, G.; et al. Breast cancer exosomes contribute to
pre-metastatic niche formation and promote bone metastasis of tumor cells. Theranostics 2021, 11, 1429–1445. [CrossRef] [PubMed]

7. Dong, Q.; Liu, X.; Cheng, K.; Sheng, J.; Kong, J.; Liu, T. Pre-metastatic niche formation in different organs induced by tumor
extracellular vesicles. Front. Cell Dev. Biol. 2021, 9, 733627. [CrossRef]

8. Furesi, G.; Rauner, M.; Hofbauer, L.C. Emerging players in prostate cancer–bone niche communication. Trends Cancer 2021, 7,
112–121. [CrossRef] [PubMed]

9. Atkinson, E.G.; Delgado-Calle, J. The Emerging role of osteocytes in cancer in bone. JBMR Plus 2019, 3, e10186. [CrossRef]
10. Hiraga, T. Bone metastasis: Interaction between cancer cells and bone microenvironment. J. Oral Biosci. 2019, 61, 95–98. [CrossRef]
11. Delgado-Calle, J.; Anderson, J.; Cregor, M.D.; Hiasa, M.; Chirgwin, J.M.; Carlesso, N.; Yoneda, T.; Mohammad, K.S.; Plotkin, L.I.;

Roodman, G.D.; et al. Bidirectional notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote
tumor cell proliferation and bone destruction in multiple myeloma. Cancer Res. 2016, 76, 1089–1100. [CrossRef] [PubMed]

12. Ma, Y.H.V.; Lam, C.; Dalmia, S.; Gao, P.; Young, J.; Middleton, K.; Liu, C.; Xu, H.; You, L. Mechanical regulation of breast cancer
migration and apoptosis via direct and indirect osteocyte signaling. J. Cell. Biochem. 2018, 119, 5665–5675. [CrossRef] [PubMed]

13. Ma, Y.H.V.; Xu, L.; Mei, X.; Middleton, K.; You, L. Mechanically stimulated osteocytes reduce the bone-metastatic potential of
breast cancer cells in vitro by signaling through endothelial cells. J. Cell. Biochem. 2019, 120, 7590–7601. [CrossRef] [PubMed]

14. Dwivedi, A.; Kiely, P.A.; Hoey, D.A. Mechanically stimulated osteocytes promote the proliferation and migration of breast cancer
cells via a potential CXCL1/2 mechanism. Biochem. Biophys. Res. Commun. 2021, 534, 14–20. [CrossRef] [PubMed]

15. Lin, C.Y.; Song, X.; Seaman, K.; You, L. Microfluidic co-culture platforms for studying osteocyte regulation of other cell types
under dynamic mechanical stimulation. Curr. Osteoporos. Rep. 2022, 20, 478–492. [CrossRef] [PubMed]

16. Lin, C.-Y.; Song, X.; Ke, Y.; Raha, A.; Wu, Y.; Wasi, M.; Wang, L.; Geng, F.; You, L. Yoda1 enhanced low-magnitude high-frequency
vibration on osteocytes in regulation of MDA-MB-231 breast cancer cell migration. Cancers 2022, 14, 3395. [CrossRef]

17. Song, X.; Lin, C.-Y.; Mei, X.; Wang, L.; You, L. Reduction of breast cancer extravasation via vibration activated osteocyte regulation.
iScience 2022, 25, 105500. [CrossRef] [PubMed]

18. Yip, R.K.H.; Rimes, J.S.; Capaldo, B.D.; Vaillant, F.; Mouchemore, K.A.; Pal, B.; Chen, Y.; Surgenor, E.; Murphy, A.J.; Anderson,
R.L.; et al. Mammary tumour cells remodel the bone marrow vascular microenvironment to support metastasis. Nat. Commun.
2021, 12, 6920. [CrossRef] [PubMed]

19. Raymaekers, K.; Stegen, S.; van Gastel, N.; Carmeliet, G. The vasculature: A vessel for bone metastasis. Bonekey Rep. 2015, 4, 742.
[CrossRef]
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