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Abstract: This paper deals with the Rayleigh wave, propagating on a nonlocally elastic, linearly
isotropic half-space, excited by a prescribed surface loading. The consideration develops the method-
ology of hyperbolic–elliptic models for Rayleigh and Rayleigh-type waves, and relies on the effective
boundary conditions formulated recently, accounting for the crucial contributions of the nonlocal
boundary layer. A slow-time perturbation scheme is established, leading to the reduced model for
the Rayleigh wave field, comprised of a singularly perturbed hyperbolic equation for the longitudinal
wave potential on the surface, acting as a boundary condition for the elliptic equation governing
the decay over the interior. An equivalent alternative formulation involving a pseudo-differential
operator acting on the loading terms, with parametric dependence on the depth coordinate, is
also presented.

Keywords: Rayleigh wave; nonlocal; boundary layer; asymptotic

1. Introduction

Surface elastic waves are of primary importance in many engineering applications, e.g.,
in seismic protection and non-destructive evaluation. Among numerous contributions to
the subject, as examples of ongoing interest to the problem, we mention recent publications
on seismic meta-surfaces and seismic barriers [1–3], studies of surface waves in micro-
structured elastic systems [4], as well as a contribution on surface-mounted sensors used
for the inspection of structures via guided waves [5].

The nonlocal theory of elasticity, originating from the contributions in [6,7] and devel-
oped substantially by Eringen [8–10], has various high-tech applications in nanotechnology
(see [11,12]). There are numerous publications studying nonlocal effects in structural me-
chanics, as well as in elastic continuum, e.g., see [13–15] to name a few. The nonlocal
constitutive models may be classified into integral ones, leading to sophisticated and not
always solvable integro-differential equations, differential ones related to gradient elas-
ticity, as well as two-phase models (see the famous contribution [9]), and more recent
efforts [16,17]. One of the observations in structural mechanics was the ill-posed nature of
the problem for the Euler–Bernoulli beam within the framework of the integral nonlocal
model (see [18] and also [19]). A question of equivalence of the differential and integral
models has attracted attention recently (see [20,21]). It was found that the differential and
integral formulations are equivalent in the case of a nonlocally elastic half-space provided
that the additional conditions on the boundary hold, which is in line with the concept of
constitutive boundary conditions (e.g., see [18,22]). Moreover, it was shown in [20,21] that
the solution of the differential model does not satisfy the equations of motion within the
integral formulation, with the discrepancy associated with the nonlocal boundary layer. At
the same time, asymptotically consistent differential formulations were proposed, including
the effective boundary conditions accounting for the influence of nonlocality.

In this paper, we implement these effective boundary conditions within the method-
ology of reduced models for Rayleigh-type waves (summarised in [23], see references
therein), and derive an asymptotic model for the Rayleigh wave on a nonlocally elastic
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half-space. The described model presents an asymptotic formulation for the Rayleigh wave
field, excited by the prescribed surface loading, and relies on the representation of the
eigensolution in terms of a single harmonic function (see [24,25]). The formulation contains
a non-homogeneous hyperbolic equation on the surface, with loading terms appearing in
the right-hand side, and an elliptic equation over the interior governing attenuation. Recent
methodology developments include extensions to pre-stress [26], anisotropy [27], flexural
seismic meta-surfaces [28], refined second-order formulation [29], and incorporation of
gravity [30].

The presence of the nonlocal boundary layer is modelled via the effective boundary
conditions derived in [21]. Following [23], a slow-time near-resonant perturbation scheme
is implemented. As a result, a singularly perturbed hyperbolic equation on the surface
is obtained, containing the loading terms in its right-hand side. The perturbative term
contains a pseudo-differential operator, similarly to the previously known results for a
coated half-space. However, the sign of the coefficient in front of this perturbative term
admits only one scenario, associated with the local maximum of the phase speed at the
Rayleigh wave speed in the long-wave limit. This is in line with the expectations of
nonlocality, typically causing a slight decrease in frequency compared with results of
conventional local elasticity.

The paper is organised as follows: Section 2 contains the formulation of the problem
and development of the slow-time perturbation procedure. In Section 3, the asymptotic for-
mulation for the nonlocally elastic Rayleigh-type wave is obtained and discussed, including
an alternative representation involving a pseudo-differential operator acting on the load in
the right-hand side, providing the solution for elastic potential at a given depth. Finally,
Section 4 is dedicated to concluding remarks and ideas for further progress in the area.

2. Materials and Methods
2.1. Statement of the Problem

Consider a linearly isotropic, nonlocally elastic half-space specified by the inequalities
{−∞ < x1, x3 < ∞, x2 ≥ 0} under the effect of a prescribed loading f = ( f1(x1, t), f2(x1, t), 0)
acting along the surface x2 = 0 (Figure 1). Throughout this paper the plane strain as-
sumption is imposed, for which the displacement component u3 ≡ 0, and u1 and u2 are
independent of x3.
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Figure 1. Elastic half-space under the action of a prescribed surface load.

It has been demonstrated in [21] that the nonlocal correction to boundary conditions
is by order of magnitude higher than that to the equations of motion (see also an earlier
consideration of nonlocal boundary layers in [14]). Thus, the governing equations of motion
may be taken in the form of the conventional wave equations for the elastic Lamé potentials
ϕ = ϕ(x1, x2, t) and ψ = ψ(x1, x2, t), namely

∂2 ϕ

∂t2 − c2
1∆ϕ = 0,

∂2ψ

∂t2 − c2
2∆ψ = 0,

(1)
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where c1 =
√

λ+2µ
ρ and c2 =

√
µ
ρ are the longitudinal and transverse wave speeds,

respectively, λ and µ are the Lamé parameters, ρ is the volume mass density, and ∆ is the
Laplace operator in x1 and x2. The non-zero displacements are expressed through the Lamé
potentials as

u1 =
∂ϕ

∂x1
− ∂ψ

∂x2
,

u2 =
∂ϕ

∂x2
+

∂ψ

∂x1
,

(2)

with the constitutive relations of linear isotropic elasticity taken in the form

σij = λ

(
∂u1

∂x1
+

∂u2

∂x2

)
δij + µ

(
∂ui
∂xj

+
∂uj

∂xi

)
, i, j = 1, 2, (3)

where σij are the conventional “local” stresses.
In view of the effective boundary conditions derived in [21], accounting for the pres-

ence of a nonlocal boundary layer, the boundary conditions on the surface x2 = 0 are
formulated as

σ21 = 2aµ
(

1− κ2
)∂2u1

∂x2
1
− f1,

σ22 = − f2.

(4)

These conditions correspond to excitation of the nonlocally elastic Rayleigh-type wave
due to the prescribed surface loading with components f1(x1, t) and f2(x1, t) along the
x1 and x2 axis. Here, κ = c2/c1, and the dimensional parameter a is associated with
nonlocality (see [21] for more detail). In what follows, a is assumed much smaller than the
typical wavelength l, suggesting a natural asymptotic parameter

ε =
a
l
� 1. (5)

It should be noted that the effective boundary conditions (4) correspond to the nonlocal
kernel in the form of the zeroth-order modified Bessel function of second kind (see also [9]),
whereas in case of the Gaussian kernel, an extra constant factor of π−1/2 appears within
the first term in the right-hand side for shear stress component (as shown in [14]).

In view of (2) and (3) the boundary conditions may be rewritten in terms of the Lamé
potentials ϕ and ψ as

µ

(
2

∂2 ϕ

∂x1∂x2
+

∂2ψ

∂x2
1
− ∂2ψ

∂x2
2

)
= 2aµ

(
1− κ2

)(∂3 ϕ

∂x3
1
− ∂3ψ

∂x2
1∂x2

)
− f1,

µ

((
κ−2 − 2

)∂2 ϕ

∂x2
1
+ κ−2 ∂2 ϕ

∂x2
2
+ 2

∂2ψ

∂x1∂x2

)
= − f2.

(6)

2.2. Perturbation Scheme

Following [23], we establish a slow-time perturbation procedure, introducing the
scaled variables

ξ =
x1

l
, η =

x2

l
, τf =

cR
l

t, τs = ετf (7)

where τf and τs denote the fast and slow times, respectively, and cR is the classical Rayleigh
wave speed, being the unique non-zero real solution of the Rayleigh equation(

2−
c2

R
c2

2

)2

− 4

√
1−

c2
R

c2
1

√
1−

c2
R

c2
2
= 0. (8)
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It should be noted that the problem essentially has two small parameters, one associ-
ated with the nonlocality, and another one corresponding to the near-resonant behaviour,
with the phase speed of the wave in question being close to the Rayleigh one. However, for
the sake of simplicity these parameters are assumed to be of the same order.

Next, the potentials are expanded as asymptotic series,

ϕ =
F0l2

µ

(
ε−1 ϕ0 + ϕ1 + . . .

)
, ψ =

F0l2

µ

(
ε−1ψ0 + ψ1 + . . .

)
, (9)

where F0 = max
x1,t

[ f1(x1, t), f2(x1, t)], and the coefficient ε−1 at leading order is associated

with the near-resonant regime under consideration.
Using the string-like assumption associated with the Rayleigh wave

∂2 ϕ

∂ξ2 −
∂2 ϕ

∂τ2
f
= 0,

∂2ψ

∂ξ2 −
∂2ψ

∂τ2
f
= 0, (10)

it is possible to obtain the two-term solutions of the equations of motion (1) in the form

∂ϕ

∂ξ
=

F0l2

µ

(
ε−1 ∂ϕ0

∂ξ
+

∂ϕ10

∂ξ
+ η

1− α2
R

αR

∂2 ϕ∗0
∂τf ∂τs

+ . . .

)
,

∂ψ

∂ξ
=

F0l2

µ

(
ε−1 ∂ψ0

∂ξ
+

∂ψ10

∂ξ
+ η

1− β2
R

βR

∂2ψ∗0
∂τf ∂τs

+ . . .

) (11)

(for more details see [23]). Here, the functions ϕ0 = ϕ0

(
ξ, αRη, τf , τs

)
, ϕ10 = ϕ10

(
ξ, αRη, τf , τs

)
,

and ψ0 = ψ0

(
ξ, βRη, τf , τs

)
, ψ10 = ψ10

(
ξ, βRη, τf , τs

)
are harmonic in the first two argu-

ments, the quantities

αR =

√
1−

c2
R

c2
1

, βR =

√
1−

c2
R

c2
2

, (12)

are associated with the attenuation factors, and the asterisk denotes a harmonic conju-
gate quantity.

Next, the two-term solutions (11) are substituted into the boundary conditions (6),
rewritten in terms of the scaled variables (8) as

2
∂2 ϕ

∂ξ∂η
+

∂2ψ

∂ξ2 −
∂2ψ

∂η2 = 2ε
(

1− κ2
)(∂3 ϕ

∂ξ3 −
∂3ψ

∂ξ2∂η

)
− l2 f1

µ
,

(
κ−2 − 2

)∂2 ϕ

∂ξ2 + κ−2 ∂2 ϕ

∂η2 + 2
∂2ψ

∂ξ∂η
= − l2 f2

µ
.

(13)

Then, at leading order we obtain

2
∂2 ϕ0

∂ξ∂η
+
(

1 + β2
R

)∂2ψ0

∂ξ2 = 0,

−
(

1 + β2
R

)∂2 ϕ0

∂ξ2 + 2
∂2ψ0

∂ξ∂η
= 0.

(14)

Using the Cauchy–Riemann identities for a harmonic function g(ξ, kη)

∂g
∂η

= −k
∂g∗

∂ξ
,

∂g
∂ξ

=
1
k

∂g∗

∂η
, (15)
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the Rayleigh Equation (8) may be deduced as the solvability condition from (14), along
with the following relations between the leading-order potentials on the surface x2 = 0

∂ϕ0

∂η
= −

1 + β2
R

2
∂ψ0

∂ξ
,

∂ϕ0

∂ξ
=

2
1 + β2

R

∂ψ0

∂η
, (16)

originally noted for the classical Rayleigh wave by Sobolev [31] (see also [24]), as well as
generalisation to anisotropy [32,33]. Following the reasoning in [24], the leading-order
potentials ϕ0 and ψ0 are related as harmonic conjugate functions not only on the boundary
but over the interior as well (cf. Equations (38) and (39) in [23]).

At next order, in view of (11) and (16), the boundary conditions imply

2
∂3 ϕ10

∂ξ2∂η
+
(

1 + β2
R

)∂3ψ10

∂ξ3 +
2
(
1− α2

R
)

αR

∂3 ϕ∗0
∂τf ∂τs∂ξ

−
2
(
1− β2

R
)

βR

∂3ψ∗0
∂τf ∂τs∂η

=
(

1− κ2
)(

1− β2
R

)∂4 ϕ0

∂ξ4 −
1
F0

∂ f1

∂ξ
,

−
(

1 + β2
R

)∂3 ϕ10

∂ξ3 + 2
∂3ψ10

∂ξ2∂η
+

2
(
1− α2

R
)

αRκ2
∂3 ϕ∗0

∂τf ∂τs∂η
+

2
(
1− β2

R
)

βR

∂3ψ∗0
∂τf ∂τs∂ξ

= − 1
F0

∂ f2

∂ξ
.

(17)

Using the Cauchy–Riemann identities (15), as well as integrating with respect to ξ and
making use of the relations (16), we obtain

2αR
∂2 ϕ10

∂ξ2 +
(

1 + β2
R

)∂2ψ∗10
∂ξ2 =

(
2
(
1− α2

R
)

αR
−

1− β4
R

βR

)
∂2 ϕ0

∂τf ∂τs
+
(

1− κ2
)(

1− β2
R

)∂3 ϕ∗0
∂ξ3 −

f ∗1
F0

,

(
1 + β2

R

)∂2 ϕ10

∂ξ2 + 2βR
∂2ψ∗10
∂ξ2 =

(
2
(

1− β2
R

)
−

1− β4
R

β2
R

)
∂2 ϕ0

∂τf ∂τs
+

f2

F0
,

(18)

where f ∗1 is understood in the sense of a Hilbert transform of f1. The solvability of the latter
dictates

4B
∂2 ϕ0

∂τf ∂τs
+ 2βR

(
1− κ2

)(
1− β2

R

)∂3 ϕ∗0
∂ξ3 − 2βR

f ∗1
F0
−
(

1 + β2
R

) f2

F0
= 0, (19)

where
B =

βR
αR

(
1− α2

R

)
+

αR
βR

(
1− β2

R

)
+ β4

R − 1

(see [23]). Then, using the string-like assumption (10) along with the leading-order approxi-
mation µεϕ ≈ F0l2 ϕ0 and an operator relation

∂2

∂τ2
f
+ 2ε

∂2

∂τf ∂τs
≈ l2

c2
R

∂2

∂t2 ,

returning to the original variables, (19) is re-cast in the form of a singularly perturbed
hyperbolic equation on the surface x2 = 0

∂2 ϕ

∂x2
1
− 1

c2
R

∂2 ϕ

∂t2 − aN
∂3 ϕ∗

∂x3
1

= − 1
2µB

(
2βR f ∗1 +

(
1 + β2

R

)
f2

)
, (20)

where the coefficient
N =

βR
µB

(
1− κ2

)(
1− β2

R

)
, (21)

accounting for nonlocal effects, may be shown to be positive.
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3. Results and Discussion
3.1. Asymptotic Formulation for the Nonlocally Elastic Rayleigh Wave

Thus, given a prescribed loading, one may substitute it into the perturbed hyperbolic
Equation (20) and find the value of the longitudinal potential ϕ at the surface x2 = 0. This
may then serve as a boundary value for the elliptic equation

∂2 ϕ

∂x2
2
+ α2

R
∂2 ϕ

∂x2
1
= 0, (22)

describing the attenuating behaviour over the interior. Then, once the potential ϕ is de-
termined, its shear counterpart ψ may be restored as a harmonic conjugate by making
use of (16) (for more details see [23]). It should be noted that Equation (20) for the po-
tential ϕ on the surface x2 = 0 may also be written in terms of a pseudo-differential
operator, namely

∂2 ϕ

∂x2
1
− 1

c2
R

∂2 ϕ

∂t2 − aN

√
− ∂2

∂x2
1

(
∂2 ϕ

∂x2
1

)
= − 1

2µB

(
2βR f ∗1 +

(
1 + β2

R

)
f2

)
(23)

(for more details on the theory of pseudo-differential operators, readers are referred to [34]).
In the absence of loading (when f1 = f2 ≡ 0), the associated dispersion relation takes

the form
C2 = 1− NK, (24)

where C = c/cR and K = ak (k > 0) denote the dimensionless phase velocity and wave
number, respectively. As might be expected, it is observed that the nonlocality of the media
causes a slight decrease in the Rayleigh wave speed. In fact, this local maximum of the
phase speed at the long-wave limit implies that in case of the associated Lamb problem the
presence of the near-surface nonlocal boundary layer leads to a receding front (see Section 6
in [35]), considering both possibilities of advancing and receding fronts in case of a coated
elastic half-space.

3.2. Hyperbolic Equation at a Prescribed Depth

Let us now obtain an equivalent formulation of the derived asymptotic model (22)
and (23), combining both in a single equation and keeping the same operator in the left-
hand side but having a pseudo-differential operator applied to the loading terms in the
right-hand side, following a recent approach in [36]. Indeed, the decaying solution of (22)
at a given depth x2 may be expressed through its value on the surface x2 = 0 as

ϕ(x1, αRx2, t) = e
−αRx2

√
− ∂2

∂x2
1 [ϕ(x1, 0, t)]. (25)

Here, e
−αRx2

√
− ∂2

∂x2
1 is a pseudo-differential operator defined by

e
−αRx2

√
− ∂2

∂x2
1 [g(x1, t)] =

1
2π

∞∫
−∞

 ∞∫
−∞

g(x1, t)e−isx1 dx1

e−αR |s|x2+isx1 ds. (26)

Therefore, in view of (25), the perturbed hyperbolic Equation (23) may be extended
over the interior, yielding

∂2 ϕ

∂x2
1
− 1

c2
R

∂2 ϕ

∂t2 − aN

√
− ∂2

∂x2
1

(
∂2 ϕ

∂x2
1

)
= − 1

2µB
e
−αRx2

√
− ∂2

∂x2
1

[
2βR f ∗1 +

(
1 + β2

R

)
f2

]
. (27)

It is worth noting that the vertical coordinate x2 presents only a parametric dependence
in the right-hand side of (27), as observed in [36].
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Thus, the obtained reduced model for the nonlocally elastic surface wave field may be
presented as a boundary value problem for the elliptic Equation (22), with the boundary
condition (23), or, equivalently, as Equation (27) for the longitudinal potential ϕ(x1, x2, t).

4. Conclusions

The hyperbolic–elliptic model for the Rayleigh wave on a nonlocally elastic half-space,
induced by the prescribed surface loading, is established. The consideration relies on
the recently derived formulation for the nonlocal elastic half-space [21], including the
conventional equations of motion of local elasticity along with the effective boundary
conditions accounting for the presence of the nonlocal boundary layer. The contribution of
nonlocality appears to be in a singular perturbative term in the hyperbolic Equation (23),
which is formally close to that arising in the asymptotic formulation for the Rayleigh-type
wave in case of a coated elastic half-space [34]. As might be expected, the associated
dispersion relation reveals a slight decrease in phase velocity due to nonlocality. For a
given load, the solution of (23) serves as a boundary value for the elliptic Equation (22). The
longitudinal potential ϕ will then fully determine the displacements (see, e.g., Equation (40)
in [23]). An elegant alternative formulation (27) is developed, combining both (22) and
(23) in a single hyperbolic equation at a given depth, with the right-hand side containing a
pseudo-differential operator acting on surface loading components and having a parametric
dependence on the vertical coordinate.

The results could be further generalized to incorporate the effects of anisotropy, pre-
stress, and inhomogeneity. The methodology may also be extended to interfacial Stoneley
and Schölte waves. It is also worth noting that, as shown in [20], the presence of nonlocality
leads to existence of an antiplane shear surface wave (see also [37]). In this scalar case, an
analogue of (20) may be derived for the non-zero displacement, with the right-hand side
involving a derivative of the prescribed surface stress. Finally, we mention the potential of
the presented approach for addressing forced problems for surface water waves (see [38]).
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