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Abstract: For the free vibrations of multi-degree mechanical structures appeared in structural dynam-
ics, we solve the quadratic eigenvalue problem either by linearizing it to a generalized eigenvalue
problem or directly treating it by developing the iterative detection methods for the real and complex
eigenvalues. To solve the generalized eigenvalue problem, we impose a nonzero exciting vector
into the eigen-equation, and solve a nonhomogeneous linear system to obtain a response curve,
which consists of the magnitudes of the n-vectors with respect to the eigen-parameters in a range.
The n-dimensional eigenvector is supposed to be a superposition of a constant exciting vector and an
m-vector, which can be obtained in terms of eigen-parameter by solving the projected eigen-equation.
In doing so, we can save computational cost because the response curve is generated from the
data acquired in a lower dimensional subspace. We develop a fast iterative detection method by
maximizing the magnitude to locate the eigenvalue, which appears as a peak in the response curve.
Through zoom-in sequentially, very accurate eigenvalue can be obtained. We reduce the number of
eigen-equation to n− 1 to find the eigen-mode with its certain component being normalized to the
unit. The real and complex eigenvalues and eigen-modes can be determined simultaneously, quickly
and accurately by the proposed methods.

Keywords: generalized eigenvalue problem; quadratic eigenvalue problem; multi-degree free
vibrations; response curve; affine Krylov subspace

1. Introduction

In the free vibration of a q-degree mass-damping-spring structure, the system of
differential equations for describing the motion is [1]

Mq̈(t) + Cq̇(t) + Kq(t) = 0, (1)

where q(t) is a time-dependent q-dimensional vector to signify the generalized displace-
ments of the system.

In engineering application the mass matrix M and the stiffness matrix K are pos-
itive definite because they are related to the kinetic energy and elastic strain energy.
However, the damping properties of a system reflected in the viscous damping matrix C
are rarely known, making it difficult to be evaluated exactly [2,3].

In terms of the vibration mode u, we can express the fundamental solution of
Equation (1) as

q(t) = eλtu, (2)

which leads to a nonlinear eigen-equation for (λ, u):

Q(λ)u := (λ2M + λC + K)u = 0, (3)
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where Q(λ) is a matrix quadratic of the structure. Equation (3) is a quadratic eigenvalue
problem (QEP) to determine the eigen-pair (λ, u). In addition to the free vibrations of me-
chanical structures, many related systems which lead to the quadratic eigenvalue problems
were discussed by Tisseur and Meerbergen [4]. In the design of linear structure, knowing
natural frequency of the structure is vital important to avoid the resonance with external
exciting. The natural frequency is the imaginary part of the eigenvalue λ in Equation (3),
which is a frequency to easily vibrate the structure [5,6].

Using the generalized Bezout method [7] to tackle Equation (3) one introduces a
solvent matrix S determined by

Q(S) = MS2 + CS + K = 0q, (4)

where 0q is a q× q zero matrix, such that a factorization of Q(λ) reads as

Q(λ) = (λM + MS + C)(λIq − S). (5)

It gives us an opportunity to determine the eigenvalues of Equation (3) through the
eigenvalues solved from two q-dimensional eigenvalue problems, generalized one and
standard one:

(MS + C)u = −λMu, Su = λu. (6)

The key point of the solvent matrix method is solving a nonlinear matrix Equation (4)
to obtain an accurate matrix S [8,9]. Most of the numerical methods that deal directly
with the quadratic eigenvalue problem by solving Equations (4) and (6) are the variants
of Newton’s method [10–13]. These Newton’s variants converge when the initial guess is
close enough to the solution. But even for a good initial guess there is no guarantee that the
method will converge to the desired eigenvalue. There are different methods to solve the
quadratic eigenvalue problems [14–19].

Let
v = λu (7)

be the generalized velocity of vibration mode. We can combine Equations (7) and (3)
together as [

0q Iq
−K −C

][
u
v

]
= λ

[
Iq 0q
0q M

][
u
v

]
. (8)

Defining

x :=
[

u
v

]
, A :=

[
0q Iq
−K −C

]
, B :=

[
Iq 0q
0q M

]
, (9)

Equation (8) becomes a generalized eigenvalue problem for the n-vector x:

Ax = λBx, (10)

where A, B ∈ Rn×n with n = 2q. Equation (10) is used to determine the eigen-pair (λ, x),
which is a linear eigen-equation associated to the pencil A − λB, where λ is an eigen-
parameter.

In the linearization from Equation (3) to Equation (10), an unsatisfactory aspect is that
the dimension of the working space is doubled to n = 2q. However, for the generalized
eigenvalue problems many powerful numerical methods are available [20,21]. The numeri-
cal computations in [22,23] revealed that the methods based on the Krylov subspace can be
very effective in the nonsymmetric eigenvalue problems by using the Lanczos biorthogo-
nalization algorithm and the Arnoldi’s algorithm. The Arnoldi and nonsymmetric Lanczos
methods are both of the Krylov subspace methods. Among the many algorithms to solve
the matrix eigenvalue problems the Arnoldi method [23–26], the nonsymmetric Lanczos
algorithm [27], and the subspace iteration method [28] are well known. The affine Krylov
subspace method was first developed by Liu [29] to solve linear equations system, which
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is however not yet used to solve the generalized eigenvalue problems. It is well known
that the eig function in MATLAB is an effective code to compute the eigenvalues of the
generalized eigenvalue problems. We will test it for the eigenvalue problem of highly
ill-conditioned matrices and point out its limitation.

The paper sets up a new detection method for determining the real and complex
eigenvalues of Equation (10) in Section 2, where the idea of exciting vector and excitation
method (EM) are introduced with two examples being demonstrated. In Section 3, we
express the generalized eigenvalue problem (10) in an affine Krylov subspace, and a
nonhomogeneous linear equations system is derived. To precisely locate the position of
the real eigenvalue in the response curve, we develop an iterative detection method (IDM)
in Section 4, where we derive new methods to compute eigenvalue and eigenvector. In
Section 5 some examples of the generalized eigenvalue problems are given. The EM and
IDM are extended in Section 6 to directly solve the quadratic eigenvalue problem (3),
where we derive IDM in the eigen-parametric plane to determine the complex eigenvalue.
In Section 7, several examples are given and solved by either linearizing them to the
generalized eigenvalue problems or treating them in the original quadratic forms by the
direct detection method. Finally, the conclusions are drawn in Section 8.

2. A New Detection Method

Let λ(A, B) be the set of all the eigenvalues of Equation (10), which may include the
pairs of conjugate complex eigenvalues. It is known that if λ /∈ λ(A, B) then Equation (10)
has only the trivial solution with x = 0 and ‖x‖ = 0. In contrast, if λ ∈ λ(A, B) then
Equation (10) has a non-trivial solution with x 6= 0 and ‖x‖ > 0, which is called the
eigenvector. However, when n is large it is difficult to directly solve Equation (10) to
determine λ and x by the manual operations. Instead, numerical methods have to be
employed to solve Equation (10), from which x is always obtained to be a zero vector no
matter which λ is, since the right-hand side of (A− λB)x = 0 is zero.

To definitely determine x to have a finite magnitude with 0 ≤ ‖x‖ < ∞, we consider a
variable transformation from x to y by

x = x0 + y, (11)

where x0 is a given nonzero vector, which being inserted into Equation (10) generates

(A− λB)y = −(A− λB)x0. (12)

It is important that the right-hand side is not zero because of x0 6= 0, which is a given
exciting vector to render a nonzero response of y 6= 0 and then x 6= 0 by Equation (11) is
available. We must emphasize that when A− λB is near to a singular matrix, we cannot
eliminate A− λB in Equation (12) by inverting the matrix A− λB to obtain y = −x0.

2.1. Real Eigenvalue

Let the eigen-parameter in Equation (12) run in an interval λ ∈ [a, b], and we can
solve Equation (12) by the Gaussian elimination method to obtain y and then x = x0 + y.
Hence, the response curve is formed by varying the magnitude ‖x(λ)‖ vs. the eigen-
parameter λ in the interval λ ∈ [a, b]. It is different from Equation (10) that now we can
compute y in Equation (12) and then x by Equation (11), when x0 is a given nonzero vector.
Through this transformation by solving a nonhomogeneous linear system (12), rather than
the homogeneous linear system (10), the resultant vector x can generate a nonzero finite
response of ‖x‖ when the eigen-parameter tends to an eigenvalue, and for most eigen-
parameters that not near to any eigenvalue the responses of ‖x‖ are very small, nearly
close to zero. The technique to construct a nonzero response curve is called an excitation
method (EM).

For instance, we consider Equation (10) endowing with [20]:
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A =


2 3 4 5 6
4 4 5 6 7
0 3 6 7 8
0 0 2 8 9
0 0 0 1 10

, B =


1 −1 −1 −1 −1
0 1 −1 −1 −1
0 0 1 −1 −1
0 0 0 1 −1
0 0 0 0 1

. (13)

We take [a, b] = [−5, 25] and x0 = 0, and we plot ‖x(λ)‖ vs. the eigen-parameter
λ ∈ [−5, 25] in Figure 1a, wherein only zero values of ‖x(λ)‖ appear.

However, under a nonzero excitation with x0 = 15 := (1, 1, 1, 1, 1)T, we plot ‖x(λ)‖
vs. the eigen-parameter λ ∈ [−5, 25] in Figure 1b, where we can observe five peaks of
the response curve which signifying the locations of five real eigenvalues to be sought.
When λ does not locate at the peak point, ‖x(λ)‖ is zero from the theoretical point of view;
however, the value of ‖x(λ)‖ as shown in Figure 1b is not zero, which is very small due to
the machinery round-off error caused by using the Gaussian elimination method to solve
Equation (12). In Section 4, we will develop an iterative method to precisely locate those
eigenvalues based on the EM.

(a)
 

-5 0 5 10 15 20 25

-1

0

1

||x
(

||

Zero excitation, ||x||=0

(b)
 

-5 0 5 10 15 20 25

10-16
10-15
10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103

||x
(

||

Nonzero excitation, ||x||>0

Figure 1. For a generalized eigenvalue problem (13), (a) zero response under a zero excitation, and
(b) showing five peaks in the response curve under a nonzero excitation.

2.2. Complex Eigenvalue

Because A and B are real matrices, the eigenvalue may be a complex number, which is
assumed to be

λ = λR + iλI , (14)

where i2 = −1, and λR and λI are, respectively, the real and imaginary parts of λ.
Correspondingly, we take
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x = z + iw. (15)

Inserting Equations (14) and (15) into Equation (10), yields[
A− λRB λIB
−λIB A− λRB

][
z
w

]
= 0. (16)

Letting

X :=
[

z
w

]
, D :=

[
A− λRB λIB
−λIB A− λRB

]
, (17)

Equation (16) becomes
DX = 0. (18)

Similarly, by taking
X = X0 + Y, (19)

where X0 6= 0 is a given exciting vector and by Equation (18), we have

DY = −DX0. (20)

No matter which D is, since Equation (20) is a consistent linear system with a dimen-
sion 2n, we can solve it by using the Gaussian elimination method to obtain Y and then X
by Equation (19).

When λR and λI take values inside a rectangle by (λR, λI) ∈ [a, b]× [c, d], we can plot
‖X(λR, λI)‖ vs. (λR, λI) over the eigen-parametric plane, and investigate the property of
the response surface.

For instance, for
A =

[
1 −1
1 2

]
, B =

[
1 0
0 1

]
, (21)

we have a pair of complex eigenvalues:

λ =
3
2
± i
√

3
2

. (22)

We take [a, b] = [1, 2], [c, d] = [0, 1], and with X0 = 14, we plot ‖X(λR, λI)‖ over the
plane (λR, λI) in Figure 2, where we can observe one peak near to the point (3/2,

√
3/2).

More precise values of (λR, λI) will be obtained by the iterative detection method to be
developed in Section 6.

Figure 2. For a 2 by 2 matrix the detection of a complex eigenvalue.
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3. Generalized Eigenvalue Problem in an Affine Krylov Subspace

The detection method developed in the previous section has a weakness that we need
to solve an n-dimensional linear system (12) for real eigenvalue and a 2n-dimensional
linear system (20) for complex eigenvalue. Therefore, in the many selected points inside the
range we may spend a lot of computational time to construct the response curve to detect
real eigenvalues or the response surface to detect complex eigenvalues. In this section we
develop the detection methods in a lower dimensional subspace, instead of the detection
methods carried out in the full space.

3.1. The Krylov Subspace

When n is a large dimension, Equation (10) is a high-dimensional linear equations sys-
tem. In order to reduce the dimension of the governing equation to m in an m-dimensional
Krylov subspace, we begin with

Km := Span{Ax0, . . . , Amx0}. (23)

The Krylov matrix is fixed by

U := [u1, . . . , um], (24)

which is an n×m matrix with its jth column being the vector uj.
The Arnoldi process is used to normalize and orthogonalize the Krylov vectors

Ajx0, j = 1, . . . , m, such that the resultant vectors ui, i = 1, . . . , m satisfy ui · uj = δij,
i, j = 1, . . . , m, where δij is the Kronecker delta symbol. The Arnoldi procedure for the
orthogonalization of U can be written as follows [30].

Select m and give an initial vector Ax0,

u1 =
Ax0

‖Ax0‖
,

Do j = 1 : m− 1,

wj = Auj,

Do i = 1 : j,

hij = ui ·wj,

wj = wj − hijui,

Enddo of i,

hj+1,j = ‖wj‖. If hj+1,j = 0 stop,

uj+1 =
wj

hj+1,j
, Uj+1 =

wj

hj+1,j
,

Enddo of j. (25)

U denotes the Krylov matrix, where the subscript k in Uk means the kth column of U,
which possesses the following property:

UTU = Im. (26)

3.2. Linear Nonhomogeneous Equations in an Affine Krylov Subspace

Because of x ∈ x0 +Km, we can expand x by

x = x0 + Uα, (27)

where α is an unknown m-vector to be determined. From Equations (10) and (27) it
follows that

AUα + Ax0 = λBUα + λBx0, (28)
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which is projected onto the Krylov subspace Km by

UTAUα + UTAx0 = λUTBUα + λUTBx0. (29)

4. An Iterative Detection Method for Real Eigenvalue

It follows from Equation (29) that

(UTAU− λUTBU)α = λUTBx0 −UTAx0, (30)

which is the projection of Equation (10) into the affine Krylov subspace x0 +Km as a non-
homogeneous projected eigen-equation. Upon comparing to the original eigen-equation
(A− λB)x = 0 in Equation (10), Equation (30) is different for the appearance of a non-
homogeneous term λUTBx0 − UTAx0 in the right-hand side, When we take x0 = 0 in
the right-hand side, α is a zero vector solved by the numerical method and thus x = 0.
To excite the nonzero response of x, we must give a nonzero exciting vector x0 6= 0 in the
right-hand side.

In Section 2, we have given an example to show that the peaks of ‖x(λ)‖ at the
eigenvalues are happened in the response curve of ‖x(λ)‖ vs. λ, which motivates us using
a simple maximum method to determine the eigenvalue by collocating points inside an
interval by

max
λ∈[a,b]

‖x(λ)‖, (31)

where the size of [a, b] must be sufficiently large to include at least one eigenvalue λ ∈ [a, b].
Therefore, the numerical procedures for determining the eigenvalue of a generalized
eigenvalue problem are summarized as follows. (i) Select m, x0, a and b. (ii) Construct U.
(iii) For collocating point λi ∈ [a, b] solving Equation (30), setting x = x0 + Uα and taking
the optimal λi to satisfy Equation (31).

By repeating the use of Equation (31), we gradually reduce the size of the interval
centered at the previous peak point by renewing the interval to a finer one. Give an initial
interval [ak, bk], k = 0, and we place the collocating points by λ(i) = ak + i(bk − ak)/N0,
i = 0, . . . , N0 and pick up the maximal point denoted by λk. Then, a finer interval is
given by ak+1 = λk − (bk − ak)/N1 and bk+1 = λk + (bk − ak)/N1, which is centered at the
previous peak point λk and with a smaller length 2(bk − ak)/N1 < bk − ak. In that new
interval we pick up the new maximum point denoted by λk+1. Continuing this process
until |λk+1 − λk| < ε, we can obtain the eigenvalue with high accuracy. This algorithm is
shortened as an iterative detection method (IDM).

In order to construct the response curve, we choose a large interval of [a, b] to include
all eigenvalues, such that the rough locations of the eigenvalues can be observed in the
response curve as the peaks. Then, to precisely determine the individual eigenvalue, we
choose a small initial interval [a0, b0] to include that eigenvalue as internal point. A few
iterations by the IDM can compute very accurate eigenvalue.

When the eigenvalue λ is obtained, if one wants to compute the eigenvector, we can
normalize a nonzero j0−th component of x by xj0 = 1. Let

cij = aij − λbij, ei = −cij0 , i, j = 1, . . . , n, (32)

where aij and bij are the components of A and B, respectively. Then, it follows from
Equation (10) an n0 = (n− 1)-dimensional linear system:

dijyj = ei, i, j = 1, . . . , n0, (33)

where dij are constructed by
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Do i = 1 : n0,

k = 0,

Do j = 1 : n,

If j = j0 next j,

k = k + 1,

dik = cij,

Enddo of j,

Enddo of i. (34)

We can apply the Gaussian elimination method or the conjugate gradient method to
solve y = (y1, . . . , yn0)

T in Equation (33). And then x = (x1, . . . , xn)T is computed by

k = 0,

Do j = 1 : n,

If j = j0 xj = 1 next j,

k = k + 1,

xj = yk,

Enddo of j. (35)

To evaluate the accuracy of the obtained eigenvalue λ and eigenvector x, we can
investigate the error of ‖Ax− λBx‖ to satisfy the eigen-equation (10). We will extend the
above IDM to detect the complex eigenvalue in Section 6.

5. Examples of Generalized Eigenvalue Problems

Example 1. We consider

A =

 1 2 3
2 4 5
3 5 6

, G =

 0.001 0 0
1 0.001 0
2 1 0.001

, (36)

and B = GGT. The two smallest eigenvalues are {−0.619402940600584, 1.627440079051887}. It
is a highly ill-conditioned generalized eigenvalue problem due to Cond(B) = 1018.

We take m = 3 and plot ‖x(λ)‖ vs. λ in Figure 3, where we can observe two peaks hap-
pened at two eigenvalues. The zigzags in the response curve are due to the ill-conditioned
B in Equation (10).

 

-1 0 1 2

10-15

10-14

10-13

10-12

10-11

10-10

||x
(

||

Figure 3. For example 1, showing two peaks in the response curve obtained from the IDM, corre-
sponding to eigenvalues −0.619402940600584 and 1.627440079051887.
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Starting from [a0, b0] = [−1, 0] and under a convergence criterion 10−15, with seven it-
erations we can obtain λ = −0.6194029406657194, which is very close to−0.619402940600584
with a difference 4.38× 10−9. On the other hand, the error to satisfy Equation (10) is very
small with ‖Ax− λBx‖ = 1.93× 10−15, where x is solved from Equations (32)–(35) with
j0 = 3.

Starting from [a0, b0] = [1, 2] and with six iterations, we can obtain
λ = 1.627440079500534, which is very close to 1.627440079051887 with a difference
1.55× 10−8, and ‖Ax− λBx‖ = 1.25× 10−15 is obtained.

Example 2. In Equation (10), A and B are given in Equation (13). We take m = 5 and plot
‖x(λ)‖ vs. λ in Figure 4, where five peaks in the response curve happen at five eigenvalues.

Starting from [a0, b0] = [−1, 1] and under a convergence criterion 10−12, through five
iterations λ = −0.1873528931969792 is obtained. ‖Ax− λBx‖ = 4.96× 10−14 is obtained,
where x is solved from Equations (32)–(35) with j0 = 1.

Starting from [a0, b0] = [1, 5] and under a convergence criterion 10−15, we can obtain
λ = 1.313278952662423 and ‖Ax− λBx‖ = 3.77× 10−14 after seven iterations.

With [a0, b0] = [5, 10] and seven iterations, we can obtain λ = 5.537956370847875 and
‖Ax− λBx‖ = 3.19× 10−15.

With [a0, b0] = [10, 15] and seven iterations, we can obtain λ = 12.089692853066820
and ‖Ax− λBx‖ = 2.84× 10−15.

With [a0, b0] = [15, 25] and seven iterations, we can obtain λ = 21.246424716619960
and ‖Ax− λBx‖ = 3.98× 10−15.

By comparing the response curve in Figure 4 with that in Figure 1b, the numerical
noise is disappeared by using the IDM in the affine Krylov subspace.

 

-5 0 5 10 15 20 25

100

101

102

103

104

105

106

107

||x
(

||

Figure 4. For example 2, showing five peaks in the response curve obtained from the IDM, corre-
sponding to five eigenvalues.

Example 3. Let A = [aij] and B = [bij], i, j = 1, . . . , n. In Equation (10), we take [21]:

aii =
n− i
100

, ai,i+1 =
1

100
, i = 1, . . . , n− 1, bii = 1, i = 81, . . . , n. (37)

Other elements are all zeros, where we take n = 100. The eigenvalues are λj = (j− 1)/100
for j = 1, . . . , 20.

We take m = 50 and plot ‖x(λ)‖ vs. λ in Figure 5a, where five peaks are obtained
by the IDM, which correspond to the first five eigenvalues. Within a finer interval [a, b] =
[0.005, 0.015] in Figure 5b, one peak appears at a more precise position.
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Starting from [a0, b0] = [0.005, 0.015] and with one iteration under a convergence
criterion 10−15, the eigenvalue obtained is very close to 0.01 with an error 2.24× 10−10.
‖Ax− λBx‖ = 1.803× 10−18 is obtained, where x is solved from Equations (32)–(35) with
j0 = 99.

With [a0, b0] = [0.011, 0.021] and j0 = 99, after two iterations the eigenvalue obtained
is very close to 0.02 with an error 4.47× 10−10. ‖Ax− λBx‖ = 2.236× 10−19 is obtained.

(a)
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||

(b)
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||

Figure 5. For example 3, (a) showing five picks of ‖x‖ with m = 50 in the interval [−0.01,0.05], and
(b) a pick of ‖x‖ is enlarged in the interval [0.005,0.015], which is a process of zoom-in.

For this problem, if we take m = n and U = In to compute the eigenvalue in the full
space, the computational time is increased. The CPU time spent to construct the response
curve is 6.09 s. For the eigenvalue 0.01 the error is the same with 2.24× 10−10, but the
CPU time increases to 5.83 s. In contrast, the subspace method spent 1.05 s to construct the
response curve, and the CPU time for the eigenvalue 0.01 is 1.05 s. When n is increased to
n = 200, the subspace method with m = 50 spent 1.05 s to construct the response curve
and the CPU time for the eigenvalue 0.01 is 6.53 s; however, by using the full space method
with n = 200 the CPU time is 44.91 s and and CPU time for the eigenvalue 0.01 is 44.67
s. Therefore, the computational efficiency of the m-dimensional affine Krylov subspace
method is better than that by using the full space method with dimension n.

To further test the efficiency of the proposed method, we consider the eigenvalue
problem of Hilbert matrix [31]. In Equation (10), we take B = In and

aij =
1

i + j− 1
, i, j = 1, . . . , n. (38)
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Due to highly ill-conditioned nature of the Hilbert matrix, it is a quite difficult eigen-
value problem. For this problem, we take n = 100, m = 30 and j0 = 50 to compute
the largest eigenvalue, which is given as 2.182696097757424. The affine Krylov subspace
method is convergent very fast with six iterations, and the CPU time is 1.52 s. The error of
eigen-equation is ‖Ax− λBx‖ = 2.005× 10−13. However, finding the largest eigenvalue
in the full space with dimension n = 100, it does not converge within 100 iterations, and
the CPU time is increased to 33.12 s. By using the MATLAB, we obtain 2.182696097757423
which is close to that obtained by the Krylov subspace method. However, the MAT-
LAB leads to a large error of Det(Ax− λBx) = 6.94680072753434× 1017, which indicates
that the characteristic equation for the Hilbert matrix is highly ill-posed. Notice that
the smallest eigenvalue is very difficult to be computed, since it is very close to zero.
However, we can obtain the smallest eigenvalue 3.1× 10−19 with one iteration and the
error ‖Ax− λBx‖ = 9.412× 10−17 is obtained. For the eigenvalue problem of the Hilbert
matrix, the MATLAB leads to a wrong eigenvalue −9.693294591063901× 10−17, which is
negative and contradicts to the positive eigenvalues of the Hilbert matrix. The eig function
in Matlab cannot guarantee to obtain a positive eigenvalue for the positive definite Hilbert
matrix. The first 41 eigenvalues are all negative. The first 73 eigenvalues are less than 10−17.
So most of these eigenvalues computed by Matlab should be spurious. The MATLAB is
effective for general purpose eigenvalue problem with normal matrices, but for the highly
ill-conditioned matrices the effectiveness of the MATLAB might be lost.

In addition to the computational efficiency, the Krylov subspace method has several
advantages including easy-implementation, the ability to detect all eigenvalues and com-
puting all the corresponding eigenfunctions simultaneously. One can roughly locate the
eigenvalues from the peaks in the response curve and then determine precise value by
using the IDM. Although for the eigenvalue problem of the highly ill-conditioned Hilbert
matrix, the Krylov subspace method is reliable.

6. An Iterative Detection Method for Complex Eigenvalue

Instead linearizing Equation (3) to a linear generalized eigenvalue problem in Equa-
tion (10), we directly treat the quadratic eigenvalue problem (3). Now, we consider the
detection of complex eigenvalue of the quadratic eigenvalue problem (3). Because M, C
and K are real matrices, the complex eigenvalue is written by Equation (14). When we take

u = v + iw, (39)

inserting Equations (14) and (39) into Equation (3) yields[
(λ2

R − λ2
I )M + λRC + K −2λRλIM− λIC

2λRλIM + λIC (λ2
R − λ2

I )M + λRC + K

][
v
w

]
= 0. (40)

Letting

X :=
[

v
w

]
, D :=

[
(λ2

R − λ2
I )M + λRC + K −2λRλIM− λIC

2λRλIM + λIC (λ2
R − λ2

I )M + λRC + K

]
, (41)

Equation (40) becomes
DX = 0, (42)

which is an n = 2q dimensional homogeneous linear system.
Taking

X = X0 + Y, (43)

where X0 6= 0 is a given exciting vector and by Equation (42), we have

DY = −DX0. (44)
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The numerical procedures for determining the complex eigenvalue of the quadratic
eigenvalue problem (3) are summarized as follows. (i) Give q, X0, a and b. (ii) For each
collocating point (λR, λI) ∈ [a, b]× [c, d] solving Equation (44) to obtain X = X0 + Y and
taking the optimal (λR, λI) to satisfy

max
(λR ,λI)∈[a,b]×[c,d]

‖X(λR, λI)‖, (45)

where the size of [a, b]× [c, d] must be large enough to include at least one complex eigen-
value.

By Equation (45), we gradually reduce the size of the rectangle centered at the previous
peak point by renewing the range to a finer one. Give an initial interval [ak, bk]× [ck, dk],
k = 0, and we fix the collocating points by λR(i) = ak + i(bk − ak)/N1, i = 0, . . . , N1,
λI(j) = ck + i(dk − ck)/N2, j = 0, . . . , N2 and pick up the maximal point denoted by
(λk

R, λk
I ). Then, a finer rectangle is given by (ak+1, bk+1) = (λk

R − (bk − ak)/N3, λk
R + (bk −

ak)/N3), and (ck+1, dk+1) = (λk
I − (dk− ck)/N3, λk

I +(dk− ck)/N3), and in that new rectan-
gle we pick up the new maximum point denoted by (λk+1

R , λk+1
I ). Continuing this process

until
√
(λk+1

R − λk
R)

2 + (λk+1
I − λk

I )
2 < ε, we can obtain the complex eigenvalue with high

accuracy. This algorithm is shortened as an iterative detection method (IDM).
When the complex eigenvalue is computed, we can apply the techniques in

Equations (32)–(35) with x replaced by X and A− λB by D in Equation (42) to compute the
complex eigen-mode. The numerical procedures to detect the complex eigenvalue and to
compute the complex eigenvector in Equations (14)–(18) for the generalized eigenvalue
problem (10) are the same to those in the above.

7. Examples of Quadratic Eigenvalue Problems
7.1. Linearizing Method

For the quadratic eigenvalue problem (3) there are two major methods: Linearization
method to a generalized eigenvalue problem as shown by Equation (10) and the decom-
position method based on the generalized Bezout method as shown by Equations (4)–(6).
In this section, we give two examples of the quadratic eigenvalue problem (3) solved by an
iterative detection method in Section 4 for the resultant generalized eigenvalue problem,
and developing a direct detection method to Equation (3) for the applications to other
three examples.

Example 4. We consider the structural system (1) with [4]:

M =

 0 6 0
0 6 0
0 0 1

, C =

 1 −6 0
2 −7 0
0 0 0

, K = I3. (46)

There exist four real eigenvalues λ = {1/3, 1/2, 1, ∞} and two imaginary eigenvalues
i and −i.

According to Equations (9) and (10), we can write

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 −1 6 0
0 −1 0 −2 7 0
0 0 −1 0 0 0

, B =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 6 0
0 0 0 0 6 0
0 0 0 0 0 1

. (47)

We take m = 6 and plot ‖x(λ)‖ vs. λ in Figure 6, where three peaks happen at
λ = {1/3, 1/2, 1}. Starting from [a0, b0] = [0, 0.4] and under a convergence criterion
10−15, through six iterations λ = 0.3333333333333386 is obtained with ‖Ax − λBx‖ =
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1.82× 10−15, where x is solved from Equations (32)–(35) with j0 = 1. Starting from [a0, b0] =
[0.4, 0.6] and after one iteration, we can obtain λ = 0.5 and ‖Ax− λBx‖ = 1.01× 10−15 is
obtained. Starting from [a0, b0] = [0.7, 1.5] and after two iterations, we can obtain λ = 1 and
‖Ax− λBx‖ = 1.85× 10−17, where x is solved from Equations (32)–(35) with j0 = 2.
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Figure 6. For example 4, showing three picks of ‖x‖ in the response curve in the interval [0,1.6].

By Equation (47), we cannot recover λ = ∞. To remedy this defect, we notice that
Equation (3) can also be expressed by Equation (10) with

A :=
[
−K 0q
0q −Iq

]
, B :=

[
C M
−Iq 0q

]
. (48)

By Equations (10) and (48), we can take

A = −I6, B =



1 −6 0 0 6 0
2 −7 0 0 6 0
0 0 0 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

. (49)

Let µ = −1/λ. We can set up a new eigenvalue problem:

Bx = µx. (50)

We take m = 6 and plot ‖x(µ)‖ vs. µ in Figure 7a, where we can observe four peaks
happened at µ = {−3,−2,−1, 0}, by which we can recover λ = {1/3, 1/2, 1, ∞} by using
λ = −1/µ.

Starting from [a0, b0] = [−3.5,−2.5] and under a convergence criterion 10−15, after one
iteration µ = −3 is obtained, and ‖Bx − µx‖ = 1.11× 10−15, where x is solved from
Equations (32)–(35) with j0 = 1. Starting from [a0, b0] = [−2.5,−1.5] and after one iteration,
we can obtain µ = −2 and ‖Bx− µx‖ = 2.04× 10−15. Starting from [a0, b0] = [−1.5,−0.5]
and after one iteration, we can obtain µ = −1 and ‖Bx− µx‖ = 1.07× 10−14 is obtained,
where x is solved from Equations (32)–(35) with j0 = 2. Starting from [a0, b0] = [−0.5, 0.5]
and after one iteration, we can obtain µ = 0.

We employ the IDM in Section 6 to locate the complex eigenvalue as shown in Figure 7b.
We find that with the initial guess [a0, b0]× [c0, d0] = [−0.01, 0.01]× [0.5, 1.5], we can find
µR = 0 and µI = 1 with one iteration.

By the same token, when we locate the complex eigenvalue of Equation (21) with
the initial guess [a0, b0] × [c0, d0] = [1, 2] × [0.5, 1], we can find λR = 3/2 and λI =
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0.8660254037844387 within ten iterations. Upon comparing to the exact one in Equation (22)
the error is 1.11× 10−16, which is very accurate, and the IDM is convergent very fast.

In the structural dynamics the coefficient matrices M, C and K are symmetric; more-
over, M and K are positive definite matrices. This example with a non-positive definite
matrix M and a non-symmetric matrix C is borrowed from the literature [4]. This eigenvalue
problem has an infinity eigenvalue.

(a)
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Figure 7. For example 4, (a) showing four picks of ‖x‖ in the response curve in the interval [−4,1],
and (b) a pick of ‖x‖ over the plane is enlarged in the interval [−0.01, 0.01]× [0.5, 1.5].

Example 5. We consider a free vibration problem of an MK structural system with [1]:

M = m0B = m0

 1 0 0
0 1 0
0 0 2

, K = k0A = k0

 2 −1 0
−1 3 −2
0 −2 2

. (51)

By inserting y = xeiωt into Equation (1) with C = 0, we can derive

Kx = ω2Mx. (52)

Let λ = m0ω2/k0 for Ax = λBx. We take m = 3 and plot ‖x(λ)‖ vs. λ in Figure 8,
where we can observe three peaks, whose precise values are 0.1391941468883,
1.745898311614913 and 4.114907541476740, respectively. Those values coincide to the
roots obtained from the characteristic equation Det(A− λB) = 0, that is,

λ3 − 6λ2 + 8λ− 1 = 0. (53)
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The corresponding natural frequencies are 0.3730873180480677
√

k0/m0,
1.321324453574864

√
k0/m0 and 2.028523488026880

√
k0/m0, respectively.
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Figure 8. For example 5, showing three picks of ‖x‖ in the response curve in the interval [0,5].

Starting from [a0, b0] = [0, 0.5] and under a convergence criterion 10−10, with four iter-
ations ‖Ax− λBx‖ = 1.79× 10−15 is obtained, where x is solved from Equations (32)–(35)
with j0 = 1. Starting from [a0, b0] = [1, 2] and with five iterations, we can obtain
‖Ax− λBx‖ = 7.63× 10−11. Starting from [a0, b0] = [4, 5] and with four iterations, we can
obtain ‖Ax− λBx‖ = 1.44× 10−13.

The corresponding eigen-modes are given as follows:

x(1) =

 1
1.860805853111704
2.161702138043240

, x(2) =

 1
0.2541016883850868
−0.3406653217873807

,

x(3) =

 1
−2.114907541476740
0.6789631837592252

. (54)

We extend the results to a ten-degree system with m1 = . . . = m9 = m0, m10 = 2m0,
k1 = . . . = k9 = k0 and k10 = 2k0. The response curve of ‖x(λ)‖ vs. λ is plotted Figure 9,
where we can observe ten peaks. The minimal frequency is 0.1371265436475375

√
k0/m0

and the maximal frequency is 2.058147747545097
√

k0/m0.
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Figure 9. For example 5 with ten-degree, showing ten picks of ‖x‖ in the response curve in the
interval [0,5].
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As a practical application, we consider a five-story shear building with [32]

M =


140 0 0 0 0

0 120 0 0 0
0 0 120 0 0
0 0 0 120 0
0 0 0 0 100

 kip/g,

K =


800 −400 0 0 0
−400 600 −200 0 0

0 −200 400 −200 0
0 0 −200 300 −100
0 0 0 −100 100

 kip/in. (55)

We take m = 5 and plot ‖x(λ)‖ vs. λ in Figure 10a, where we can observe five peaks.
Starting from [a0, b0] = [0, 1] and under a convergence criterion 10−15, with six iterations
ω2 = 0.2039991612696613 is obtained and ‖Kx−ω2Mx‖ = 2.85× 10−13 is obtained, where
x is solved from Equations (32)–(35) with j0 = 1 with the first mode being shown in
Figure 10b at the first column.
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Figure 10. For a five-degree MK system, (a) showing five picks of ‖x‖ in the response curve in the
interval [0,10], and (b) displaying the five vibration modes.

Starting from [a0, b0] = [1, 2] and with seven iterations ω2 = 1.195924448669029 is
obtained and ‖Kx − ω2Mx‖ = 2.37 × 10−13 is obtained, with the second mode being
shown in Figure 10b at the second column.
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Starting from [a0, b0] = [2, 3] and with six iterations ω2 = 2.55144529001161 is obtained
and ‖Kx − ω2Mx‖ = 1.43 × 10−13 is obtained, with the third mode being shown in
Figure 10b at the third column.

Starting from [a0, b0] = [4, 5] and with six iterations ω2 = 4.870842516791811 is
obtained and ‖Kx−ω2Mx‖ = 2.33× 10−12 is obtained, with the fourth mode being shown
in Figure 10b at the fourth column.

Starting from [a0, b0] = [8, 9] and under a convergence criterion 10−15, with six it-
erations ω2 = 8.725407630876937 is obtained, and ‖Kx − ω2Mx‖ = 1.78 × 10−11 is
obtained, where x is solved from Equations (32)–(35) with j0 = 1, and the fifth mode
is shown in Figure 10b at the fifth column. We have compared to the exact solution
ω2 = 8.725407630876935 solved from the characteristic equation Det(K−ω2M) = 0 with
an error 3.05× 10−8, which is given by

∣∣∣∣∣∣∣∣∣∣

800− 140ω2 −400 0 0 0
−400 600− 120ω2 −200 0 0

0 −200 400− 120ω2 −200 0
0 0 −200 300− 120ω2 −100
0 0 0 −100 100− 100ω2

∣∣∣∣∣∣∣∣∣∣
= [(800− 140ω2)(600− 120ω2)− 160000][(400− 120ω2)(300− 120ω2)(100− 100ω2) (56)

−10000(400− 120ω2)− 40000(100− 100ω2)]

−40000(800− 140ω2)[(300− 120ω2)(100− 100ω2)− 10000] = 0.

The result ω2 = 8.8746 presented in [32] has an error 0.1492, which is much more
larger than 3.05× 10−8. The advantage of the presented method is convergent fast and very
accurate. The errors of the characteristic equation from the first to fifth eigenvalues are,
respectively, Det(K− ω2M) = −1.83× 10−4, −3.66× 10−4, −1.22× 10−4, −3.78× 10−3

and −3.52× 10−2.
The fundamental modes and frequencies obtained at here are convergent faster and

more accurate than the Stodola iteration method as described in [32]. We have checked
the accuracy to satisfy the characteristic equation Det(K − ω2M) = 0, which is about
in the orders 10−4 to 10−2 by the presented method. But with the Stodola method its
accuracy is poor with very large error in the order 1012 for the fifth eigenvalue to satisfy the
characteristic equation. One reason to cause the large error is that even with a small error
of ω2 obtained by the Stodola method, it is amplified by the product of large coefficients in
M and K with the amount 5.76× 1012, which is estimated by the product of the diagonal
elements of K.

7.2. Direct Detection Method

Example 6. Let µ = 1/λ, Equation (3) can be written as

(M + µC + µ2K)u = 0. (57)

By letting
D := M + µC + µ2K, u = u0 + v, (58)

we come to a nonhomogeneous linear system:

Dv = −Du0, (59)

where u0 is a nonzero constant exciting vector.
We apply the IDM in Section 4 to directly detect the real eigenvalues of example 4,

and plot ‖u(µ)‖ vs. µ in Figure 11, where four peaks are happened at µ = {0, 1, 2, 3},
by which we can recover λ = {1/3, 1/2, 1, ∞} by using λ = 1/µ.
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Starting from [a0, b0] = [−0.5, 0.5] and under a convergence criterion 10−15, with six
iterations µ = −6.56× 10−4 is obtained. Starting from [a0, b0] = [0.5, 1.5] and with six
iterations, we can obtain µ = 1.000656781471890 and ‖Du‖ = 4.63× 10−4. Starting from
[a0, b0] = [1.5, 2.5] and after one iteration, we can obtain µ = 2 and ‖Du‖ = 0. Starting from
[a0, b0] = [2.5, 4.5] and after two iterations, we can obtain µ = 3 and ‖Du‖ = 2.48× 10−16.
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Figure 11. For example 4 solved as a quadratic eigenvalue problem, showing four picks of ‖u‖ in the
response curve in the interval [0,3].

The eigen-modes corresponding to λ = {1/3, 1/2, 1} are given as follows:

u(1) =

 1
1
0

, u(2) =

 1
1
0

, u(3) =

 1.805× 10−3

1
0

. (60)

Example 7. We consider [12,33]:

M =

 17.6 1.28 2.89
1.28 0.824 0.413
2.89 0.413 0.725

, C =

 7.66 2.45 2.1
0.23 1.04 0.223
0.6 0.756 0.658

, K =

 121 18.9 15.9
0 2.7 0.145

11.9 3.64 15.5

. (61)

There exist three pairs of complex eigenvalues.
Beginning with [a0, b0]× [c0, d0] = [−1,−0.5]× [8.4, 8.5], [a0, b0]× [c0, d0] = [0, 0.2]×

[2, 3], and [a0, b0] × [c0, d0] = [−1,−0.5] × [1, 2], respectively, and under a convergence
criterion 10−15, the IDM with 11 iterations converges to the following eigenvalues: λ1

λ2
λ3

 =

 −0.8848302276193034± i8.441512059499651
0.09472173815159692± i2.52287655639731
0.9179981428161037± i1.760584228706396

, (62)

whose corresponding complex eigen-modes are with the errors ‖DX‖ = 7.45× 10−14,
‖DX‖ = 3.02× 10−14 and ‖DX‖ = 7.43× 10−15, respectively. The accuracy of the eigeval-
ues and eigen-modes is in the order of 10−14 or 10−15.

Example 8. We extend example 5 to a q-degree MCK system with m1 = . . . = mq−1 = 1, mq = 2,
c1 = . . . = cq−1 = 0.01, cq = 0.02, and k1 = . . . = kq−1 = 1 and kq = 2. With q = 3, we
employ the IDM in Section 6 to locate the complex eigenvalue, and over the plane there exists one
peak in Figure 12. We find that with the initial guess [a0, b0]× [c0, d0] = [−0.001, 0]× [0.36, 0.38]
and j0 = 4, we can find λR = −0.0006959802368 and λI = 0.3730861090816 with six iterations.
The corresponding complex eigen-mode is given by
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u = v + iw =

 −0.01700169666735284
−0.03163685511252461
−0.03.675260035588075

+ i

 1
1.860806270952949
2.161703124485385

, (63)

whose error ‖DX‖ = 2.67× 10−6 is obtained.

Figure 12. For example 7, showing a pick of ‖u‖ in the response surface for complex eigenvalues.

For q = 5, we find that with the initial guess [a0, b0]× [c0, d0] = [−0.1, 0]× [0.1, 0.5]
and j0 = 5, we can find λR = −0.0003059040256 and λI = 0.24710529040384 with seven
iterations, and the error ‖DX‖ = 2.08× 10−5 is obtained.

In Figure 13, with j0 = 3 we plot the maximal and minimal frequencies with respect to
q, which can be seen that the maximal frequencies are insensitive to the dimension q of the
MCK system.
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Figure 13. For example 7 with different dimension, showing maximal and minimal frequencies.

Remark 1. The presented IDM is easily extended to nonlinear eigenvalue problem [34]. For exam-
ple, we change Equation (3) to

(λ2M +
√

λC + K)u = 0, (64)

where M, C and K are given by Equation (46). Equation (64) cannot be linearized to a linear one as
that in Equation (10).

It is interesting that the original real eigenvalues µ = {0, 1, 2, 3} = 1/λ are changed to
three as shown in Figure 14, where we can observe three peaks. Starting from [a0, b0] =
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[0.8, 1.1] and with six iterations, we can obtain µ = 1.001315771923528 and ‖Du‖ =
4.62× 10−4. Starting from [a0, b0] = [1.1, 1.5] and with six iterations, we can obtain µ =
1.346624934599962 and ‖Du‖ = 2.58× 10−9.
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Figure 14. For a nonlinear perturbation of example 4, showing three picks of ‖u‖ in the response
curve in the interval [0,2].

8. Conclusions

This paper was concerned with the fast iterative solutions of generalized and quadratic
eigenvalue problems. Since the vector eigen-equation is a homogeneous linear system,
the eigenvector is either a zero vector when the eigen-parameter is not an eigenvalue, or an
unknown vector when the eigen-parameter is an eigenvalue. Based on the original eigen-
equation, we cannot construct the response curve, which is the magnitude of the eigenvector
with respect to the eigen-parameter. We transformed the eigenvector to a new vector
including a nonzero exciting vector, which by inserting into the original eigen-equation
yields a nonhomogeneous linear system for the new vector. By varying the eigen-parameter
in a desired interval, we can construct the response curve. This is a new idea of the so-
called excitation method (EM). Then, by maximizing the magnitude of the eigenvector
solved from the nonhomogeneous linear system, we can quickly detect the location of
the eigenvalue, which is a peak in the response curve. To precisely obtain the eigenvalue,
we developed an iterative detection method (IDM) by sequentially reducing the size of
the searching interval. For reducing the computational cost of the generalized eigenvalue
problem, we derived the nonhomogeneous linear system in a lower m-dimensional affine
Krylov subspace. If m is large enough and m < n, the presented method can find all
eigenvalues very effectively. Then, we reduced the eigen-equation with one dimension less
to a nonhomogeneous linear system to determine the eigenvector with high accuracy.

In summary, the key outcomes are pointed out here.

• We transformed the eigenvector to a new vector including a nonzero exciting vector,
which by inserting into the original eigen-equation yields a nonhomogeneous linear
system for the new vector.

• By varying the eigen-parameter in a desired interval, we can construct the response
curve.

• By maximizing the magnitude of the eigenvector solved from the nonhomogeneous
linear system, we can quickly detect the location of the eigenvalue, which is a peak in
the response curve.

• To precisely obtain the eigenvalue, we developed an iterative detection method (IDM)
by sequentially zoom-in.

• From the peaks in the response curve one can roughly locate the eigenvalues and then
determine precise value by using the IDM.

• By using the EM and IDM, we have solved the quadratic eigenvalue problem for the
application to the free vibrations of multi-degree mechanical systems.
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• For the complex eigenvalue we developed the IDM in the eigen-parameter plane
of real and imaginary parts of complex eigenvalue. Very accurate eigenvalue and
eigen-mode can be obtained merely through a few iterations.
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