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Abstract: In the nursery sector, the transport and planting of trees must occur with the roots wrapped
in a ball of the original earth. The cutting of the original soil can be carried out with a semicircular
vibrating blade moved by an oscillator mounted on a self-propelled machine. The oscillator produces
an excitation torque supplied to the blade together with the soil cutting torque. The advantage of
the vibrating blade is a reduction in the cutting torque of up to 70%. However, to correctly design
the oscillator, we need to investigate the link between the maximum displacement of the blade, the
maximum oscillation velocity, the cutting velocity, the dry friction, the excitation torque, the elastic
torque, the cutting torque, the required power, the required energy, and the excitation frequency. The
maximum displacement and velocity ratio need to have the right values to minimize the cutting
torque and to avoid the springs reaching the end of stroke; otherwise, vibrations are transmitted to
the machine and to the operator. Therefore, starting from the forced oscillation differential equation
and using an approximate solution method developed by Den Hartog, along with some experimental
data, a mathematical model was constructed to optimize the oscillator design. After construction,
it was coupled to blades of various diameters (0.6, 0.9, and 1.2 m) to undergo experimental tests.
The soil cutting tests highlighted the achievement of the above objectives and, at the same time,
confirmed the validity of the Den Hartog equations used to calculate the phase lag and the maximum
displacement, resulting in an average error of 4.4% and a maximum error of 6.4%.

Keywords: mechanical oscillator; vibrating blade; soil cutting; dry friction; forced vibration; Den
Hartog equations; tree digger machine

1. Introduction

In many areas of technology, vibrating tools are used to reduce the cutting force
in materials. In addition, in the case of soil, intense research and applications have been
conducted over the last few decades. The first contribution was by Gunn and Tramontini [1],
who found that the total energy required for cutting is approximately equal between the
vibrating blade and the static one. Subsequently, Egenmueller [2] demonstrated that if
the ratio

.
A0/vcut between the peak velocity of the oscillation

.
A0 and the cutting velocity

vcut of the tool is higher, then the vibration produces a greater reduction in the soil cutting
force. In his experiments, he found that the ratio of the cutting force with the vibrating tool
to that of the non-vibrating tool was a monotonic function decreasing with respect to the
velocity ratio

.
A0/vcut. With the maximum value of the latter equal to 6, he found that the

force ratio was reduced to 0.4. However, his results were conditioned by the maximum
linear displacement A0 of at least 6 mm, but he also demonstrated that higher values of A0
produce only poor improvements in cutting force reduction. In the following years, other
authors substantially confirmed these indications [3,4].

Butson and MacIntyre [5], through experiments in soil tanks, obtained a reduction in
the cutting force of 50% with a velocity ratio greater than 1, a frequency of 50 Hz, and an
A0 of 8 mm. Butson and Rackham [6] derived a mathematical model for predicting cutting
force by considering all parameters for an effective prediction.
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Narayanarao and Verma [7] also developed a mathematical model to predict cutting
force, with the results compared with the experimental ones detected on a vibrating tool in
harmonic motion.

In the specific potato-digging machine sector, Al-Jubouri and McNulty [8] developed
a vibrating digging blade and confirmed the importance of a higher velocity ratio to reduce
the cutting force, even if the expended energy increases. They also observed that the
vibrating blade reduced potato damage and losses.

Other works [9,10] were carried out in which the authors showed that the oscillations
must occur lengthwise, along the direction of motion, to obtain the maximum efficacy in
reducing the cutting force. Lateral or vertical vibrations are not very useful.

In all the experiments mentioned, the forced vibrations were harmonic, while
Smith et al. [11,12] also tested non-harmonic vibrations such as square waves and saw-
tooth waves, finding no difference for the purpose of reducing the cutting force.

With a vibrating tool on clay soil, Niyamapa and Salokhe [13] ascertained that the
vibration resulted in a 41–45% increase in power requirement compared with the non-
oscillating tool, but the vibration produced a greater breaking up of the soil.

Szabo et al. [14] conducted experiments with an oscillating tool, pushing the velocity
ratio beyond the limit of 6, concluding that a ratio of cutting forces, with and without
vibration, equal to 0.3 can be obtained by a employing velocity ratio

.
A0/vcut that is equal

to or greater than 17.
Shahgoli et al. [15] developed a vibrating ripper for hard compacted soil, achieving a

force reduction of 50% with a frequency of 4.9 Hz and an amplitude of 60–69 mm. They
then studied [16] a dynamic simulation model for an oscillating subsoiler for small tractors.
Finally, they identified [17] the optimal frequency, reaching a cutting force ratio of 0.36.

Tang et al. [18] conducted comparison tests between a static, a rotating, and a vibrating
subsoiler, concluding that the latter is more effective in reducing the cutting force. Tests
by Shchukin et al. [19] on a vibrating subsoiler compared with a static one showed that
the vibration improved the soil structure. Razzaghi and Sohrabi [20] demonstrated a
new method of analysis of the interaction between a vibrating tool and the soil based on
polar coordinates.

Rao et al. [21–25] developed optimized design algorithms for a vibratory tillage cul-
tivator. Keppler et al. [26] simulated the effect of tillage cultivator vibrations on cutting
force using the discrete element method (DEM). Biris et al. [27] found that the influ-
ence of vibration during soil cutting is equivalent to an additional force to overcome the
frictional resistance.

Experimenting on a vibratory tillage cultivator, Dzhabborov et al. [28] determined that
an increase in frequency improves both the reduction in cutting force and the structure of
the soil. Wang et al. [29] also confirmed that a frequency increase produces a reduction in
the cutting force, but an increase in the required power.

In summary, the best result, with regard to a cutting force ratio equal to 0.3, is obtained
by reaching a velocity ratio

.
A0/vcut equal to or greater than 17, and with a maximum linear

displacement A0 of at least 6 mm.
This knowledge was used some years ago [30] to experimentally analyze the motion

of the 0.9 m diameter vibrating cutting blade of a tree digger machine. These machines
are used to cut the hemispherical clod of soil (Figure 1) that encloses the root system of
trees so that they can be transported and planted in orchards or gardens after growing in
a tree nursery. Alternatively, the tree digger machine which forms the clod of soil using
a series of spades can be used. The spades are mounted on a frame arranged around the
tree and driven into the soil with hydraulic cylinders without the aid of vibrations. With
no vibrations, digging is slower. However, the tree digger machine with spades is still
interesting for digging large trees.
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Figure 1. The semicircular blade during the cutting of a root ball. The blade is supported by the
frame of the tree digger machine.

The study and experimentation at the time highlighted the shortcomings of the me-
chanical oscillator used for the forced vibration of the blade. In fact, with this oscillator, it
was found that the maximum linear displacement A0 was limited to approximately 5 mm
instead of 6, while it allowed a correct velocity ratio

.
A0/vcut equal to 17.

With the use of the tree digger machine extended to root ball diameters greater than
0.9 m (i.e., 1.2 m), the mechanical oscillator then showed two further limitations. The first
was that the blade vibrated with maximum linear displacement values equal to half of
the optimal value of at least 6 mm. The second problem was a dangerous transmission of
vibrations to the machine frame and therefore to the operator [31–33].

Since the vibrating blades cut the soil and encounter dry friction without sticking,
the motion dynamics can be described with the approximate solution proposed by Den
Hartog [34]. This author also demonstrated the excellent correlation of this approximate
solution with the exact solution provided by the differential equation of motion obtained
by representing the dry friction force with a Fourier series.

Therefore, in this work, mathematical modeling based on Den Hartog equations
providing the maximum displacement and the phase lag will be performed. The values of
these quantities will allow for the design of a new mechanical oscillator able to increase the
maximum linear displacement to the optimal values for a maximum reduction in cutting
force and which will not transmit the vibrations to the frame of the machine, especially for
a larger diameter (i.e., equal to 1.2 m).

Three different blades (D = 0.6, 0.9 and 1.2 m) will be mounted on this mechanical
oscillator, and experimental soil cutting tests will be performed for a validation of the
mathematical model based on Den Hartog’s equations. In fact, it must be considered that
the application of Den Hartog’s theory on agricultural soil requires the assumption of
simplifying the hypotheses on dry friction represented by Coulomb’s law. Finally, the
mathematical model equations will be used to calculate the cutting and oscillation power
and energy, thus defining the best excitation frequency value.
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2. Materials and Methods
2.1. The Mechanical Oscillator and the Vibrating Blade

Figure 2 shows the vibrating system, consisting of a semicircular blade for cutting the
soil and an oscillator, with a set of five gear wheels inside. The central wheel (in black) is
moved by an external hydraulic motor placed on the left. The motion is transmitted, via
the two intermediate gear wheels (1) to the outermost gear wheels, which each carry an
eccentric mass (2).

Figure 2. The oscillator blade system: (1) gear wheels; (2) eccentric masses; (3) gear housing; (4) shaft;
(5) horizontal butterfly bush; (6) semicircular blade; (7) springs; (8) vertical butterfly bush; (9) worm
screw; (10) worm gear housing.

During the rotation of the gear wheels, when the two masses are at an angle of π/2
with respect to how they appear in Figure 2, they produce a maximum excitation torque
Tem, while in the position of Figure 2, they are in opposition and therefore their centrifugal
forces are balanced. Therefore, the excitation torque varies according to harmonic law
and induces the entire gear housing (3) to an oscillating motion, which is transmitted to
the shaft (4) and therefore to the horizontal butterfly bush (5) and to the blade (6). Note
that the splined shaft to the left of the horizontal butterfly bush (5) is not connected to the
central gear wheel (in black) but is connected to the gear housing (3). Therefore, the latter
transmits the oscillation to the splined shaft and hence to the blade (6) via the shaft (4). The
horizontal butterfly bush has a system of springs (7) supported by a vertical butterfly bush
(8). However, this bush is not fixed but can rotate because it is controlled by a worm screw
(9) when the operator wants to impart the rotating cutting movement to the blade.

2.2. The Differential Equation of the Forced Vibration with Coulomb Friction

Figure 3 shows the dynamic diagram of Den Hartog’s system [34], here modified to
replace linear motion with angular motion, given that the vibrating blade is in rotation
while cutting the soil. The blade is then subjected to excitation torque due to the two
rotating eccentric masses (Figure 2 (2)): Tem· cos(ωt + φ). In this expression, the phase
angle φ is introduced, as per Den Hartog, who, recognizing the fact that there is a delay
in the motion of the blade, explained that the phase angle introduced in the definition of
the excitation torque has no meaning and is only included with the purpose of writing the
boundary conditions for the solution to the equation of dynamics in a simple way.
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Figure 3. Single degree of freedom system to which the oscillating blade within the soil can be traced
under the effect of the excitation torque Tem, the friction torque TF, and the elastic torque k·α.

Figure 3 also shows the presence of dry friction torque TF, which, following Coulomb’s
law, is variable according to a rectangular wave (Figure 4) in phase with the sine wave
of the angular velocity

.
α of the blade oscillation. Mostaghel [35] proposed representing

this rectangular wave with a hyperbolic function: TF·tanh
(
1000· .α

)
, where

.
α is the angular

velocity of the blade oscillation, while α represents the angular displacement of the blade.
Finally, Figure 3 shows the presence of return springs, which exert an elastic torque equal
to k·α, where k is the torsional spring rate. If J denotes the moment of inertia of the gear
housing/bush-blade system (Figure 2), the differential equation of dynamics is

J· ..α + k·α + TF = Tem· cos(ωt + φ) (1)

where J (moment of inertia), k (torsional springs rate), and Tem (maximum excitation torque)
are constants to be correlated with the geometric and dynamic characteristics of the system.

Figure 4. Blade angular displacement α vs. ωt angle. The excitation torque Tem with the phase
angle φ, as predicted by Den Hartog’s theory, is also shown. Furthermore, the rectangular wave of
the friction torque TF, which obeys Coulomb’s law, is present. The rectangular wave of TF is π/2
out of phase with the displacement α because TF is in phase with the angular velocity of the blade
oscillation

.
α.

The moment of inertia J was calculated using AutoCAD 2016 software after
drawing the oscillating parts of the system. The quantity k was calculated with the
following expression:

k = z·kl ·b2
S (2)

where z is the number of springs (z = 4); kl represents the linear spring rate of the single
helicoidal spring; and bS denotes the lever arm of the springs.
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The maximum excitation torque Tem was calculated with the following expression:

Tem = n·m·ω2·yG·bG (3)

where ω is the angular velocity of the eccentric masses and, hence, the angular frequency of
the excitation torque; n stands for the number of eccentric masses (2 masses in Figure 2, but
they can be 4 or 6); m denotes the eccentric mass value; yG represents the mass eccentricity;
and bG refers to the lever arm of the masses (i.e., the distance between the eccentric mass
shaft and the blade shaft).

The amplitude of Coulomb torque TF is

TF = dry f riction f orce·lever arm = 2·µ·G·D
π

(4)

where D/π represents the lever arm of the dry friction force and D is the diameter of
the hemispherical root ball. The dry friction force is the product of the external friction
coefficient µ and the force G acting on the blade when it is at maximum depth (i.e., halfway
through the cutting stroke of the soil ball). Thus, the force G, applied to the upper side of
the blade, is due to the mass of soil that has already been cut when the blade is at maximum
depth. Therefore, this mass corresponds to half of the root ball, which in turn is half of the
sphere of diameter D. Since half of the tree weighs on the half root ball, and since it can
be said, empirically, that the tree weighs as much as the root ball, the normal force G on
the upper side of the blade is: G = 2· 14 ·ρ·

π
6 D3·g, where ρ is the soil density, D represents

the diameter of the blade and is therefore the diameter of the root ball, and g denotes the
gravity acceleration. Furthermore, in Equation (4), the coefficient 2 appears because the
reaction of the cut soil is equal and opposite to G on the lower side of the blade. Ultimately,
the friction torque is

TF = µ·ρ·D
4

6
·g (5)

2.3. Den Hartog Solution Applied to the Vibrating Blade

Den Hartog [34] rewrote the differential Equation (1) after introducing the following
abbreviations, adapted here to the case of angular instead of linear motion:

The static displacement under maximum excitation torque a = Tem/k
The static displacement under maximum friction torque α f = TF/k

The natural frequency ωn =
√

k
J

..
α + ω2

n·
(

α− α f

)
= a·ω2

n· cos(ωt + φ) (6)

With the following boundary conditions:

1. t = 0 → α = α0 →
.
α = 0

2. t = π/ω → α = −α0 →
.
α = 0

Den Hartog obtained a steady-state solution, and from it, he proposed the equations
for the “magnification factor” α0/a and the “phase angle” φ:

α0

a
=

√
V2 −

(
TF
Tem

)2
U2 (7)

φ = arccos
(

α0

a
· 1
V

)
(8)
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where

V =
β2

β2 − 1
is the “response function”;

U =
β· sin(β·π)

1 + cos(β·π)
is the “Coulomb damping function”;

β =
ωn

ω
is the “frequency ratio”.

2.4. The Vibrating Blade While Cutting the Soil

When the operator activates the screw gear (9) (Figure 2), it rotates the vibrating blade
to cut the soil. The reaction of the soil induces the cutting torque Tcut on the blade, which
forces the springs on one side of the vertical bush (Figure 2) to compress, while those on the
opposite side lengthen. This static compression results in (Tcut/k)bS. Thus, the coil springs
of one side result in a total linear compression, which is the sum of the previous static
compression and the maximum linear displacement of the springs: (Tcut/k)bS + α0·bS,
where α0 is the maximum angular displacement, k represents the torsional spring rate and
bS denotes the lever arm of the springs.

To prevent vibration from being transmitted to the tree digger machine frame and
therefore also to the operator, the total linear compression of the springs must be less than
the total space St between the coils of the springs:

St ≥
(

Tcut

k
+ α0

)
·bS (9)

2.5. Soil Cutting Time and Energy Required

After setting the optimal velocity ratio
.
A0/vcut between the maximum oscillation

velocity of the blade
.
A0 =

.
α0·D/2 = α0·ω·D/2 and the cutting velocity vcut = (π·D/2)/tcut,

the soil cutting time can be calculated, given that the blade runs in a semicircle of diameter D
during cutting. As a previous work [14] had established that this velocity ratio

.
A0/vcut must

be at least equal to 17, the soil cutting time can be obtained with the following expression:

tcut =
17·π
α0·ω

(10)

The power required for the oscillation is given by the following equation:

Po = (Tem)e f f ·
( .
α0
)

e f f · cos(ψ) =
1
2
·Tem·α0·ω· cos

(
φ− π

2

)
(11)

where the excitation torque Tem and the angular velocity of the oscillation of the blade
.
α0 are the effective values, equivalent to the maximum values multiplied by

√
2/2; the

maximum angular velocity of oscillation is
.
α0 = α0·ω; and the phase lag ψ is the angle

between the excitation torque Tem and the angular velocity
.
α0. As this velocity is ahead by

π/2 in comparison with the angular displacement α0, and this is behind by φ in comparison
with Tem, the result is: ψ = φ− π/2.

To obtain the total power Pt, this oscillating power Po must be added to the soil cutting
power Pcut, that is,

Pcut =
Tcut·π

tcut
(12)

The oscillating power Po is supplied by the external hydraulic motor to the central
gear wheel (in black) of the housing (3) (Figure 2), while the cutting power Pcut is supplied
by another external hydraulic motor to the worm screw (9).
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The theoretical total energy Wtot (i.e., net of transmission efficiencies) required during
the vibratory cutting operation is the sum of the oscillating energy Wo and the cutting
energy Wcut. These energies can be obtained by multiplying the power by the cutting time
tcut. Equations (10)–(12) combined give the following total energy equation:

Wt = Wo + Wcut = Po·tcut + Pcut·tcut =
1
2
·Tem·17π· cos

(
φ− π

2

)
+ Tcut·π (13)

2.6. Experimental Evaluation of Cutting Torque and Maximum Displacement

To measure the cutting torque Tcut, four weighting platforms linked to a data logger
were used. They were placed under the two tracks of the tree digger machine, two on
the right and two on the left. When the blade of the tree digger machine cut the soil, for
balance, an equal and opposite reaction torque manifested itself as Tcut = F·C, where C was
the center distance between the two tracks and è F was the force that was measured by the
weighting platforms.

To measure the maximum angular displacement of the blade α0 while cutting the soil,
a laser Doppler vibrometer was used that measured the maximum linear displacement xG0
of the gear housing (Figure 2). If d is the diameter of the gear housing, the experimental
value of α0 is α0 = xG0/d.

The cutting tests were performed using a tree digger machine with the new oscillator
coupled with the three different blades with diameters D of 0.6, 0.9, and 1.2 m, respectively.
The cutting operation, repeated five times, was carried out on typical tree-nursery soil, that
is, a medium-textured soil with an average moisture content equal to 21.5%, an average
external friction coefficient µ with the steel blade of 0.52, and an average soil density ρ of
1598 kg/m3.

The moisture content of the soil was measured in the laboratory by weighing the
samples before and after drying in an oven at 408 K (135 ◦C) for 2 hours. The test was
replicated five times. The soil density ρ was obtained by measuring the mass and volume
of the samples. The coefficient of dynamic external friction µ was measured using an
adjustable inclined steel plane, on which the cubic clod of soil was placed, and above
which there was an accelerometer. After having started the motion of the soil clod by
raising the angle of the inclined plane, and having measured both the plane angle γ and
the acceleration a, the dynamic friction coefficient µ was calculated with the dynamics
equation: µ = tan β− a/(g· cos β). The test was replicated five times.

3. Results and Discussion

Through Equations (2), (3), (5), (7)–(9), along with the following Equation (14), which
provides the cutting torque Tcut detected in previous tests [11] with the old oscillator:

Tcut = 2478·D− 4272·D2 + 6385·D3 (14)

A different oscillator was studied and built that satisfied the conditions for minimizing
the cutting torque (i.e., a maximum linear displacement A0 ≥ 6 mm and a velocity ratio( .
α0·D/2

)
/vcut ≥ 17) and which did not transmit vibrations to the frame or to the operator,

even for the bigger blade diameter (i.e., D = 1.2 m). In Table 1, the geometric and dynamic
data of this new oscillator are shown together with those of the old oscillator.

Table 2 shows the data relating to the blades coupled with the new oscillator.
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Table 1. Geometric and dynamic features of the oscillators.

Quantity Symbol Oscillator
Old

Oscillator
New

Linear spring rate kl (N m−1) 572,000 1,140,000

Number of springs z 4 4

Lever arm of the springs bS (m) 0.087 0.108

Torsional springs rate k (N m rad−1) 17,318 53,227

Number of masses n 4 4

Mass m (kg) 1.27 2.41

Eccentricity yG (m) 0.0212 0.028

Mass lever arm bG (m) 0.163 0.200

Moment of inertia JO (kg m2) 0.38 1.30

Table 2. Geometric and dynamic features of the blades and systems (blades + oscillator).

Quantity Symbol Values

Blade Diameter D (m) 0.6 0.9 1.2

Moment of inertia (blade) JB (kg m2) 0.32 1.02 3.40

Moment of inertia (oscillator) JO (kg m2) 1.30 1.30 1.30

Moment of inertia (system b+o) J (kg m2) 1.62 2.32 4.70

Natural frequency ωn (rad s−1) 181.2 151.4 106.4

Through the data of Tables 1 and 2, using Equations (2), (3), (5), (7), and (8), the values
of the maximum angular displacement α0 and, respectively, of the phase angle φ were
obtained (Figures 5 and 6) with respect to the frequency ω of the excitation torque Tem.

Figure 5. Calculated maximum angular displacement α0 vs. blade D diameter and excitation
frequency ω. Since this ω is greater than the natural one ωn, when ω decreases, the displacement had
to increase if the excitation torque Tem was constant, but the oscillator produces a Tem that depends
on ω2, as Equation (3) shows. As α0 depends on Tem and TF, based on Equation (7), instead for some
ratios of these torques, such as for D = 1.2 m, α0 decreases as ω decreases.
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Figure 6. Calculated phase angle φ vs. excitation frequency ω and blade D diameter.

Furthermore, through the expression A0 = α0·D/2, the maximum linear displacement,
reported in Figure 7, was derived. This figure shows that, for blade diameters of 0.6 and
0.9 m, the displacement A0 fully satisfies the condition: A0 ≥ 6 mm, while for the 1.2 m
blade diameter, the excitation frequency ω must be greater than 360 rad s−1.

Figure 7. Calculated maximum linear displacement A0 vs. excitation frequency ω and blade D diameter.

Considering the values of the cutting torque Tcut supplied by Equation (14), the
inequality (9) was used to construct the graph in Figure 8, which indicates that, for all the
diameters of the blade and for all the frequencies analyzed, the oscillator does not carry the
springs to pack with St =

(
Tcut

k + α0

)
·bS, and it therefore does not present the dangerous

condition in which there is a transmission of vibrations to the machine and the operator.
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Figure 8. Calculated maximum springs compression
(

TC
k

+ α0

)
·bS during the soil cutting vs.

excitation frequency ω and blade D diameter.

Using Equation (10), the diagram in Figure 9 was created, which shows the soil cutting
time tcut as a function of the excitation frequency ω. For the two blades of 0.6 and 0.9 m,
the times tcut are very short, signaling an excellent machine performance, while for the
1.2 m blade and for ω < 360 rad s−1, the time tcut is greater than 15 seconds, rapidly rising
to values that greatly reduce the productivity of the machine—one more reason to operate
with ω > 360 rad s−1.

Figure 9. Calculated soil cutting time tcut vs. excitation frequency ω and blade D diameter.

Figures 10–12 show the theoretical powers (i.e., net of transmission efficiencies) re-
quired for the operation, respectively, with the three blade diameters: 1.2, 0.9, and 0.6 m.
Three curves are shown in each diagram: the power required to push the blade into the
soil while cutting, calculated with Equation (12); the power required for the oscillation,
calculated with Equation (11); and the total power, the sum of the previous two. For
example, it is interesting to note that the power required to push the blade for cutting the
soil is approximately four times less than that required by the oscillation in the case of the
0.9 and 1.2 m blades. Furthermore, going from a blade diameter of 0.6 m to 1.2 m, the total
power increases by approximately three times.
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Figure 10. Oscillating power Po, cutting power Pcut, and total power Pt calculated for the blade
diameter D = 1.2 m vs. excitation frequency ω.

Figure 11. Oscillating power Po, cutting power Pcut, and total power Pt calculated for the blade
diameter D = 0.9 m vs. excitation frequency ω.

Figure 12. Oscillating power Po, cutting power Pcut, and total power Pt calculated for the blade
diameter D = 0.6 m vs. excitation frequency ω.
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Finally, Figure 13 shows the theoretical total energy Wt (i.e., net of transmission
efficiencies) required for the operation, respectively, for blade diameters of 1.2, 0.9, and
0.6 m. The total energy was calculated with Equation (13), and is the sum of the energy
required to push the blade into the soil while cutting Wcut and the energy required for
the oscillation Wo. From Equation (13), the energy Wcut is constant as a function of ω.
By contrast, the energy required for the oscillation Wo appears nearly constant vs. ω.
In fact [36], it is Wo = Po·tcut =

1
2 ·Tem·17π· cos

(
φ− π

2
)
, where the excitation torque Tem

depends directly on ω2, while cos(φ − π/2) is almost inversely proportional to ω2 in the
range of ω values considered. Therefore, the total energy required is also substantially
invariant with respect to ω.

Figure 13. Theoretical total energy Wt vs. excitation frequency ω and blade D diameter.

The choice of the best excitation frequency ω value must be made between the mini-
mum limit of 360 rad s−1 to have the maximum linear displacement of the blade A0 ≥ 6 mm
(Figure 7) and the maximum limit of 420 rad s−1, which depends on the resistance of the
blade and the oscillator materials. Considering that the total energy required practically
does not depend on ω, the optimal value between these limits depends only on two factors:
(1) the cutting time tcut, which must be minimized, maximizing ω (Figure 9); and (2) the
total power required Pt, to be minimized by minimizing ω (Figures 10–12). Since even in
the most onerous condition with the 1.2 m blade diameter, the difference in total theoretical
power Pt required between 360 and 420 rad s−1 is just +3.2 kW, it is advisable to operate at
maximum ω, given that in this way, a reduction of 25% in the cutting time tcut is obtained.

After having obtained these positive results using the mathematical modeling equa-
tions described in Sections 2.2–2.5, experimental tests were carried out to determine the
cutting torque and the maximum displacement with the new oscillator coupled to the three
blades, with diameters of 0.6, 0.9, and 1.2 m.

Table 3 shows the experimental results obtained regarding the cutting torque. The
friction torque calculated via Equation (5), with the experimental values of the external
friction coefficient and the density of the soil (Section 2.6), is also shown.

Table 3. Experimental values of the cutting torque Tcut using the tree digger machine with the new
oscillator operating at an excitation frequency of ω = 420 rad s−1.

Quantity Symbol Values

Blade Diameter D (m) 0.6 0.9 1.2
Cutting torque Tcut (N m) 1268 3190 6324

Standard deviation S.D. (N m) 89 182 286
Friction torque TF (N m) 176 892 2819

The comparison between the cutting torque obtained and that of the previous tests [11],
considering that the soil was the same with the only difference being in the moisture content
(21.5% now and 20.2% then), appears interesting. Therefore, using Equation (14) of the
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previous tests, the values of the cutting torque are similar for the diameters of 0.6 m and
0.9 m, while a difference of –19% appears for D = 1.2 m. In fact, the previous tests were
carried out with the old oscillator (Table 1), which produced, with D = 1.2 m, A0 < 6 mm,
and which transmitted vibrations to the machine frame. Thus, the lower cutting torque with
the new oscillator is evidence of its optimized design based on Den Hartog’s equations.

The results of the tests on the cutting torque Tcut with the new oscillator as a function
of the blade diameter D can be summarized through the following regression equation:

Tcut = 6733.3·D2 − 3693.3·D + 1060 (15)

The maximum angular displacements α0 calculated with the Den Hartog Equation (7)
and those measured with the procedure seen in Section 2.6 are compared in Table 4. For all
diameters, the experimental value of α0 is lower, with a difference of 2.7%, 4.2% and 6.4%,
respectively, for D equal to 0.6, 0.9, and 1.2 m. Consequently, the experimental values are
lower than those also calculated for the maximum linear displacements. These differences
can be explained by the damping due to the lubricant inside the oscillator and probably
also by an underestimation of the friction torque TF of Equation (5). However, these errors
are acceptable, and seem not to be attributable to the approximate theory of Den Hartog.

Table 4. Calculated and measured maximum displacements using the tree digger machine with the
new oscillator operating at the excitation frequency ω = 420 rad s−1.

Quantity Symbol Values

Blade Diameter D (m) 0.6 0.9 1.2

Calculated
Max. angular
displacement α0 (rad) 0.0407 0.0264 0.0108

Max. linear
displacement A0 (mm) 12.2 11.9 6.5

Measured
Max. angular
displacement α0 (rad) 0.0396 0.0253 0.0101

Max. linear
displacement A0 (mm) 11.9 11.4 6.1

4. Conclusions

The tree digger machine uses a semicircular vibrating blade to cut a clod of soil
containing the roots of trees grown in tree nurseries, which must then be transported and
planted in orchards or gardens. In a previous work [30], the mechanical oscillator coupled
to the vibrating blade was analyzed, and its non-optimal performance was highlighted,
especially if coupled to large blades of 0.9 m and 1.2 m in diameter. Two facts emerged:
(1) the oscillator did not allow the blade to reach the optimum value of maximum linear
displacement to reduce the cutting torque as much as possible, and (2) for D = 1.2 m, the
oscillator transmitted vibrations to the machine and therefore to the operator.

To understand the origin of these negative phenomena and to realize a better me-
chanical oscillator, the approximate solution method of the differential equation of forced
vibration under dry friction proposed by Den Hartog [34] was applied. The equations
with regard to the linear oscillating motion proposed by this author were adapted to the
oscillating angular motion of the blade, leading to the correct design of the new oscillator
so that it can cut root balls with diameters as large as 1.2 m without the problems of the
old oscillator.

More specifically, using the modified equations of Den Hartog, a simulation of the
behavior of the system, composed of the blade and the new oscillator, allowed for the
calculation of the displacement; the relationship between the maximum oscillation velocity
of the blade and the cutting velocity; the required power; and the required energy. The
simulation highlighted that the new oscillator, to overcome the problems of the old one,
had to have a substantial tripling of the torsional spring rate k, partly obtained by doubling
the linear spring rate kl and partly with the 50% increase in the lever arm of the springs bs.
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Furthermore, the equations highlighted that the oscillator also had to have a substantial
tripling of the maximum excitation torque. Based on Equation (3), this need imposed a
substantial doubling of the eccentric masses and an increase in both the eccentricity of the
masses and their lever arm, respectively, by approximately 30%. Finally, the simulation
showed that the optimal value of the excitation frequencyω is the maximum value allowed
by the resistance of the blade and the oscillator materials (i.e., 420 rad s−1).

After the construction of this optimized oscillator, experimental tests were carried
out in cutting the soil. The results substantially confirmed what was predicted by the
mathematical modeling based on Den Hartog’s equations with a maximum error of 6.4%.

In future, to compete with the tree digger machine with spades in digging the largest
trees, there is a need to make blades with diameters greater than 1.2 m (even up to 1.8 m),
for which the problem of transmitting vibrations to the machine and to the operator will
probably re-occur due to reaching the end of stroke of the springs during the cut. A possible
solution to eliminate this risk is the adoption of springs in the oscillator with an elastic
force dependent on the square of the displacement F = k·x2; however, this will make
the oscillator anharmonic. Therefore, a differential equation of vibrating motion solution
distinct from that of Den Hartog will have to be studied.
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