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Abstract: This article presents a comparison between layered models of a railway track. All analyses
are based on semianalytical approaches to show how powerful they can be. Results are presented
in dimensionless form, making them applicable to a wide range of possible real-world scenarios.
The main results and conclusions are obtained using repeated exact calculations of the equivalent
flexibility of supporting structure related to each model by contour integration. New terms and a
fundamentally different approach with respect to other published works underline the scientific
contribution to this field. Semianalytical methods demonstrate that the intended results can be
obtained easily and accurately. However, this benefit cannot be extended to a large number of models
due to the simplifications that must be introduced in order to apply such methods. It turns out that
even though the one-layer model is the furthest away from reality, it is easy to handle analytically
because it has a regular and predictable behavior. The three-layer model, on the other hand, has
many unpredictable properties that will be detailed in this article.

Keywords: layered models of railway track; semianalytical methods; contour integration; integral
transforms; critical velocity; onset of instability

1. Introduction

Moving load problems have attracted the scientific community for many years since
the first railway lines were built. Numerical models of railway tracks are essential tools for
studying their dynamic behavior with implications for the safety and comfort of railway
transport. The importance of these models has increased in recent decades due to the
intensified attention that must be paid to the environment and its protection, as well as
due to the increase in the speed of rail vehicles, the weight of the load, and the capacity of
the network.

Despite the widespread use of detailed finite element models, reduced models are
still important for their ease of application, results interpretation, and low computational
cost. In this contribution, the classification of reduced models according to [1] will be used,
namely, one-, two- and three-layer models will be analyzed. It is of note that the one-layer
model is in fact a beam supported by the Winkler-Pasternak foundation.

Advances in symbolic software have renewed interest in semianalytical solutions, thus,
this paper aims to highlight the importance and power of analytical and semianalytical
methods and results. This is because there are several advantages associated with these
methods, some of which are listed below:

1. They can provide better insight into physical phenomena because the origin of each
part of the final result is traceable.

2. They provide fast calculation, especially when the solution is presented by closed-
form formulas.
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3. They provide highly accurate results at once, as no additional numerical convergence
tests are needed.

4. The obtained results are easy to analyze, because due to necessary simplifications,
they are limited to an essential part.

5. Only the part of the model that is needed can be evaluated, and such restrictions can
be made in space and/or time, because there is no need to track the full-time history.

6. The formulations used are suitable for dimensionless parameters, allowing one to
visualize in one graph all possible results for all possible combinations of data.

7. Dimensionless parameters have predictable and numerically stable values.
8. Closed-form results allow direct parametric or sensitivity analyses.

Of course, there are also several disadvantages related mainly to the structure and
analysis to which these methods can be applied.

Moving load problems are fundamental problems in structural dynamics. However,
it is crucial to distinguish whether inertial effects are considered in the moving object or
not. This imposes differences in the solution methods and in undesirable phenomena that
can occur. Therefore, it is necessary to use moving forces more correctly and distinguish
these cases from moving masses or oscillators. Assuming a linear longitudinally homoge-
neous infinite structure, the basic differences are as follows: (i) When moving forces are
considered, the steady-state regime is easily reached; therefore, solution methods may
neglect transient vibration and the initial instant is not very important. Additionally, su-
perposition is possible, so the problem can be solved for one moving force, and then the
results superimposed to obtain the response for a set of forces. (ii) When moving masses
or oscillators are considered, the transient vibrations cannot be omitted because then the
instability problems would remain completely hidden. Thus, the initial instant is vital and
deflection shapes must be tracked from the very beginning. Superposition of results is not
possible if the moving objects are not completely apart. For proximate objects, the dynamic
interaction is of utmost importance, as it can significantly influence instability conditions.

Published works on instability problems are generally devoted to infinite structures.
In [2,3], the conditions for instability are determined by the D-decomposition method, but
the full forms of beam deflection are not given. The mass is assumed to be in permanent
contact with the beam. A nonlinear contact spring is introduced in [4,5]. The shapes of
the deflections are determined numerically, and the instability is again analyzed by the
D-decomposition method.

A pioneering solution about a sequence of masses traversing a finite beam was pre-
sented in [6,7]. In [8], the problem was solved by the double Fourier transform, hiding
this way the possibility of instability. Solution with the help of Green’s function and the
D-decomposition method is presented in [9] with the aim to determine the instability condi-
tions of a sequence of moving oscillators on an infinite beam. The D-decomposition method
is also used in recent work [10]. While in [9] a contact spring was used, in [10] it was again
assumed that the moving mass is in permanent contact with the beam. Nevertheless, none
of these works is concerned with the damping influence on the dynamic interaction, which
requires further consideration from an analytical point of view. It is important to derive
conditions under which results can be superposed and identify cases where the dynamic
interaction induces instability at a lower velocity than the lowest critical velocity of the
moving force, [11,12].

Several recent works about constant force moving on an infinite structure are exploiting
semianalytical methods. Fully analytical expressions are derived in [13,14]. The aim of
these two works is very similar; there are only some differences in the characterization of
the Winkler-Pasternak foundation and the critical damping. Both papers are also focused
on critical velocity.

The wavelet transform is implemented in [15] to analyze the problem of moving
forces on a double-beam model. The Adomian decomposition is implemented to deal
with the nonlinearity of the viscoelastic layer connecting the two beams. The model is
further modified to the two-layer model in [16] and extended to include nonlinearity in
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the foundation [17,18]. In all these works, the steady-state regime is derived directly. A
comparison with experimental measurements is conducted in [16–18].

The three-layer model and its applicability to represent full finite element mod-
els is dealt with in [19] and the question of the critical velocity of the moving force is
briefly discussed.

Several works deal with finite beams on Winkler or Winkler–Pasternak foundation
with external linear viscous damping. The moving oscillator is studied in [20], and the
internal hinge and variable velocity are analyzed in [21] by an improved perturbation
technique applied to governing stochastic equations. The modified finite element method
is introduced in [22] on functionally graded simply supported Timoshenko beam on
Winkler–Pasternak foundation subjected to a moving mass crossing the beam by variable
velocity. A very long finite three-layer model is considered in [23]. The modal expansion
method is applied to a reduced model to increase the computational efficiency. A control
volume is introduced to reduce the computational domain and the structure is traversed by
a multi-body model of the vehicle.

Fewer works are published on infinite beams. Pioneering work on the mass moving
on an infinite Winkler beam is given in [24]. The problem is solved by integral transforms,
with numerically performed the inverse one. In [25], integral transforms lead directly to
the steady-state regime, removing the inertial effect in the moving object and hiding the
possibility of instability. An inhomogeneous Winkler foundation with smooth variation is
introduced in [26,27]. The structure is crossed by a moving force in [26] and by a moving
oscillator in [27]. In [28], a comparison of possible methods for solving similar problems is
presented. A novel model for the dynamic interaction of the beam with its foundation is
introduced in [29]. Governing equations are derived from the extended Hamilton principle.
A nonlinear elastic constitutive relationship connects the Winkler and Pasternak moduli
which are further obtained as a part of the solution. It is shown that these moduli are
not constant but time-dependent because they are influenced by the beam–foundation
interaction. In addition, the dynamically activated mass of the foundation is also obtained
as a part of the solution.

The approach to detect instability used in this paper is conceptually different from previ-
ous works by other researchers, and therefore several new terms need to be introduced. One
of the fundamental ones is the so-called mass-induced frequency (MIF), which is defined as a
complex root of a complex characteristic equation. It must be distinguished from natural
frequency because it depends on the mass that is moving and its velocity. Frequency lines
is also a new term used for sets of MIFs for a given case as a function of velocity. While
the D-decomposition method identifies the number of roots leading to instability, in the
semianalytical approach presented here, the roots are actually determined, they are MIFs
with negative imaginary parts, and the instability intervals are delimited by the so-called
instability lines. MIFs can further be used to characterize the vibration shapes of the entire
beam during the transient regime and in unstable cases can help evaluate the severity of
the instability, which is important for mitigation measures. MIF was first introduced in [30]
and the necessity of branch cuts and the definition of discontinuity lines were introduced
in [31].

Other new terms are related to the critical velocity of the moving force, the so-called
pseudo-critical velocity (PCV) was first introduced in [32] and further analyzed in [33]. A new
term introduced for the first time in this paper is the false critical velocity (FCV), the existence
of which will be explained in the context of finite beams based on the analyses presented
in [34]. In addition to this new concept, the contribution of this manuscript is the analysis
of the three-layer model focusing on the critical velocity of the moving force and instability
of the moving mass. While the techniques are based on the same steps as for the simpler
models, the application is new. Owing to more complicated behavior, additional new terms
are introduced, namely the false onset of instability (FOI) and false end of instability (FEI).

The paper is organized as follows: in Section 2, the layered models of the railway
track are defined together with the necessary descriptions and simplifying assumptions.
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Section 3 presents the governing equations for general loads. Section 4 is devoted to the
critical velocity of the moving force, while Section 5 deals with the instability of moving
inertial objects. The main conclusions of the study are presented in Section 6.

2. Layered Models of Ballasted Railway Tracks

This contribution deals with reduced models of railway tracks, which can be classified
as one-, two- and three-layer models according to [1]. All of them are still widely used
due to their computational efficiency and a reasonable approximation of reality, which is
confirmed especially with the three-layer model. These models are depicted in Figure 1.
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Figure 1. Layered models of the ballasted railway track: (a) one-; (b) two-; and (c) three-layer model.
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The following description applies: All models in Figure 1 are considered infinite and
have a guiding structure in form of a beam standing for the rail and modeled according
to the Euler-Bernoulli theory, and therefore characterized by the bending stiffness (EI)
and the mass per unit length (m). The possibility of applying an axial force (N) assumed
positive when inducing compression is also included. All models have a foundation
layer characterized by its vertical stiffness (k f ) and viscous damping (c f ), but the physical
interpretation is different because these values must represent all layers below the last
modeled one. The two-layer model additionally includes rail pads, described by their
vertical stiffness (kp) and viscous damping (cp); and sleepers included as point masses
(ms). The three-layer model additionally contains the ballast layer, characterized by its
vertical stiffness (kb), viscous damping (cb) and mass (mb), which is dynamically activated.
All models have a certain shear stiffness. In the one-layer model, this is modeled by a
shear layer characterized by the Pasternak modulus (ks). Therefore, this model is actually
the classical Winkler-Pasternak beam. It is useful to recall that the shear layer can be
equivalently modeled by rotational springs. In the two-layer model, there is no physical
place to allocate a shear component. It cannot be added to the foundation as in the one-layer
model, because the rotational degree of freedom is not transmitted. Therefore, it is added
in the form of vertical springs acting as a shear component between sleepers, (ks). This
does not mean that there is a shear interaction between sleepers, this is just for modeling
purposes as the model has to have some shear stiffness or it would be detached from reality.
In the three-layer model, the shear component is added to ballast and has full physical
meaning, (ks)

For the effective application of the proposed method, one of the main assumptions
states that all supports are continuous. Therefore, all the above values stand for distributed
values. Thus, for example, if one has data for rail pads and knows the distance between
sleepers (ls), these values are divided by ls. The same applies to sleepers’ mass. Since only
one rail is modeled, the mass of half the sleeper is divided by ls to be uniformly distributed.
As for the ballast, the corresponding values are usually determined by the stress cone theory
and then divided by ls. k f and viscous damping c f are usually specified as distributed. The
shear component must be treated differently, as it is basically connected in series and not in
parallel similar to the other components, and therefore needs to be multiplied by ls, except
for the Pasternak modulus, which is usually introduced as distributed. All models are thus
longitudinally homogeneous. This does not represent a significant limitation since discrete
supports can be equivalently modeled by the harmonic component of the moving force.
Anyway, significant differences in behavior are only apparent at high frequencies, around
the pinned-pinned frequency.

In addition to the axial force, two masses, on which constant forces act, are moving on
the beam at constant velocity v. The distance between them is denoted as d. The number
of unknown deflections corresponds to the number of layers, but attention will be paid
mainly to the beam deflection, w. Another simplifying assumption is that the masses are
always in contact with the beam.

Analyses will focus on:

• determination of the critical velocities of the moving force;
• determination of the onset of instability of the moving mass;
• the relationship between the two previous findings;
• change in instability due to dynamic interaction of proximate moving masses.

3. Governing Equations

The governing equations for the three models read as (the dependence on spatial
coordinate x and time t is omitted in the deflection fields w(x, t), us(x, t), ub(x, t) and in
the loading term p(x, t), for clarity):

EIw,xxxx + Nw,xx − ksw,xx + mw,tt + c f w,t + k f w = p (1)
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EIw,xxxx + Nw,xx + mw,tt + cp(w,t − us,t) + kp(w− us) = p
msus,tt − ksus,xx − cp(w,t − us,t)− kp(w− us) + c f us,t + k f us = 0 (2)

EIw,xxxx + Nw,xx + mw,tt + cp(w,t − us,t) + kp(w− us) = p
msus,tt − cp(w,t − us,t)− kp(w− us) + cb(us,t − ub,t) + kb(us − ub) = 0
mbub,tt − ksub,xx − cb(us,t − ub,t)− kb(us − ub) + c f ub,t + k f ub = 0

(3)

4. Critical Velocity of a Moving Force

The critical velocity (CV) of a moving force is a resonance-type phenomenon. It
is defined as follows: Assume a constant moving force traversing a guiding structure
(usually in the form of a beam) at a constant velocity. The guiding structure is placed on
a supporting medium, homogeneous in its longitudinal direction. The analysis of this
scenario should be conducted in the purely undamped case. Then, if the force is moving at
the CV, there is no steady-state solution. The transient solution increases indefinitely as
time increases and never stabilizes. In other words, the beam deflection increases gradually
to infinity, similar to the amplitude of a harmonic oscillator under a harmonic force whose
excitation frequency is equal to the natural frequency of the oscillator, which justifies the
use of “resonance” in this context. The term resonance is also used e.g., in [14]. However,
the solution exists for infinitely lower velocity as well as infinitely closest, but higher
one. Depending on the model, there may be more CVs. CV also indicates the separation
between different deformation shapes of the beam. Up to the lowest CV, the shape of the
beam deflection is perfectly symmetrical with the maximum value at the position of the
moving force, the so-called the active point (AP). There is a noticeable difference between
the maximum and minimum deflections along the whole beam. For velocities higher than
the lowest CV, there is a sudden jump to zero deflection at the AP and an infinite wave
is formed ahead and behind the AP. This also means that the maximum and minimum
deflections along the whole beam are the same. Some researchers do not consider this shape
to be a valid solution because it violates the boundary conditions at both plus and minus
infinity, [14], but it can be considered a valid solution for the limiting case for infinitesimally
small damping.

For this analysis, the initial instant is not really important, and it is possible to reduce
the solution method to lead directly to the steady-state solution, since during the transient
part of these vibrations, the steady-state shape is smoothly reached without any danger of
further side effects.

The moving force problem has another advantage: with linear properties, superposi-
tion of results is possible, so that one moving force can be solved and then the solution can
be easily extended for a set of moving forces.

CVs are analytically determined as the velocities at which a real double pole exists
in Fourier space. Therefore, the solution method follows these steps. First, switching to
moving coordinates is performed with r = vx− t. Considering that the goal is to obtain a
steady-state solution, the time-dependent terms can be neglected. Then it follows for the
three models.

EIw,rrrr + mv2w,rr + Nw,rr − ksw,rr − c f vw,r + k f w = Pδ(r) (4)

EIw,rrrr + mv2w,rr + Nw,rr + cp(−vw,r + vus,r) + kp(w− us) = Pδ(r)
msv2us,rr − ksus,rr − cp(−vw,r + vus,r)− kp(w− us)− c f vus,r + k f us = 0 (5)

EIw,rrrr + mv2w,rr + Nw,rr + cp(−vw,r + vus,r) + kp(w− us) = Pδ(r)
msv2us,rr − cp(−vw,r + vus,r)− kp(w− us) + cb(−vus,r + vub,r) + kb(us − ub) = 0
mbv2ub,rr − ksub,rr − cb(−vus,r + vub,r)− kb(us − ub)− c f vub,r + k f ub = 0

(6)
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The next step consists of introduction of dimensionless parameters. The beam with
bending stiffness EI, distributed mass m and foundation stiffness k f is selected as the
reference Winkler beam. Then:

χ =
4

√
k f

4EI
, vre f =

4

√
4k f EI

m2 =
1
χ

√
k f

m
, α =

v
vre f

(7)

where vre f identifies the critical velocity of the moving force traversing such a reference
beam and α designates the velocity ratio. Furthermore, dimensionless spatial coordinate
and time are defined as:

ξ = χr, τ = χvre f t (8)

The deflection fields are presented as the ratio of the maximum static deflection exerted
by force P on the reference beam, therefore:

wst =
Pχ

2k f
, w̃ =

w
wst

, ũs =
us

wst
, ũb =

ub
wst

(9)

Further, mass and stiffness ratios are:

µs =
ms

m
, µb =

mb
m

, κp =
kp

k f
, κb =

kb
k f

(10)

damping ratios read as:

ηp =
cp

2
√

mk f

, ηb =
cb

2
√

mk f

, η f =
c f

2
√

mk f

(11)

and axial and shear force ratios are:

ηN =
N

2
√

k f EI
, ηs =

ks

2
√

k f EI
(12)

Finally, the moving mass and force ratios are:

ηM =
Mχ

m
, ηC =

P
P

(13)

Defining the moving force ratio is certainly abundant, but mathematically more correct
and suitable for further generalizations. The dimensionless forms of Equations (4)–(6) are
given below

w̃,ξξξξ + 4α2w̃,ξξ + 4ηNw̃,ξξ − 4ηsw̃,ξξ − 8η f αw̃,ξ + 4w̃ = 8ηCδ(ξ) (14)

w̃,ξξξξ + 4α2w̃,ξξ + 4ηNw̃,ξξ + 8ηpα
(
−w̃,ξ + ũs,ξ

)
+ 4κp(w̃− ũs) = 8ηCδ(ξ)

µsα2ũs,ξξ − ηsũs,ξξ − 2ηpα
(
−w̃,ξ + ũs,ξ

)
− κp(w̃− ũs)− 2η f αũs,ξ + ũs = 0 (15)

w̃,ξξξξ + 4α2w̃,ξξ + 4ηNw̃,ξξ + 8ηpα
(
−w̃,ξ + ũs,ξ

)
+ 4κp(w̃− ũs) = 8ηCδ(ξ)

µsα2ũs,ξξ − 2ηpα
(
−w̃,ξ + ũs,ξ

)
− κp(w̃− ũs) + 2ηbα

(
−ũs,ξ + ũb,ξ

)
+ κb(ũs − ũb) = 0

µbα2ũb,ξξ − ηsũb,ξξ − 2ηbα
(
−ũs,ξ + ũb,ξ

)
− κb(ũs − ũb)− 2η f αũb,ξ + ũb = 0

(16)
The Fourier transform can then be applied

W(p) =
∞∫
−∞

w̃(ξ)e−ipξdξ, V(p) =
∞∫
−∞

ũs(ξ)e−ipξdξ, U(p) =
∞∫
−∞

ũb(ξ)e
−ipξdξ (17)
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leading to
(D1 + D6 + D7)W = 2ηC (18)[

D1 + D2 −D2
−D2 D2 + D3 + D6 + D7

]{
W
V

}
=

{
2ηC

0

}
(19)

D1 + D2 −D2 0
−D2 D2 + D3 + D4 −D4

0 −D4 D4 + D5 + D6 + D7


W
V
U

 =


2ηC

0
0

 (20)

where

D1(p) =
p4

4
− α2 p2 − ηN p2 (21)

D2(p) = −2iηpαp + κp (22)

D3(p) = −µsα2 p2 (23)

D4(p) = −2iηbαp + κb (24)

D5(p) = −µbα2 p2 (25)

D6(p) = −2iη f αp + 1 (26)

D7(p) = ηs p2 (27)

This allows oneto analytically calculate the Fourier image of the displacement fields.
The inverse Fourier transform can also be performed analytically, and the steady-state shape
can be calculated semianalytically by contour integration. But now the aim is to determine
the CVs. To this end, all damping ratios are zero, so all imaginary terms are eliminated. The
existence of the real double pole can be written as a system of two equations. This system
can be simplified and analytically solved for the one-layer model and, in the absence of the
shear component and axial force, for the remaining two models as well. If an analytical
solution is not possible, predefined functions in Maple can be used to solve for the roots.
The steps to follow are described below.

For the one-layer model (taking into account that p 6= 0, and substituting p = p2

p2 + 4p
(
ηs − ηN − α2)+ 4 = 0

p + 2
(
ηs − ηN − α2) = 0

(28)

The second equation can be multiplied by 2p and subtracted from the first one. Know-
ing that p must be real, then p =

√
2. Substituting into the second equation, the well-known

formula is obtained [14,35,36].
αcr =

√
1 + ηs − ηN (29)

For the two-layer model, the determinant of Equation (19) must be considered, and
the same steps can be performed. The determinant can be written as a cubic polynomial for
p and the second equation as a quadratic polynomial for p

p3(µsα2 − ηs
)
− p2(4(µsα2 − ηs

)(
ηN + α2)+ κp + 1

)
+4p

(
α2( κpµs + κp + 1

)
+ ηN

(
κp + 1

)
− ηs κp

)
− 4 κp = 0

3p2(µsα2 − ηs
)
− 2p

(
4
(
µsα2 − ηs

)(
ηN + α2)+ κp + 1

)
+4
(
α2(κpµs + κp + 1

)
+ ηN

(
κp + 1

)
− ηs κp

)
= 0

(30)

In order to express directly α2, the second equation, multiplied by p, should be
subtracted from the first one multiplied by 2. Then

α2 =
8 κp − p3ηs − 4p

(
ηN
(

κp + 1
)
− ηs κp

)
4p
(

κpµs + κp + 1
)
− p3µs

(31)
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For ηN = ηs = 0 Equation (31) simplifies to

α2 =
8 κp

4p
(

κpµs + κp + 1
)
− p3µs

(32)

and by substituting it back into the second equation of the system (30), one can obtain a
cubic equation for p = p2 = p4, which the discriminant is

µ3
s κ3

p
(
κp − 8

)
+ 3µ2

s κ2
p
(
κp − 2

)2
+ 3µsκp

(
κ3

p − 3κp − 2
)
+
(
κp + 1

)4 (33)

There are three simple real roots when the discriminant is positive, which can be
substituted back into Equation (32). Then it is also necessary to check that all these roots
are positive and lead to a positive number when substituted back into Equation (32). Then,
there are at most three α-values of resonance which are defined by analytical formulas.
More details are in [12].

In the general case, i.e., when ηN 6= 0 and/or ηs 6= 0, the second equation of system
(30) leads to a sixth-order polynomial for p, which is not written here due to its length,
nevertheless, at most three solutions lead to valid p and α, more precisely, either one
or three.

For the three-layer model, the equations to be solved can be established in the same
way, but now, polynomials are of a higher degree, and it is not possible to do a simple
analysis of the nature of the roots. There can be one, three, or five valid p and α-values.

Now the question is what happens when the number of values is not complete, and it
is also necessary to check that all values leading to resonance have the expected properties
of the CV. The first question can be answered by parametric analysis. Such tests reveal that
when the number of expected values is not complete, there are some peak deflections at
the AP, but these values are not analytically infinite. Such α-values will be called pseudo-
critical velocities (PCVs) [32,33]. The second question can be answered by analysis of finite
beams. To do this, it is first necessary to determine the undamped natural frequencies of
the equivalent finite models. For finite models, moving coordinates are not convenient.
The free vibrations are thus described by

w̃,ξξξξ + 4w̃,ττ + 4ηNw̃,ξξ − 4ηsw̃,ξξ + 4w̃ = 0 (34)

w̃,ξξξξ + 4w̃,ττ + 4ηNw̃,ξξ + 4κp(w̃− ũs) = 0
µsũs,ττ − ηs

_
u ,ξξ − κp(w̃− ũs) + ũs = 0

(35)

w̃,ξξξξ + 4w̃,ττ + 4ηNw̃,ξξ + 4κp(w̃− ũs) = 0
µsũs,ττ − κp(w̃− ũs) + κb(ũs − ũb) = 0
µbũb,ττ − ηsũb,ξξ − κb(ũs − ũb) + ũb = 0

(36)

Admitting harmonic vibrations w̃(ξ, τ) = w̃(ξ)eiω̃τ , ũs(ξ, τ) = ũs(ξ)eiω̃τ and
ũb(ξ, τ) = ũb(ξ)eiω̃τ , where ω̃ = ω

χvre f
= ω√

k f /m
and the mode shapes in the form of

w̃(ξ) = Weipξ , ũs(ξ) = Veipξ and ũb(ξ) = Ueipξ (no ambiguity is possible, therefore same
designations can be used), one obtains[(

p4

4
+ ηs p2 − ηN p2 + 1

)
− ω̃2

]
W = 0 (37)

([
p4

4 − ηN p2 + κp −κp
−κp κp + ηs p2 + 1

]
− ω̃2

[
1 0
0 µs

]){
W
V

}
=

{
0
0

}
(38)


 p4

4 − ηN p2 + κp −κp 0
− κp κp + κb −κb

0 −κb κb + ηs p2 + 1

− ω̃2

1 0 0
0 µs 0
0 0 µb





W
V
U

 =


0
0
0

 (39)



Vibration 2023, 6 122

Thus, after removing damping the only change with respect to Dj, j = 1...7 is the

switch of αp to ω̃. Additionally, for instance, for a simply supported beam p = jπ
Lχ , but for

our purpose it is more convenient to continue with p. The natural frequencies are solved
from the nullity of the respective determinants. That is, for the one-layer model

ω̃ =

√
p4

4
+ ηs p2 − ηN p2 + 1 (40)

The resonance condition is defined by the equality of the excitation frequency with
the natural frequency

pα = ω̃ (41)

And thus, the CV should correspond to α at a local minimum. Knowing that p must
be real and positive

d
dp

ω̃(p)
p

= 0 ⇒ p =
√

2 ⇒ αcr =
√

1 + ηs − ηN (42)

Moreover, the second derivative is positive at the stationary point, confirming that
αcr lies at the global minimum in this case. It is necessary to highlight that ηN − ηs < 1,
otherwise, instability of the beam may occur, thus the solution given by Equation (42) is
always valid.

Similar steps can be performed for the two-layer model. Now quadratic equation for
ω̃2 is obtained.

ω̃4 − bω̃2 + c = 0 (43)

where
b = p4

4 − ηN p2 + κp +
κp+ηs p2+1

µs

c =
κp(p4+4(ηs−ηN)p2+4)+(p4−4ηN p2)(ηs p2+1)

4µs

(44)

And thus

ω̃ =

√√√√ b
2
∓

√(
b
2

)2
− c (45)

Then the resonance condition must be written for these two frequencies. Each fre-
quency leads to several stationary points. They can be substituted back to obtain α-values
at resonance. However, when analyzing them numerically, at most three of them give
valid values, more precisely one or three. Sorting them can verify that the first and third
values identify the local minima, while the middle value identifies the local maximum.
Furthermore, the analysis of the deflection shapes confirms that the middle value does
not verify the expected characteristics of the CV for the closest α-values infinitely higher,
such as a sudden jump to zero deflection at the AP, as well as the same global maxima and
minima over the whole beam. Such values are called the false critical velocities (FCVs). But
they still mark resonance, thus there is no solution for such α, because the deflection tends
to infinity, like in other cases. More details on the connection between the critical velocity
of finite and infinite models can be found in [34].

For the three-layer model, the determinant of Equation (39) leads to a cubic equation
for ω̃2

ω̃6 − bω̃4 + cω̃2 − d = 0 (46)
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where
b = f + g

µb
+

κp+κb
µs

c = f g
µb

+ f κp+κb
µs

+ g κp+κb
µbµs

− κ2
p

µs
− κ2

b
µbµs

d = f g κp+κb
µbµs

− f κ2
b

µsµb
− g

κ2
p

µsµb

f = p4

4 − ηN p2 + κp
g = κb + ηs p2 + 1

(47)

therefore Equation (46) can also be solved analytically and there will be three simple real
solutions if the discriminant is positive. The analytical solution is not written here due to
its length.

By introducing the resonance condition, it can be confirmed that each frequency leads
to several stationary positions, but at most five in total correspond to valid p and α. More
specifically, there are only one, three, or five valid values. As before, when ordered, odd
values identify CVs and even FCVs. In the example section, it will be shown that there are
no FCVs between PCVs and CVs, they only appear between two CVs.

5. Moving Inertial Objects
5.1. Solution of the Problem

When a moving object has inertia, the solution method needs to be adapted. Whether
for a moving mass or a moving one- or two-mass oscillator or a more complex model, the
initial instant is important and cannot be omitted. Omitting it would remove all inertial
effects from the moving object and yield a steady-state solution, as for a moving force. This
would hide the possibility of instability, and if instability did occur, a steady solution would
not be achieved and thus the whole solution would be wrong. To capture the initial time
instant, firstly, after switching to moving coordinates, the time-dependent terms cannot be
omitted. Then the Laplace transform must be applied first

W̃(ξ, q) =
∞∫
−∞

w̃(ξ, τ)e−qτdτ, Ṽ(ξ, q) =
∞∫
−∞

ũs(ξ, τ)e−qτdτ,

Ũ(ξ, q) =
∞∫
−∞

ũb(ξ, τ)e−qτdτ
(48)

The Laplace counterpart of τ is q = iq, where q is frequency, but q is used in
Equation (48) to preserve the correct formalism. The Fourier transform is then applied.
Under homogeneous initial conditions, there will be the following differences with respect
to the previous analysis: on the left-hand side everything looks formally the same, only
functions Dj, j = 1...7 now also depend on q and each occurrence of αp changes to q− αp.

D1(p, q) =
p4

4
− (q− αp)2 − ηN p2 (49)

D2(p, q) = 2iηp(q− αp) + κp (50)

D3(p, q) = −µs(q− αp)2 (51)

D4(p, q) = 2iηb(q− αp) + κb (52)

D5(p, q) = −µb(q− αp)2 (53)

D6(p, q) = 2iη f (q− αp) + 1 (54)

D7(p, q) = ηs p2 (55)

On the right-hand side, one obtains for one moving mass

2ηC
iq

+ ηMq2W̃(0, q) (56)
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which means that the Laplace image of the beam displacement at the AP, W̃(0, q), must be
solved and removed. First, the governing equations must be solved for W(p, q)

W(p, q) =
d2

d3

(
2ηC
iq

+ ηMq2W̃(0, q)
)

(57)

where d3 is the determinant of the whole system and d2 is the subdeterminant obtained
by cutting the first row and the first column. For the one-layer model, there is no such
subdeterminant, so unity is used instead.

Now, one can perform the inverse Fourier transform to retrieve the Laplace image

W̃(ξ, q) =
1

2π

[
2ηC
iq

+ ηMq2W̃(0, q)
] ∞∫
−∞

d2

d3
eipξdp (58)

By introduction of

K(ξ, q) =
∞∫
−∞

d2

d3
eipξdp (59)

it follows that
W̃(0, q) =

4ηC
iq(π − 2ηMq2K(0, q))

K(0, q) (60)

and after substitution back

W̃(ξ, q) =
4ηC

iq(π − 2ηMq2K(0, q))
K(ξ, q) (61)

Equation (61) holds for all three models. It is just seen that the difference between
models is based on the K(ξ, q)-function, which is proportional to the equivalent flexibility
of these models. ξ coordinate is only needed for full deflection shapes, the main anal-
yses that follow require only values of K(0, q) for a given q and its variation along the
q-complex plane.

In conclusion, an analytical expression for the Laplace image of the beam displacement
is given by Equation (61). To perform the inverse transform, the definition

f (t) =
1

2πi
lim
T−∞

a+iT∫
a−iT

estF(s)ds (62)

is used, where a is a small number. Likewise, as in the previous works, it was found to be
more convenient to switch the real and imaginary axes, so the final beam deflection shape
can be calculated numerically as

_
w(ξ, τ) =

1
π

−ia+∞∫
−ia−∞

− 2iηCK(ξ, q)
q(π − 2ηMq2K(0, q))

eiqτdq (63)

and in this case a must be chosen so that all the discontinuities and poles of the function to
be integrated must be located above the line (−ia−∞,−ia + ∞) in the q-complex plane,
which is easily accomplished, as will be seen in other sections. First, all discontinuities are
located in the real part of the q-complex plane and the poles can be calculated in a fairly
simple way, especially those with a negative imaginary part. Then a must be higher than
the absolute value of the lowest negative imaginary part of the q-poles.

5.2. Discontinuity Lines

The discontinuity lines indicate the places in the complex q-plane where the K-function
exhibits a discontinuity. This is important for the next sections and can be conducted by
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the analysis of d3. For a given q, d3 is a fourth-, sixth- or eighth-order polynomial in p, if
related to a one-, two- or three-layer model, respectively. Discontinuities in the K-function
occur whenever the nature of the p-roots changes. Any such change must go through a
situation where there is a real p-root, which causes a jump, especially in the imaginary part
of the K-function.

To find q for which there is a real p-root, for a given α, and other model characteristics,
one can assume that q = qr + iqi and that qr can be written as

qr1,α = αp + ∆qr, qr2,α = αp− ∆qr (64)

where p is the unknown real root, which can be positive or negative. By introducing
q1,α = qr1,α + iqi into d3, one obtains an expression independent of α. For q2,α = qr2,α + iqi a
similar situation occurs. By comparing the real and imaginary parts of these two equations,
it can be observed that the real parts are equal, and the imaginary parts are opposite. Since
these equations must be equal to zero, it is possible to impose nullity separately on their
real and imaginary parts and deal with q1,α only, for instance. Then, for a chosen value
of qi, ∆qr and p can be solved as real roots of two equations with real coefficients, which
is generally an easy task. After that ∆qr and p can be substituted back indicating the q
where the discontinuity that was searched for occurs. The advantage, besides the ease of
implementation, is that ∆qr and p can be solved only once (for each qi) and then qr can be
determined for each α simply using Equation (64).

As for the one-layer model, after substituting Equation (64), it is revealed from the
imaginary part of d3 that qi = η f . Then, there is only one equation left, which cannot be
used for the purpose described above, and the only qi that leads to discontinuity is qi = η f .
If ηN − ηs = 0 and η f = 0, then it follows from the real part that

p = ± 4
√

4(∆q2
r − 1) (65)

Then, for instance, for α = 0.5, four curves can be plotted as indicated in Figure 2.
This proves that all qr identify a discontinuity, starting from a certain value, which can be
determined from the stationary point of the two curves that lie closer to the horizontal
axis. It is qlm = ±0.616855, where qlm is the real part of the frequency, named as the
limiting frequency.
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Figure 2. Dependence of qr on ∆qr that indicates real p -root for α = 0.5, ηN − ηs = 0 and η f = 0.
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However, the condition qi = η f is a unique condition that ensures real coefficients to
d3. It is therefore possible to use the well-established theory for fourth-order polynomials
and obtain the previous result in a simpler way. One can assume q = qr + iη f . Real p-roots
exist in the full region separated by the first branch identifying the zero discriminant. For
ηN − ηs = 0 and η f = 0, the discriminant can be written as a quadratic polynomial for α4

and cubic for q2
r , so it is easier to present the analytical solution as

α∆=0 =
4

√
1
8

(
8 + 20q2

lm − q4
lm − qlm

(
q2

lm + 8
)3/2

)
(66)

Then discontinuities appear along 〈−∞,−qlm〉 and 〈qlm,+∞〉 for α < 1 and along the
full line 〈−∞,+∞〉 for α > 1. In this case, there is no solution for α = 1. For ηN − ηs 6= 0
and η f 6= 0, η f < 1 the polynomial is of fourth-order for α2 and cubic for q2

r , so an analytical
solution is still possible, but for q2

r would be now simpler. It is not written here due
to its length. This identifies qlm as a function of α. Then discontinuities appear along〈
−∞ + iη f ,−qlm + iη f

〉
and

〈
qlm + iη f ,+∞ + iη f

〉
for α <

√√
1− η2

f − (ηN − ηS) and

along the full line
〈
−∞ + iη f ,+∞ + iη f

〉
for α ≥

√√
1− η2

f − (ηN − ηS). More details

in [31].
For two- and three-layer models, one should proceed according to Equation (64). More

specifically, for the two-layer model with ηp 6= 0 and/or η f 6= 0 and ηN = ηs = 0, the real
part of the equation to be solved for a given qi, has only one occurrence of p4 and is a second-
order polynomial in ∆q2

r . The imaginary part of the equation to be solved can be divided by
∆qr that is non-zero and then it depends on p4 and ∆q2

r , which means that the solution can
be obtained analytically. For instance, p4 is expressed from the imaginary part, substituted
into the real part, which will still be a quadratic equation for ∆q2

r and thus has an analytical
solution, which is not presented here due to its considerable length. After solving for ∆q2

r ,
p4 can be evaluated. Then only valid real values should be used and substituted back
into Equation (64). Analytical expressions for ηs 6= 0 and/or ηN 6= 0 would be difficult to
obtain, but for selected qi, it is always possible to simplify the equations as described above
and obtain valid real solutions from the two equations with real coefficients by predefined
procedures in Maple or Matlab. Maple is preferred because of the adaptable numerical
precision induced by the chosen number of digits to be considered. Then, for selected α, all
discontinuity curves can be plotted by exploiting the valid values of ∆qr and p.

When ηp = η f = 0, then, similar to the one-layer model, one of the solutions states
qi = 0. Then, by performing an analysis using only one equation, similarly as presented in
Figure 2, qlm can be determined from the initial part of the graph. Unfortunately, in this
case, there are real p-roots from the very beginning, also for q < qlm, thus the K-function
is discontinued across qi = 0 for all q, but the level of discontinuity is negligible until qlm.
This is demonstrated in Figure 3, from which it can be seen that all q mark discontinuity
at qi = 0.

One can proceed in exactly the same way with the three-layer model. However, the
level of discontinuity for ηp = ηb = η f = 0 across qi = 0 is negligible only for relatively
low q, and thus very low α.

There are two main objectives of discontinuity lines. First of all, if one would like
to calculate exactly the inverse Laplace transform given in Equation (63) by contour inte-
gration, branch cuts would have to be introduced to avoid all discontinuities. This can
be easily conducted for the one-layer model, but not for the other ones. To obtain some
approximation, only the main discontinuities can be considered. Nevertheless, all values at
discontinuities are bounded, and as such contour integration is valid. All discontinuities
occur for positive qi and as such the integration along the branch cuts always ceases in time
and is never linked to instability. The other aim will be described in the next section.
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5.3. Frequency Lines

In some cases, the integral (63) can be determined by contour integration. To do this,
it is necessary to determine the poles of the function to be integrated and all its possible
discontinuities. The discontinuities are caused by the discontinuities in the K-function,
which were discussed in detail in the previous section. As for the poles, one of them is
obvious, q = 0, which identifies the steady-state part of the complete solution. The others
are roots of the characteristic equation

π − 2ηMq2K(0, q) (67)
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Figure 3. Dependence of qr on ∆qr that indicates a real p -root for α = 0.3, ηN = ηs = 0, ηp = η f = 0
and κp = 30, µs = 5.

They are named as mass induced frequencies (MIFs). This name is used because these
are not natural frequencies of the model. MIFs are always in pairs, if qM is a root then
also (−qM) * is a root, where * denotes complex conjugate value. MIFs determination is
not very easy, because they are complex roots of a complex equation, but three iterative
procedures have been described in previous works, [30,31]. A good strategy is to start in a
region where the convergence of these methods is ensured and then it is possible to follow
their evolution as a function of α, which allows for a good estimate of the next value. By
connecting these values, one obtains the so-called frequency lines.

After determining the MIFs, then

_
w(ξ, τ) = ∑ res

(
q, iW̃(ξ, q)eiqτ

)
+

_
wtr(ξ, τ) (68)
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and thus

_
w(ξ, τ) =

4ηCK(ξ, 0)
π

−∑
j

2ηCK
(

ξ, qMj

)
π + ηMq3

Mj
K,q

(
0, qMj

)e
iqMj

τ
+

_
wtr(ξ, τ) (69)

The first two terms in Equation (69) can be evaluated semianalytically, which means
that the roots of the characteristic equation should be calculated numerically, but all the
rest is described by analytical formulas. The last term corresponds to numerical integration.
The first term in Equation (69) is the steady-state solution, i.e., the same solution as for
the moving force. The sum represented as the second term is called the unsteady harmonic
vibration. This is because each pair of qM forms a harmonic function, which, however, is
part of a transient solution, i.e., unsteady. The last term is necessary because it corresponds
to the integration along the branch cuts, which must be introduced to avoid K-function
discontinuities and thus ensure the correct values of the contour integration. Discontinuities
in the K-function are bounded; therefore, the contour integration is possible and valid.

As for the association with unstable behavior, this is determined by the second term. If
there is at least one qM-pair with a negative imaginary part, then the vibration is unstable,
if all pairs have a positive imaginary part, then the unsteady harmonic vibration will cease
in time. If at least one pair is real and the others have a positive imaginary part, then the
unsteady harmonic vibration will theoretically last forever. The first and the last terms in
Equation (69) are never associated with instability. The first term is the steady-state solution
(as already written above) and the last term ceases in time, because the discontinuities are
always located in the positive imaginary part of the complex q-plane.

Since the K-function is continuous in the negative imaginary part of the complex q-plane,
the MIFs indicating instability can always be found by one of the three iterative methods.

However, and especially for the three-layer model, there are several α-intervals for
which no MIFs exist. The frequency lines are interrupted when the imaginary part of a
MIF reaches a discontinuity, therefore, when one strives to obtain MIFs, then in regions
with severe discontinuities, where the iterative procedures converge with difficulty, it
is advisable to use discontinuity lines which can be easily determined in advance, to
identify α-intervals without MIFs. In addition, the frequency lines reflect the behavior of
the instability lines, which are easier to determine, as will be explained in the next section.

As the discontinuities are always located in the positive imaginary part of the com-
plex q-plane, this means that in the negative imaginary part of the complex q-plane the
K-function is continues and thus MIFs indicating instability can always be determined. In
other words, K-function discontinuities do not interfere with the determination of unstable
behavior. There is no need to use the D-decomposition method to establish α-intervals for
unstable behavior.

5.4. Instability Lines

Instead of following full frequency lines to determine the onset of instability, which
means solving the complex characteristic equation for complex roots—MIFs, it is much
easier to trace the so-called instability lines, which keep the analysis in the real range.
Instability lines are determined in damped scenarios. The α-value at the onset of instability
is generally indicated by the intersection of the imaginary part of the frequency line with the
horizontal axis, that is when the imaginary part of the MIFs is changing sign. Therefore, at
such a separation the MIF is real, which in fact still indicates a stable situation. Considering
the characteristic equation (67), it is obvious that it is much easier to choose α in a particular
scenario, find real q that gives real K-function, and then calculate the corresponding ηM.
Such q can be efficiently found by a simple bisection method when a change in sign of
Im(K) is detected. There may be several instability lines for the same case.

One can conclude that instability lines cannot end abruptly like frequency lines, they
must asymptotically tend to infinity or be closed. An asymptotic tendency of ηM to infinity
is detected when either q or K(0, q) tend to zero. Additionally, one of the instability lines
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will have only one asymptote to infinite ηM and the other end will tend to ηM = 0 while α
will tend to infinity. In general, one can start with very low q to search for all asymptotes
with ηM tending to infinity. Using these values as starting points will allow the lines of
instability to be traced using adequate estimates. Then, asymptotes with K(0, q) tending to
zero are usually detected at the end of the already started line. After that, it is necessary to
check some α-values to identify closed instability lines. Their existence is usually revealed
while tracing other instability lines, as they will be close together at some point. By careful
analysis, one can be sure that the entire (α, ηM)-plane is being scanned, which is not the case
with frequency lines. After scanning the entire (α, ηM)-plane, the α-intervals of instability
can be determined.

The bisection method can again be used to obtain exact values of q and α for given ηM
from the scenario under consideration. By fixing ηM to a specific value, all intersections can
be found. The particular shape of each line then clearly identifies whether each crossing
indicates an Onset of Instability (OI), an End of Instability (EI), or merely adds (or removes)
one unstable MIF to an already existing one (from at least two already existing ones). Later
cases will additionally have the adjective “false”, thus, in the abbreviation FOI and FEI.
Specific cases will be shown in the examples section.

5.5. Time Series of the Active Point

The time series of AP or of any other point along the beam can be determined numer-
ically using Equation (63). Unfortunately, this is the only viable path for the three-layer
model. However, for one- and two- layer models very good approximations are obtained
by exploiting Equation (69) with neglected

_
wtr(ξ, τ). This is because the MIFs of these

cases are well-defined and thus the harmonic part of the full solution provides a very good
approximation of reality. In such cases,

_
wtr(ξ, τ) is only noticeable at the very beginning

and only in cases where the harmonic part does not well meet the initial homogeneous
conditions.

Another possibility is an analysis of long finite models by modal expansion. Further
details are in [30,31].

6. Examples
6.1. Data Ranges

No significance is attached to any exact deterministic data associated with a particular
track, but all parameters are processed over a wide range of possible values. First, allowable
ranges of true values are identified to steer the dimensionless counterparts into some
reasonable range. However, for demonstration purposes, academic values will also be
admitted, especially for ηM, to illustrate better instability lines behavior.

As for the rail, the range of possible values is quite narrow, basically, there are only
two guide sets of values for 54E1 and 60E1 rails that specify limits on EI and m, bearing in
mind that the Young modulus and density of the steel used to make the rails have values
that are not very different. There is a very large dispersal in the values regarding the
stiffness of the rail pads. This can vary from 20 to 5000 MN/m, [19]. The sleepers can be
wooden or concrete, so the mass range steeps from 80 kg to 320 kg, [19].

As for the ballast contribution, the stress cone theory can be used to estimate realistic
values. Assuming that the effective sleeper length is equal to 1 m [19], the sleeper spacing
varies between 0.54–0.6 m, the sleeper base is 0.25–0.35m, the ballast height is 0.2–0.6 m
and the distribution angle is 30º–50º, then the formulas from [19] indicate the stiffness
coefficient range as 0.96–3.12 m, the shear contribution coefficient range as 0.03–0.5 m and
the volume of dynamically activated mass range as 0.082–0.544 m3. It should be noted
that the above-specified coefficients have a dimension that may look strange, but this is
because the stiffness coefficients should be multiplied by the Young’s modulus and the
results must indicate the linear spring stiffness in N/m. Likewise, the mass coefficient
must be multiplied by the ballast density and the result must have the unit of mass i.e., kg.
Admitting the ballast Young’s modulus from 50 MPa till 400 MPa, the ballast density of
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1200–2600 kg/m3 and the Poisson ratio in the range of 0.1–0.45, representative ranges of all
values characterizing the ballast can be determined.

As regard the ballast height of 0.6 m, it is necessary to note, that this value may (or
may not) be associated with the total depth of the granular layers (ballast and subballast)
and then it may reach this value. This implies a simplification applied on granular layers,
as the angle of distribution will not be exactly the same. Nevertheless, this approach can be
considered more accurate than the attribution of the subballast layer to the foundation. For
instance, the value of 0.6 m was used as the maximum value in optimization conducted
in [37].

All the data discussed above are presented in Table 1, but already in their distributed
form, with the assumption that the distance between sleepers can vary in the range
ls = 0.54− 0.6 m. The lower value is taken from [38] where in fact 0.545 m is specified.
The higher value of 0.6m is the typical value used on European lines. This value is also
specified as the maximum value for Indian railways [39]. According to some other works,
the distance can also be higher, for example, 0.711 m is given in [40] explaining how it is
related to the type of sleeper. However, this value was not included in the estimates below,
as it refers to steel sleepers, the weight of which lies between wooden and concrete ones
and therefore does not apply to extreme values. Table 1 is complemented by foundation
stiffness ranging from 0.22 MN/m2 [41] to 1000 MN/m2 [42].

Table 1. Representative ranges of distributed values characterizing the three-layer model.

Parameter mkg/m mskg/m mbkg/m kpMN/m2 kbMN/m2 kfMN/m2 ksMN/m2 EIMNm2

low 54 65 165 30 80 0.22 2 4.7
high 60 300 2620 10000 2310 1000 200 6.4

Taking into account the dimensionless parameters definition, one can conclude that:

µs = 1÷ 6, µb = 2.5÷ 50, κp = 0.03÷ 50, 000, κb = 0.1÷ 10, 000, ηs = 0÷ 100 (70)

where the lower level of ηs is taken as zero, because in some works the ballast shear
stiffness is omitted. Damping coefficients, have very dispersed values in the literature, so it
is more reasonable to directly vary the dimensionless parameters. Layered models cannot
implement some other track components such as under sleeper pads, under ballast mats,
and others as separate components. However, these components are primarily involved in
damping, and as such their influence can be conveniently attributed to the damping ratios.
More about such parameters can be found in [43,44]. Values from Equation (70) are directly
applicable to the two-layer model as well.

Regarding ηM: first of all, it must be emphasized that in railway applications the
moving constant force does not correspond to the weight of the moving unsprung mass.
The unsprung mass is the mass that is in direct contact with the rail, which is the mass
that is modeled in this paper. If the moving mass were so large that the force would
correspond to its weight, it could be up to 10 t, but if only the wheel mass is taken into
account, then it is only around 880 kg. It is also possible to add part of the weight of the
axle and bogie to the weight of the wheel. Since the value of χ varies between 0.3 to 2.67
m−1, according to Table 1, then the range for ηM is 50–494 for 10 t and 4.4–44 for 880 kg.
Nevertheless, academic values will also be used to explain in detail the complete behavior
of the instability lines.

6.2. Critical Velocity of a Moving Force

As already mentioned, the one-layer model has only one well-specified CV value,
given by Equation (29). There is no need to show some results of the parametric analysis.
The situation is different for the two-layer model, but it is relatively easy to establish some
criteria. For instance, for ηs = ηN = 0 by keeping κp > 6.11, there are always three resonant
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values, which, when ordered identify CV, FCV, and CV. This is demonstrated in Figure 4
for one particular case, namely ηs = ηN = 0, µs = 9 and κp = 500. For this case three
resonances calculated analytically are: αres = 0.316; 0.779; 4.792. It is clearly shown that
the odd values fulfill all the expected properties when crossing the resonance, namely the
sudden jump to zero at the AP and equal values in the absolute sense for the global maxima
and minima over the whole beam. The even value indicates FCV, there is also a resonance
but not very clear due to the step in α used for the parametric analysis: 0.001. Nevertheless,
this value does not meet the expected properties of CV, so it is FCV.
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Figure 4. Two-layer model: parametric analysis for ηN = ηs = 0, µs = 9 and κp = 500.
Green–deflection at AP, blue maximum and, orange—minimum deflection along the full beam.

It has already been mentioned that all dimensionless parameters are defined with
respect to a reference Winkler beam characterized by EI, m, k f , nevertheless, by separating
the second layer in a two-layer model in order to model the same railway line k f may
have a different value because it models the layers under the ballast. However, the main
difference now is in the additional mass of the sleepers. This will significantly lower
CV1. In more detail, for this particular case when ηN = ηs = 0, the CV1 distribution is
shown in [12]. It was demonstrated that the values were mostly dependent on µs and
practically independent of κp, especially for κp > 100. The highest value of 1/

√
2 = 0.707

was obtained for µs = 1, independently on κp. In addition, it was derived in [12] that CV1
can be approximated by

αCV1 = 4

√
κp(

1 + κp
)
(1 + µs)

2 (71)

which gives reasonable results for κp > 100, and it is based on the equivalent stiffness of
two springs in series and a lumped mass. This also means that CV1 would be essentially
the same in one- and two-layer models if the mass of the sleepers were directly attributed
to the rail, as also proposed in [1], and κp > 100. By increasing κp even more, the con-
nection between the rail and the sleeper became rigid and the two models are equivalent.
However, there is also FCV and CV2 for the two-layer model, which are not present in the
one-layer model.

In the three-layer model, the situation is more complicated. Defining parameter
regions where there are 1, 3 or 5 resonances is not easy or even possible. This can be
conducted parametrically for a specific case, as shown in Figure 5, for ηN = ηs = 0, µs = 6
and µb = 35; and, for ηN = 0, ηs = 10, µs = 6 and µb = 5, with variation of κb and κp.

It can be concluded from Figure 5 that no simple general conditions separate the
parameter ranges to identify a priori the number of resonances. Several cases are selected
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to demonstrate what happens if the number of resonances is complete or not. They are
illustrated in Figures 6,7,9 and 10.
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Figure 5. Three-layer model: number of resonances (yellow—1, blue—3, green—5) for parametric
analysis for ηN = ηs = 0, µs = 6 and µb = 35 (left) and for ηN = 0, ηs = 10, µs = 6 and
µb = 5 (right).

Firstly, in Figure 6 the case with all five resonances is shown. The case with ηN = ηs = 0,
µs = 6, µb = 35, κp = 300 and κb = 7 was selected. Also here, as in Figure 4, it
is demonstrated that the odd values identify CV while the even ones FCV. Resonances
determined semianalytically are: αres = 0.151; 0.152; 0.627; 0.851; 4.244.

The next case was selected to demonstrate what happens with only one resonance.
The parameters are:ηN = ηs = 0, µs = 6, µb = 35, κp = 30 and κb = 7 and the results of
the parametric analysis are summarized in Figure 6. The analytical value is αres = 2.388.
Other values are PCV which can be determined only from the parametric analysis. They
are 0.149 and 0.599.

From Figure 7, it can be concluded that FCV can only occur between two CVs. When
missing CVs are replaced by PCVs, then there are no FCVs between them. It can also be seen
that the PCVs can have very different importance depending on the global maxima reached.

The problem with PCVs is that we do not know them a priori, and also that they
are a bit imprecise because the three extremes may not be reached for the same value
of α. In general, there is no viable procedure other than parametric analysis to find the
PCVs position and importance. A single estimate can be based on the “distance” from the
region where more resonances occur. At PCV, all extremes are limited, but the augment in
deflections can be significant, thus they cannot be ignored. They also play an important
role in the analysis of the instability lines. One might think that PCV can be determined
in a similar way as CV. CVs are indicated by a real double pole, therefore the polynomial
expression as a function of p touches the real axis, so that at the same value the function
value and its first derivative are zero. At PCV, the function does not touch the axis, but a
first guess would be that the nearest p-value to the real axis would solve this problem. The
following Figure 8 shows that this is not true. Let us analyze the previous case and PCV
of 0.599, by analysis of finite beam. If α = 0.599 was CV, then function ω̃n(p)/p would
have a local minimum equal to α = 0.599. By plotting the shifted function ω̃n(p)/p− 0.599
one can find the corresponding value of p = 2.603. To determine the closest point of the
first derivative, one can consider the second one. By solving this the value is different,
p = 2.887.

Lastly, two cases with three resonances are shown in Figures 9 and 10.
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Using the same philosophy as for the two-layer model, an approximate formula can
be proposed for ηN = ηs = 0 by

αCV1 = 4

√
κpκb(

κpκb + κp + κb
)
(1 + µs + µb)

2 (72)
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Figure 6. Three-layer model: parametric analysis of the case with 5 resonances, ηN = ηs = 0, µs = 6,
µb = 35, κp = 300 and κb = 7. Green—deflection at AP, blue maximum and, orange—minimum
deflection along the full beam.

It can be verified that the approximation of CV1 for the case of Figure 6 is very good,
as it gives 0.149. The case in Figure 7 is also well approximated, but in this case, the value
corresponds to PCV1, it is 0.148. This is again due to the fact that the stiffness parameters
are relatively high, so the connection with the foundation is stiffer, which allows the use of
lumped mass. Thus, the closest value to the one-layer model within the range specified in
Equation (70), which means the highest value, can be obtained for µs = 1 and µb = 2.5. It
gives αCV1 = 1/

√
4.5 = 0.471. Again, by increasing the stiffnesses, masses can be added

directly to the beam and the model will be equivalent to the one-layer model.
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Figure 7. Three-layer model: parametric analysis of the case with 1 resonance, ηN = ηs = 0, µs = 6,
µb = 35, κp = 30 and κb = 7. Green—deflection at AP, blue maximum and, orange—minimum
deflection along the full beam.

When stiffness ratios are low, then Equation (72) underestimates CV1 (or PCV1).
For example, for the cases in Figures 9 and 10 it gives 0.119 and 0.103, respectively. In
conclusion, the three-layer model can only approximate the one-layer one when high
stiffness and low mass ratios are used. For better correspondence, additional masses should
be added directly to the rail in the one-layer model. Low stiffness ratios and high mass
ratios significantly reduce CV1 (or PCV1).

The analytical values for the three resonances are αres = 0.445; 0.745; 0.750 and
αres = 0.437; 0.442; 0.456 for the case of Figures 9 and 10, respectively, the middle value
being FCV. In both cases, the lowest values correspond to PCVs, which in the case of
Figure 9 is very dominant and occurs at α = 0.404, but in the case of Figure 10 is barely
noticeable and its value is not accurate. In both cases, there is no FCV between the PCV
and the lower CV, as already mentioned.
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PCV of 0.599, by analysis of finite beam. If 0 599. =  was CV, then function ( ) /
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p p  

would have a local minimum equal to 0 599. = . By plotting the shifted function 

( ) 0 599/ .
n

p p −  one can find the corresponding value of 2 603.p = . To determine the 

closest point of the first derivative, one can consider the second one. By solving this the 

value is different, 2 887.p = . 

 

Figure 8. Demonstration that higher order derivates cannot solve the problem of semianalytical 

identification of PCVs. case with 0
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 = = , 6
s

 = , 35
b

 = , 30
p

 =  and 7
b

 = , 

PCV=0.599. 

Lastly, two cases with three resonances are shown in Figures 9 and 10. 
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Figure 8. Demonstration that higher order derivates cannot solve the problem of semianalytical
identification of PCVs. case with ηN = ηs = 0, µs = 6, µb = 35, κp = 30 and κb = 7, PCV = 0.599.
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Figure 9. Three-layer model: parametric analysis of the case with three resonances, 
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Figure 10. Three-layer model: parametric analysis of the case with three resonances, 0
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 = , 10
b
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ange—minimum deflection along the full beam. 

Using the same philosophy as for the two-layer model, an approximate formula can 

be proposed for 0
N s

 = =  by 

( )( )
4CV1 2

1

p b

p b p b s b

 


     
=

+ + + +
 (72) 

It can be verified that the approximation of CV1 for the case of Figure 6 is very good, as it 

gives 0.149. The case in Figure 7 is also well approximated, but in this case, the value 

corresponds to PCV1, it is 0.148. This is again due to the fact that the stiffness parameters 

are relatively high, so the connection with the foundation is stiffer, which allows the use 

of lumped mass. Thus, the closest value to the one-layer model within the range specified 

in Equation (70), which means the highest value, can be obtained for 1 =
s

 and 2 5 = .
b

. It gives 
CV1 1/ 4.5 0.471 = = . Again, by increasing the stiffnesses, masses can be added 

directly to the beam and the model will be equivalent to the one-layer model.  

When stiffness ratios are low, then Equation (72) underestimates CV1 (or PCV1). For 

example, for the cases in Figures 9-10 it gives 0.119 and 0.103, respectively. In conclusion, 

the three-layer model can only approximate the one-layer one when high stiffness and 

low mass ratios are used. For better correspondence, additional masses should be added 

directly to the rail in the one-layer model. Low stiffness ratios and high mass ratios signif-

icantly reduce CV1 (or PCV1). 


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

w



w

Figure 9. Three-layer model: parametric analysis of the case with three resonances, ηN = ηs = 0,
µs = 6, µb = 5, κp = 0.03 and κb = 3. Green—deflection at AP, blue maximum and,
orange—minimum deflection along the full beam.
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Figure 10. Three-layer model: parametric analysis of the case with three resonances, ηN = ηs = 0,
µs = 3, µb = 10, κp = 0.03 and κb = 0.1. Green—deflection at AP, blue maximum and,
orange—minimum deflection along the full beam.

The semianalytical approach has three main advantages over the numerical one: (i) in
some cases the resonance values can be calculated analytically, if not, then the predefined
root determination procedures always provide an exact solution; (ii) if the parametric
analysis is used, then this can be conducted without the contribution of damping, as it
should, since only without damping the true resonance is detected. The deflection shapes
are precisely determined for each tested α by contour integration. In the case of real poles, it
is safest to introduce some small auxiliary damping to correctly identify the poles describing
the deflection before and after the AP. For example, in Maple, a very high accuracy can
be used so that when crossing CVs, the deflection at the AP is exactly zero without any
rounding, which is able to irreversibly distinguish CV from FCV or PCV; (iii) all values are
obtained quickly, accurately and do not need to undergo additional verification.

6.3. Instability of a Moving Mass

The instability lines indicate the separation between stable and unstable α, or the
separation indicating one more or one less unstable q, as a function of ηM. For simplicity,
unstable α is used to denote α at which the motion of the mass is unstable, likewise, unstable
q means a MIF with a negative imaginary part, which in turn causes the motion of the
mass to be unstable. With semianalytical approaches, instability lines can be identified in a
simple way without using the D-decomposition method as described earlier.

The most regular behavior is identified in the one-layer model. By following the
frequency lines, it can be shown that in the undamped case, the CV corresponds to the
onset of instability. Under damping, the instability lines have a regular predictable behavior
and approach the CV as the damping decreases. This is shown in Figure 11.
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The analytical values for the three resonances are 0 445 0 745 0 750. ; . ; .
res

 =  and 
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 =  for the case of Figure 9 and 10, respectively, the middle value 
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In the two-layer model, a similar regularity can be observed in the case of three res-

onances. This is shown in Figure 12. It can be seen that the instability lines are much closer 

to the critical velocity when approaching from the right than from the left. 


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

Figure 11. One-layer model: instability lines for η f = 0.1; 0.05; 1 · 10−4, ηs = ηN = 0.

In the two-layer model, a similar regularity can be observed in the case of
three resonances. This is shown in Figure 12. It can be seen that the instability lines
are much closer to the critical velocity when approaching from the right than from the left.

It can also be seen that FCV has no effect on the instability lines, again confirming that
the usual CV properties cannot be attributed to FCV.

The three-layer model does not provide sufficient regularity as the previous models.
Nevertheless, the method described to identify the instability lines is very easy to implement
so that full analysis is always possible and gives precise answers. Cases with very low
damping can lead to the strange behavior of the instability lines, which will be shown in
the further text. Also, the role of CVs and PCVs is not clearly evidenced, and thus general
conclusions are difficult to draw. It is shown that there are several such lines. They can
have quite a strange evolution, since they can form a closed curve, but they usually end up
with asymptotes tending to infinite mass ratio at a fixed velocity ratio, and always one of
them is tending to zero mass ratio at infinite velocity. It is also shown that the expected
relation to the critical velocity of the moving force is not confirmed. First, three values of
this critical velocity do not always exist. Sometimes there is only one, then the others are
compensated by pseudocritical velocities, which may or may not be dominant, affecting
their influence on instability lines. Second, especially for low damping levels, there are
more than five asymptotes at fixed velocity ratios, so they cannot correspond to the three
possible vertical lines.
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It can also be seen that FCV has no effect on the instability lines, again confirming 

that the usual CV properties cannot be attributed to FCV. 

The three-layer model does not provide sufficient regularity as the previous models. 

Nevertheless, the method described to identify the instability lines is very easy to imple-

ment so that full analysis is always possible and gives precise answers. Cases with very 
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Several cases will be analyzed below and illustrated in Figures 13–15. 
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Figure 12. Two-layer model: instability lines for η f = ηp = 0.01; 0.05, ηs = ηN = 0 and µs = 1,
κp = 300.

Several cases will be analyzed below and illustrated in Figures 13–15.
It can be stated that the cases presented in Figure 13 are quite regular with the expected

behavior. PCVs take over the role of CVs, while FCVs have no effect on instability lines
as before.

More details about the lastly shown case are now given. It can be seen from Figure 15
that when the damping levels are high, the instability lines are regular. For low damping
levels, like ηp = ηb = η f = 1 · 10−4, ηp = ηb = η f = 1 · 10−6 or ηp = ηb = η f = 1 · 10−10,
there are several instability lines, but not all of them are visualized in the figure due to its
scale. By detailed analysis, nine asymptotes tending to infinity are found for these cases, as
indicated in Table 2, which summarizes the corresponding α of such asymptotes.

Table 2. Asymptotes for the case with ηN = ηs = 0 , µs = 3, µb = 10, κp = 0.03 and κb = 0.1.

ηp = ηb = η f = 1 · 10−4 0.36633 0.40709 0.43706 0.44016 0.44030 0.44900 0.45386 0.45602 0.45798
ηp = ηb = η f = 1 · 10−6 0.36584 0.41305 0.43695 0.44015 0.44029 0.44888 0.45558 0.45594 0.45845
ηp = ηb = η f = 1 · 10−10 0.36584 0.41313 0.43695 0.44015 0.44029 0.44887 0.45593 0.45594 0.45845

To recall, in the case shown in Table 2 the two CVs are 0.43695; 0.45594 and FCV is
0.44158. As expected, the CVs are approached by the asymptotes as indicate values in
the third and seventh column (excluding from this count the indication of the level of
damping), but there is no further a priori indication of the other asymptotes. Moreover, the
instability lines cross the CVs straight lines, which is also not expected. The PCV is barely
noticeable, but certainly occurs for lower α than the first asymptote, as seen in Figure 9.
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Figure 13. Three-layer model: left: instability lines of the case with five resonances, ηN = ηs = 0,
µs = 6, µb = 35, κp = 300 and κb = 7; right: instability lines of the case with one resonance,
ηN = ηs = 0, µs = 6, µb = 35, κp = 30 and κb = 7. All damping ratios are assumed equal, having
the values as indicated in figure legend.
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It can be stated that the cases presented in Figure 13 are quite regular with the ex-

pected behavior. PCVs take over the role of CVs, while FCVs have no effect on instability 

lines as before. 
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Figure 15. Three-layer model: instability lines of the cases with three resonances: right: 0
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Figure 14. Three-layer model: instability lines of the case with three resonances, ηN = ηs = 0,
µs = 6, µb = 5, κp = 0.03 and κb = 3. Both parts of the figure refer to the same situation, just with
different scale on the axes. All damping ratios are assumed equal, having the values as indicated in
figure legend.

As regard instability, then for ηM = 60 and ηp = ηb = η f = 1 · 10−6 there are only
three crossings, but for ηp = ηb = η f = 1 · 10−10 there are nine crossings for ηM = 60
as well as for ηM = 20. This high number is due to one instability line being closed and
strangely shaped. The exact values of α where it happened are listed in Table 3. Also given
in this table is the corresponding q, which is actually the real part of the MIF with zero
imaginary part, i.e., it is directly equal to this MIF.
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Figure 15. Three-layer model: instability lines of the cases with three resonances: right: 0
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Figure 15. Three-layer model: instability lines of the cases with three resonances: right: ηN = 0,
ηs = 10, µs = 3, µb = 25, κp = 300 and κb = 100; left: ηN = ηs = 0, µs = 3, µb = 10, κp = 0.03 and
κb = 0.1. All damping ratios are assumed equal, having the values as indicated in figure legend.

It can therefore be stated that it is very difficult to establish any general conclusions as
for a one-layer model or a two-layer model with three resonances. However, the analysis
of instability lines is very simple, it is conducted essentially in the real domain, and it is
guaranteed that all instability lines are correctly traced, unlike using the D-decomposition
method, which requires more sophisticated calculations to obtain each value.

Nevertheless, having the instability intervals also means that all crossings of the
imaginary part of the frequency lines are determined. This serves as an indication for
further estimations and makes it easier to follow the frequency lines. For low damping
levels, then, there are basically two lines that are interrupted at some regions, but their real
parts are very similar, and their imaginary parts are approximately opposite, except for the
low α until the first OI. Additionally, the shape of the instability lines also indicates the
shape of the frequency lines.

Previous figures have shown that the onset of instability of one moving mass is
strongly related to CV1 or PCV1, whichever is lower. Therefore, the conclusions drawn
about models’ differences and the effects of various parameters for the critical velocity of
moving force apply here as well.

6.4. Instability of Proximate Moving Masses

The last part of this contribution is devoted to the instability of moving proximate
masses. This research still needs further attention because, as shown in the previous section,
the motion of a single mass on a three-layer model is already quite complicated. For the
one-layer and two-layer models, some results have already been presented in [11,12], where
it was assumed that both masses have the same values and the forces acting on them were
also the same. It has been found that there are cases where damping can move the onset
of instability to lower α than when only one mass is moving. Moreover, this situation
is worsened by increasing damping, rather than improved, as is generally attributed to
damping. Some cases are shown in Figures 16 and 17. These figures illustrate the instability
lines that can be determined in the same way as for a single moving mass, only the
characteristic equation is more extensive and has the same form for all three models(

π − 2ηMq2K(0, q)
)(

π − 2ηMq2K(0, q)
)
− 4ηMηMq4K

(
d̃, q
)

K
(
−d̃, q

)
(73)
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where d̃ stands for the dimensionless distance between masses.

Table 3. Onset and end of instability intervals for the case with ηN = ηs = 0 , µs = 3, µb = 10,
κp = 0.03 and κb = 0.1.

ηp = ηb = ηf =1·10−6, ηM = 60 ηp = ηb = ηf = 1·10−10, ηM = 60 ηp = ηb = ηf = 1·10−10, ηM = 20

α q α q α q

0.447082 (OI) 0.006769 0.43929965 (OI) 0.001562 0.43939448 (OI) 0.001625
0.447102 (EI) 0.006778 0.43939461 (EI) 0.001625 0.43939461 (EI) 0.001625
0.451710 (OI) 0.009889 0.44011712 (OI) 0.002106 0.44279298 (OI) 0.003891

0.44709128 (FOI) 0.006766 0.44709127 (FOI) 0.006766
0.44887026 (FEI) 0.005405 0.44887026 (FEI) 0.005405
0.44887031 (FOI) 0.005405 0.46535004 (FOI) 0.007209
0.45090904 (FEI) 0.003846 0.47281654 (FEI) 0.012932
0.46077738 (EI) 0.003706 0.47820852 (EI) 0.028086
0.47308106 (OI) 0.013139 0.51627749 (OI) 0.057110

Another important fact is that the superposition of the results is generally not possible,
and the dynamical interaction is active up to quite large distances between the masses.
Figure 18 shows the case with gradually increasing distances. This is more severe in the
absence of damping because the dynamic interaction is active in the transient part of the
full solution.

In Figure 19, it is seen that the dynamic interaction is still active when the masses
are quite apart. Results superposition is not possible as this would imply no amplitudes
variation in the unsteady harmonic part of the full solution. Regarding the last case shown,
which is for d̃ = 15, the steady-state solution is also presented in the same figure with the
deflection along the beam to illustrate the distance between masses.
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situation is worsened by increasing damping, rather than improved, as is generally at-

tributed to damping. Some cases are shown in Figures 16 and 17. These figures illustrate 

the instability lines that can be determined in the same way as for a single moving mass, 

only the characteristic equation is more extensive and has the same form for all three mod-

els 

( )( ) ( )( ) ( ) ( )2 2 42 0 2 0 4, , , ,
M M M M

q K q q K q q K d q K d q     − − − −  (73) 

where d  stands for the dimensionless distance between masses. 
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Figure 16. One-layer model: instability lines of two moving proximate masses for ηN = ηs = 0:
left: η f = 0.05, right: η f = 0.3. The case of one moving mass is also included, then the number in the
legend stays for η f . Other curves indicate the dimensionless distance between masses.
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Another important fact is that the superposition of the results is generally not possi-

ble, and the dynamical interaction is active up to quite large distances between the masses. 

Figure 18 shows the case with gradually increasing distances. This is more severe in the 

absence of damping because the dynamic interaction is active in the transient part of the 

full solution. 
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Figure 17. Two-layer model: instability lines of two moving proximate masses: ηN = ηs = 0,
µs = 1, κp = 300, ηp = 0.05 left: η f = 0.05, right: η f = 0.3. The case of one moving mass is
also included, then the number in the legend stays for η f . Other curves indicate the dimensionless
distance between masses.
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Figure 18. One-layer model, 0
N s f

  = = = , 0 5. = , 40
M

 = , deflection of the rear AP: left: 

full solution (grey dotted) compared with the one obtained by results superposition (orange), right: 

unsteady harmonic solution (black) with function envelopes (blue dotted). a) 2d = ; b) 3d = . 

In Figure 19, it is seen that the dynamic interaction is still active when the masses are 

quite apart. Results superposition is not possible as this would imply no amplitudes var-

iation in the unsteady harmonic part of the full solution. Regarding the last case shown, 

which is for 15d = , the steady-state solution is also presented in the same figure with the 

deflection along the beam to illustrate the distance between masses. 
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Figure 18. One-layer model, ηN = ηs = η f = 0, α = 0.5, ηM = 40, deflection of the rear AP:
left: full solution (grey dotted) compared with the one obtained by results superposition (orange),
right: unsteady harmonic solution (black) with function envelopes (blue dotted). (a) d̃ = 2; (b) d̃ = 3.
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Figure 19. One-layer model: function envelopes of the unsteady harmonic part of the deflection of 
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7. Conclusions 

All the semianalytical results presented in this paper were shown to be supported by 

the exact evaluation of the K -function value. This was achieved by a precise contour in-

tegration method. In the case of real poles, a simple way to deal with them is to introduce 

very light damping to distinguish those that should belong to the upper part of the com-

plex plane and vice versa. 

It was also seen that damping-free calculations are essential, and this is generally well 

possible only with semianalytical methods. Numerical methods usually need some damp-

ing for numerical stability. For example, the calculation of critical velocities using para-

metric analysis would not be accurate because it would be difficult to distinguish the dom-

inant PCV from the CV. 

Regarding the critical velocity of the moving force, it was shown that when the mod-

els are compared to a reference Winkler beam, i.e., the one-layer model without shear 

resistance and axial force, then the other models have CV1 or PCV1 (whichever is lower) 

always lower. It can never reach the one-layer model value, in this case 1. It can only be 

attained from below when high stiffness ratio(s) and low mass ratio(s) are used. 

However, the three models also differ in the number of layers, and each layer in-

cludes additional CV or PCV and sometimes FCV as well. 

As for the lowest velocity ratio indicating the onset of instability of a single moving 

mass, only the one-layer model is fully regular. Instability occurs at CV in the absence of 

damping, and it moves further away from CV with increasing damping and decreasing 

moving mass ratio. The interval of unstable velocities always ends at plus infinity, there 

are no closed intervals of instability. A similar regularity can be observed in the other 

models only when higher stiffness ratio(s) are used. However, this regularity is always 

affected by additional CVs or PCVs that form the vertical asymptotes of the instability 

lines. When using a low stiffness ratio(s), this regularity is violated and vertical lines of 

CVs and PCVs can be crossed by instability lines. Moreover, with decreasing damping 
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Figure 19. One-layer model: function envelopes of the unsteady harmonic part of the deflection of
the rear AP for two moving proximate masses: ηN = ηs = η f = 0, α = 0.5, ηM = 40.
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7. Conclusions

All the semianalytical results presented in this paper were shown to be supported
by the exact evaluation of the K-function value. This was achieved by a precise contour
integration method. In the case of real poles, a simple way to deal with them is to introduce
very light damping to distinguish those that should belong to the upper part of the complex
plane and vice versa.

It was also seen that damping-free calculations are essential, and this is generally
well possible only with semianalytical methods. Numerical methods usually need some
damping for numerical stability. For example, the calculation of critical velocities using
parametric analysis would not be accurate because it would be difficult to distinguish the
dominant PCV from the CV.

Regarding the critical velocity of the moving force, it was shown that when the models
are compared to a reference Winkler beam, i.e., the one-layer model without shear resistance
and axial force, then the other models have CV1 or PCV1 (whichever is lower) always
lower. It can never reach the one-layer model value, in this case 1. It can only be attained
from below when high stiffness ratio(s) and low mass ratio(s) are used.

However, the three models also differ in the number of layers, and each layer includes
additional CV or PCV and sometimes FCV as well.

As for the lowest velocity ratio indicating the onset of instability of a single moving
mass, only the one-layer model is fully regular. Instability occurs at CV in the absence of
damping, and it moves further away from CV with increasing damping and decreasing
moving mass ratio. The interval of unstable velocities always ends at plus infinity, there
are no closed intervals of instability. A similar regularity can be observed in the other
models only when higher stiffness ratio(s) are used. However, this regularity is always
affected by additional CVs or PCVs that form the vertical asymptotes of the instability lines.
When using a low stiffness ratio(s), this regularity is violated and vertical lines of CVs and
PCVs can be crossed by instability lines. Moreover, with decreasing damping additional
instability lines are formed, implying more than one instability interval of velocity ratios
and the occurrence of FOI and FEI.

When considering two moving proximate masses, the regularity is violated even in
the one-layer model and the same behavior is detected in the two-layer model and low
mass ratio. It is expected that irregular behavior will also be present in the three-layer
model, but this will be the subject of further research.

It is of note that FCV has no effect on instability, nevertheless, one must be aware
that there is no steady-state solution for FCV and as such no solution for moving mass
or masses.
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