Next Issue
Volume 6, March
Previous Issue
Volume 5, September
 
 

Vibration, Volume 5, Issue 4 (December 2022) – 17 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
10 pages, 3301 KiB  
Article
Vibration Characteristics of Flexible Steel Plate on Proposed Magnetic Levitation System Using Gravity
by Ayato Endo, Rintaro Itoyama, Jumpei Kuroda, Daigo Uchino, Kazuki Ogawa, Keigo Ikeda, Taro Kato, Takayoshi Narita and Hideaki Kato
Vibration 2022, 5(4), 936-945; https://doi.org/10.3390/vibration5040054 - 18 Dec 2022
Cited by 2 | Viewed by 1481
Abstract
Flexible steel plates are generally transported by rollers; however, the contact between the rollers and the steel plate degrades the surface quality of the plate. To solve this problem, noncontact transportation of steel plates using electromagnetic force has been proposed. However, ultrathin flexible [...] Read more.
Flexible steel plates are generally transported by rollers; however, the contact between the rollers and the steel plate degrades the surface quality of the plate. To solve this problem, noncontact transportation of steel plates using electromagnetic force has been proposed. However, ultrathin flexible steel plates can easily fall owing to deflection. A magnetic levitation system using electromagnets installed in the horizontal direction has also been proposed to improve the levitation performance of a conventional system. However, it is difficult to control vibrations with such a system because flexible steel plates are elastically deformed into complex shapes by gravity. Therefore, an electromagnetic levitation system was proposed, wherein electromagnets were installed near the edge of the steel plate such that it could be controlled with noncontact grip, such as by allowing one side of the steel plate to hang. This system is expected to improve levitation stability because the moment of inertia increases with vertical levitation and simplifies the control system. In addition, this system actively uses gravity acting on a steel plate to decrease its deflection. The use of gravity to suppress deflection is novel. In this study, the feasibility of magnetic levitation using the proposed system was investigated using magnetic field analysis. Its usefulness was investigated experimentally using a constructed magnetic levitation system. In addition, it was found that a magnetic levitation system that maintains the standing position generates a peculiar vibration. Full article
Show Figures

Figure 1

22 pages, 1816 KiB  
Article
Free Vibrations of Multi-Degree Structures: Solving Quadratic Eigenvalue Problems with an Excitation and Fast Iterative Detection Method
by Chein-Shan Liu, Chung-Lun Kuo and Chih-Wen Chang
Vibration 2022, 5(4), 914-935; https://doi.org/10.3390/vibration5040053 - 18 Dec 2022
Cited by 3 | Viewed by 1717
Abstract
For the free vibrations of multi-degree mechanical structures appeared in structural dynamics, we solve the quadratic eigenvalue problem either by linearizing it to a generalized eigenvalue problem or directly treating it by developing the iterative detection methods for the real and complex eigenvalues. [...] Read more.
For the free vibrations of multi-degree mechanical structures appeared in structural dynamics, we solve the quadratic eigenvalue problem either by linearizing it to a generalized eigenvalue problem or directly treating it by developing the iterative detection methods for the real and complex eigenvalues. To solve the generalized eigenvalue problem, we impose a nonzero exciting vector into the eigen-equation, and solve a nonhomogeneous linear system to obtain a response curve, which consists of the magnitudes of the n-vectors with respect to the eigen-parameters in a range. The n-dimensional eigenvector is supposed to be a superposition of a constant exciting vector and an m-vector, which can be obtained in terms of eigen-parameter by solving the projected eigen-equation. In doing so, we can save computational cost because the response curve is generated from the data acquired in a lower dimensional subspace. We develop a fast iterative detection method by maximizing the magnitude to locate the eigenvalue, which appears as a peak in the response curve. Through zoom-in sequentially, very accurate eigenvalue can be obtained. We reduce the number of eigen-equation to n1 to find the eigen-mode with its certain component being normalized to the unit. The real and complex eigenvalues and eigen-modes can be determined simultaneously, quickly and accurately by the proposed methods. Full article
(This article belongs to the Special Issue Feature Papers in Vibration)
Show Figures

Figure 1

31 pages, 9065 KiB  
Article
Fourier Series Approximation of Vertical Walking Force-Time History through Frequentist and Bayesian Inference
by Angus Ewan Peters, Vitomir Racic, Stana Živanović and John Orr
Vibration 2022, 5(4), 883-913; https://doi.org/10.3390/vibration5040052 - 09 Dec 2022
Cited by 3 | Viewed by 2037
Abstract
The increased ambition of architects coupled with advancements in structural materials, as well as the rapidly increasing pressure on civil engineering sector to reduce embodied carbon, have resulted in longer spans and more slender pedestrian structures. These structures often have one or more [...] Read more.
The increased ambition of architects coupled with advancements in structural materials, as well as the rapidly increasing pressure on civil engineering sector to reduce embodied carbon, have resulted in longer spans and more slender pedestrian structures. These structures often have one or more low natural frequencies in the range of human walking accompanied with low modal masses and damping ratios. Thus, they are prone to excessive and often resonant vibrations that may compromise the serviceability limit state. Principally the uncertainty in prediction of the vibration serviceability limit state mainly originates from unreliable estimates of pedestrian loading. The key rationale behind this situation is the limited mathematical characterisation featuring in current design codes and guidelines pertinent to pedestrian-induced loading. The Fourier approximation is typically used to describe individual walking forces. Historically, such models are based on limited experimental data and deterministic mathematical descriptions. Current industry used load models featured in design codes and guidelines have been shown to incorporate inherent bias through limited intra-subject variation and poor correlation with real walking loads. This paper presents an improved Fourier model of vertical walking force across multiple harmonics, presented in a Bayesian and Frequentist statistical parameterisation. They are derived using the most comprehensive dataset to date, comprising of over ten hours of continuous vertical walking force signals. Dissimilar to previous Fourier models, the proposed models attempt to encapsulate the surround energy leakage around harmonic integers with a singular value. The proposed models provide consistently lower force amplitudes than any previous model and is shown to be more representative of real walking. The proposed model provides a closer approximation of a structural acceleration than any other similar Fourier-based model. The proposed model provides further evidence to combine the so called high and low frequency load models. Full article
(This article belongs to the Special Issue Feature Papers in Vibration)
Show Figures

Figure 1

23 pages, 5533 KiB  
Article
Seat-to-Head Transmissibility Responses of Seated Human Body Coupled with Visco-Elastic Seats
by K. N. Dewangan, Yumeng Yao and S. Rakheja
Vibration 2022, 5(4), 860-882; https://doi.org/10.3390/vibration5040051 - 05 Dec 2022
Cited by 2 | Viewed by 1735
Abstract
This study investigated the seat-to-head vibration transmissibility (STHT) responses of 58 subjects (31 males and 27 females) seated on three different elastic seats with (WB) and without back support (NB) and under three levels of vertical vibration (0.25, 0.50 and 0.75 m/s2 [...] Read more.
This study investigated the seat-to-head vibration transmissibility (STHT) responses of 58 subjects (31 males and 27 females) seated on three different elastic seats with (WB) and without back support (NB) and under three levels of vertical vibration (0.25, 0.50 and 0.75 m/s2 RMS) in the 0.50–20 Hz range. The STHT responses with elastic seats were significantly different from the widely reported responses with rigid seats, irrespective of sitting and excitation conditions. The peak STHT magnitudes with elastic seats were relatively higher than those obtained with a rigid seat. Moreover, the transmission of seat vibration showed a strong dependence on the elastic properties of the body-seat coupling. The primary resonance frequencies were also significantly different among the elastic seats. Compared to NB conditions, the peak STHT magnitudes and the primary resonance frequencies obtained with WB conditions were significantly lower. An increase in excitation magnitude resulted in a statistically significant (p < 0.001) decrease in the primary resonance frequency. Full article
(This article belongs to the Special Issue Feature Papers in Vibration)
Show Figures

Figure 1

14 pages, 758 KiB  
Article
Linear Matrix Inequality Approach to Designing Damping and Tracking Control for Nanopositioning Application
by Adedayo K. Babarinde and Sumeet S. Aphale
Vibration 2022, 5(4), 846-859; https://doi.org/10.3390/vibration5040050 - 29 Nov 2022
Viewed by 1327
Abstract
This paper presents a method to extend the eigenstructure assignment based design of the Positive Position Feedback (PPF) damping controller to the family of well-known second-order Positive Feedback Controllers (PFC) namely: (i) the Positive Velocity and Position Feedback (PVPF) and (ii) the Positive [...] Read more.
This paper presents a method to extend the eigenstructure assignment based design of the Positive Position Feedback (PPF) damping controller to the family of well-known second-order Positive Feedback Controllers (PFC) namely: (i) the Positive Velocity and Position Feedback (PVPF) and (ii) the Positive Acceleration Velocity and Position Feedback (PAVPF) using appropriate eigenstructure assignment. This design problem entails solving a set of linear equations in the controller parameters using Linear Matrix Inequalities (LMI) to specify a convex design constraint. These damping controllers are popularly used in tandem with a tracking controller (typically an integrator) to deliver high-bandwidth nanopositioning performance. Consequently, the closed-loop performance of all three controllers (PPF, PVPF and PAVPF) employed in tandem with suitably gained integral tracking loops is thoroughly quantified via relevant performance metrics, using measured frequency response data from one axis of a piezo-stack actuated x-y nanopositioner. Full article
Show Figures

Figure 1

17 pages, 6339 KiB  
Article
Vibrations Induced by a Low Dynamic Loading on a Driven Pile: Numerical Prediction and Experimental Validation
by Aires Colaço, Pedro Alves Costa, Cecília Parente and Ahmed M. Abouelmaty
Vibration 2022, 5(4), 829-845; https://doi.org/10.3390/vibration5040049 - 17 Nov 2022
Cited by 3 | Viewed by 1608
Abstract
The present paper addresses the problem of generating and propagating vibrations induced by low-impact loading on a driven pile. In this context, an experimental test site was selected and characterized, where ground-borne vibrations induced by the application of a low dynamic loading on [...] Read more.
The present paper addresses the problem of generating and propagating vibrations induced by low-impact loading on a driven pile. In this context, an experimental test site was selected and characterized, where ground-borne vibrations induced by the application of a low dynamic loading on the pile head were measured using accelerometers placed at the ground surface. At the same time, a new numerical approach, based on a coupled FEM-PML (Finite Element Method-Perfectly Matched Layer) formulation, to model the pile–ground system was presented. A very satisfactory agreement was observed between the experimental data collected in these experiments and the prediction performed by the numerical model. The experimental data can be also used by other authors for the experimental validation of their or other prediction models. Full article
(This article belongs to the Special Issue Vibrations in Materials Processing Machines)
Show Figures

Figure 1

12 pages, 4634 KiB  
Article
Experimental Consideration on Suppression Effect of Elastic Vibration in Electromagnetic Levitation System for Flexible Thin Steel Plate with Curvature
by Kazuki Ogawa, Riku Miyazaki, Yamato Uchida, Ikkei Kobayashi, Jumpei Kuroda, Daigo Uchino, Keigo Ikeda, Taro Kato, Ayato Endo, Takayoshi Narita and Hideaki Kato
Vibration 2022, 5(4), 817-828; https://doi.org/10.3390/vibration5040048 - 17 Nov 2022
Cited by 3 | Viewed by 1132
Abstract
Recently, research on non-contact conveyance systems using electromagnetic levitation technology has accelerated. We have constructed an electromagnetic levitation control system that keeps the relative distance between the electromagnet and steel plate constant. To investigate the levitation stability of thin steel plates, we performed [...] Read more.
Recently, research on non-contact conveyance systems using electromagnetic levitation technology has accelerated. We have constructed an electromagnetic levitation control system that keeps the relative distance between the electromagnet and steel plate constant. To investigate the levitation stability of thin steel plates, we performed magnetic levitation experiments on a thin steel plate with curvature. A physical disturbance was applied to the electromagnet units by vibrators. The electromagnet units were vibrated up and down by a vibrator. We investigated whether the bending magnetic levitation improved the levitation performance even if the magnetic levitation system was in a vibrating environment. We determined that it was possible to realize stable levitation for a steel plate under external disturbances during levitation at the optimal bending angle. Full article
(This article belongs to the Special Issue Vibrations in Materials Processing Machines)
Show Figures

Figure 1

14 pages, 3001 KiB  
Article
Vibrotactile Perception Thresholds following Short-Term Exposure to Hand–Arm Vibration: Application for Identifying Potential Workers at Risk of Neurosensory Disorders
by Nobuyuki Shibata
Vibration 2022, 5(4), 803-816; https://doi.org/10.3390/vibration5040047 - 17 Nov 2022
Cited by 1 | Viewed by 1230
Abstract
Background: The aim of this study was to propose and validate a novel indicator that characterizes the potential effects of exposure to hand–arm vibration (HAV) and evaluates the increasing risk of neurosensory components of hand–arm vibration syndrome (HAVS). The author focused on a [...] Read more.
Background: The aim of this study was to propose and validate a novel indicator that characterizes the potential effects of exposure to hand–arm vibration (HAV) and evaluates the increasing risk of neurosensory components of hand–arm vibration syndrome (HAVS). The author focused on a quantity calculated from ascending and descending thresholds and residual shifts in vibrotactile perception thresholds (VPTs) observed at the fingertips in the recovery process after exposure to HAV. Methods: Thirty subjects—10 old exposed (G1), 10 old non-exposed (G2), and 10 young non-exposed subjects (G3)—were required to perform a series of grip tasks with exposure to two intensities of HAV, which was followed by 90 s of vibration perception measurements at the tip of each subject’s right index finger. Vibrotactile perception was measured every 5 min for 30 min. Results: Mean differences between ascending and descending thresholds (VPTWs) for G2 and G3 remained nearly unchanged over time after exposure to HAV. In contrast, the mean VPTWs for G1 gradually increased over time after exposure to HAV. The mean VPTWs for G1 were always larger than those for G2 and G3. TTS recovery was observed at 125 Hz under both of the HAV exposure conditions in each group. TTSs of nearly zero were observed for the low-HAV condition in G3. TTS recovery after exposure to HAV was not observed at 31.5 Hz in any of the subject groups. Regardless of elapsed time, the mean TTSs for G2 and G3 were smaller than those for G1. Negative TTS values showing a lower TTS than the baseline were sometimes observed for the low-HAV condition in G3. Conclusions: VPTWs can be a screening parameter that detects potential patients with only neurosensory components observed as an early sign of HAVS. Full article
Show Figures

Figure 1

11 pages, 3746 KiB  
Article
Measurement and Analysis of Crowdsourced Vehicle Vibration Levels during Last Mile Delivery Segments for Parcel Shipments
by Kyle Dunno and Purushottam Chavan
Vibration 2022, 5(4), 792-802; https://doi.org/10.3390/vibration5040046 - 08 Nov 2022
Cited by 1 | Viewed by 2062
Abstract
Crowdsourced logistics has emerged as a delivery channel for many single-parcel packages. As a result, this logistics network has introduced personal passenger vehicles as a means to transport parcels during last mile delivery segments. To understand this network’s vibration levels and cargo capacity [...] Read more.
Crowdsourced logistics has emerged as a delivery channel for many single-parcel packages. As a result, this logistics network has introduced personal passenger vehicles as a means to transport parcels during last mile delivery segments. To understand this network’s vibration levels and cargo capacity restraints, four vehicle types (a sedan, sports sedan, compact SUV and full-size SUV) commonly used in crowdsourced logistics deliveries were selected for measurement and analysis. This study shows that the vibration levels were significantly higher in the vertical axis and that the overall vibration energy increased as vehicle speed increased, except in the sedan. The sedan and SUV vehicles showed power spectral density peak frequencies in the low-frequency range, occurring at approximately 2 Hz, matching previous studies using similar vehicles. The vibration levels were greatest in the sports sedan and lowest in the sedan. The recorded vibration events showed a right-skewed heavy-tailed distribution and were non-Gaussian. Full article
(This article belongs to the Special Issue Feature Papers in Vibration)
Show Figures

Figure 1

22 pages, 19861 KiB  
Article
Experimental Analysis of the Space Ratio Influence on the Excitation Frequencies of One and Two Cylinders Free to Vibrate in Tandem Arrangement
by Roberta Fátima Neumeister, Adriane Prisco Petry and Sergio Viçosa Möller
Vibration 2022, 5(4), 770-791; https://doi.org/10.3390/vibration5040045 - 07 Nov 2022
Cited by 1 | Viewed by 1337
Abstract
The present study aims to investigate the dominant frequency ranges of a cylinder free to vibrate transversally to the flow positioned in the first, the second or in both positions of the tandem assembly for L/D = 1.26, 1.4, 1.6, and 3.52 with [...] Read more.
The present study aims to investigate the dominant frequency ranges of a cylinder free to vibrate transversally to the flow positioned in the first, the second or in both positions of the tandem assembly for L/D = 1.26, 1.4, 1.6, and 3.52 with the increase in the flow velocity. Accelerometers and hot wire anemometers were the experimental tools applied in this study. The range of study encompassed the reduced velocity with values from 6 to 72 and Reynolds number from 7.1 × 103 to 2.4 × 104. Fourier transform, continuous wavelet transform, magnitude-square coherence, and wavelet coherence were applied to analyze the cylinder acceleration results for all L/D and wake velocity values studied. The results show that the amplitudes of vibration are below 1.5% of the diameter for all the cases, except for the lower L/D, where the amplitude increases. The first cylinder free to vibrate presents the highest amplitudes observed. Fourier and continuous wavelet analysis showed high energy associated with the two natural frequencies of the system and a third frequency, which may be associated with the flow excitation. In the second cylinder free to vibrate, energy spreads across the monitored spectrum, justifying the smaller amplitudes but the energy level increases with increasing L/D and may be associated with wake-induced vibration. The cases with both cylinders free to vibrate show that the relation between the assembly parameters of each cylinder is relevant to the vibration response and the excitation frequency range. The results showed that even with a clear excitation in a higher frequency, the main energy in the vibration signals is in the natural frequency range. Full article
(This article belongs to the Special Issue Aeroacoustics and Advanced Noise Control)
Show Figures

Figure 1

15 pages, 688 KiB  
Perspective
Beyond Seasickness: A Motivated Call for a New Motion Sickness Standard across Motion Environments
by Jelte E. Bos, Cyriel Diels and Jan L. Souman
Vibration 2022, 5(4), 755-769; https://doi.org/10.3390/vibration5040044 - 02 Nov 2022
Cited by 8 | Viewed by 4386
Abstract
Motion sickness is known under several names in different domains, such as seasickness, carsickness, cybersickness, and simulator sickness. As we will argue, these can all be considered manifestations of one common underlying mechanism. In recent years, it has received renewed interest, largely due [...] Read more.
Motion sickness is known under several names in different domains, such as seasickness, carsickness, cybersickness, and simulator sickness. As we will argue, these can all be considered manifestations of one common underlying mechanism. In recent years, it has received renewed interest, largely due to the advent of automated vehicles and developments in virtual reality, in particular using head-mounted displays. Currently, the most widely accepted standard to predict motion sickness is ISO 2631-1 (1997), which is based on studies on seasickness and has limited applicability to these newer domains. Therefore, this paper argues for extending the ISO standard to cover all forms of motion sickness, to incorporate factors affecting motion sickness, and to consider various degrees of severity of motion sickness rather than just emesis. This requires a dedicated standard, separate from other effects of whole-body vibration as described in the current ISO 2631-1. To that end, we first provide a sketch of the historical origins of the ISO 2631-1 standard regarding motion sickness and discuss the evidence for a common mechanism underlying various forms of motion sickness. After discussing some methodological issues concerning the measurement of motion sickness, we outline the main knowledge gaps that require further research. Full article
Show Figures

Figure 1

23 pages, 3530 KiB  
Article
Speed-Dependent Eigenmodes for Efficient Simulation of Transverse Rotor Vibration
by Jocelyn Kluger, Lynn Crevier and Martin Udengaard
Vibration 2022, 5(4), 732-754; https://doi.org/10.3390/vibration5040043 - 31 Oct 2022
Cited by 1 | Viewed by 1414
Abstract
Accurate, computationally efficient simulations enable engineers to design high-performing, cost-efficient, lightweight machines that can leverage models of predictive controls and digital twin predictive maintenance schedules. This study demonstrates a new speed-dependent eigenmode method for accurately and efficiently simulating shaft transverse vibrations. The method [...] Read more.
Accurate, computationally efficient simulations enable engineers to design high-performing, cost-efficient, lightweight machines that can leverage models of predictive controls and digital twin predictive maintenance schedules. This study demonstrates a new speed-dependent eigenmode method for accurately and efficiently simulating shaft transverse vibrations. The method involves first independently computing shaft eigenmodes over a range of operating speeds, then correlating the eigenmodes across the different speeds during compilation, and finally adjusting modal properties gradually in accordance with a lookup method during simulation. The new method offers several distinct advantages over the traditional static eigenmodes and Craig-Bampton methods. The new method maintains accuracy over a large range of shaft rotation speeds whereas the static eigenmodes method does not. The new method typically requires fewer modal degrees of freedom than the Craig-Bampton method. Whereas the Craig-Bampton method is limited to modeling changes at the boundaries, the new method is suitable for modeling changing body properties as well as boundary-based changes. For this paper, a fluid-bearing-supported 10 MW direct-drive wind turbine drive shaft is tested virtually in a simulation model developed in Simscape™ Driveline™. Using the simulation statistics, this study compares the accuracy and computational efficiency of the speed-dependent eigenmode method to the traditional finite lumped element, static eigenmode, and Craig–Bampton methods. This paper shows that the new method simulates the chosen system 5 times faster than the traditional lumped mass method and 2.4 times faster than the Craig-Bampton method. Full article
(This article belongs to the Special Issue Computation and Design of Renewable Energy Systems)
Show Figures

Figure 1

21 pages, 10231 KiB  
Article
Study on Hydraulic Dampers Using a Foldable Inverted Spiral Origami Structure
by Jingchao Guan, Jingshun Zuo, Wei Zhao, Nobuyuki Gomi and Xilu Zhao
Vibration 2022, 5(4), 711-731; https://doi.org/10.3390/vibration5040042 - 21 Oct 2022
Cited by 2 | Viewed by 2548
Abstract
Hydraulic dampers for the vibration damping of industrial machinery and building structures are typically cylindrical. This study proposes a novel, axially free-folding hydraulic damper of the origami type to improve the structural characteristics of the conventional cylinder shape with restricted effective stroke in [...] Read more.
Hydraulic dampers for the vibration damping of industrial machinery and building structures are typically cylindrical. This study proposes a novel, axially free-folding hydraulic damper of the origami type to improve the structural characteristics of the conventional cylinder shape with restricted effective stroke in relation to the overall length. First, the basic design equation of the proposed origami hydraulic damper was derived by demonstrating that the fold line cylinders on the sidewalls will always meet the foldable condition of the origami hydraulic damper, that is, α=π/n and π/2nβπ/n. Next, the fluid flow characteristics inside the origami hydraulic damper and in the flow path were analyzed; it was determined that the actual damping force exerted on the origami damper was proportional to the square of the velocity of motion. Equations of motion were developed considering the derived damping force equation, and a vibration analysis method using the Range–Kutta numerical analysis technique was established. A validation test system with an origami hydraulic damper in a mass-spring vibration system was developed, and vibration tests were performed with actual seismic waves to verify the damping characteristics and effectiveness of the origami hydraulic damper. Furthermore, the orifice hole diameter at the end of the origami structure as well as the type of internal fluid, were varied in the vibration tests. The effect of the main components of the origami hydraulic damper on the damping effect was analyzed, revealing that the orifice hole diameter had a more significant effect than the internal fluid. Full article
Show Figures

Figure 1

19 pages, 2162 KiB  
Article
Prediction of Voice Fundamental Frequency and Intensity from Surface Electromyographic Signals of the Face and Neck
by Jennifer M. Vojtech, Claire L. Mitchell, Laura Raiff, Joshua C. Kline and Gianluca De Luca
Vibration 2022, 5(4), 692-710; https://doi.org/10.3390/vibration5040041 - 13 Oct 2022
Cited by 1 | Viewed by 2403
Abstract
Silent speech interfaces (SSIs) enable speech recognition and synthesis in the absence of an acoustic signal. Yet, the archetypal SSI fails to convey the expressive attributes of prosody such as pitch and loudness, leading to lexical ambiguities. The aim of this study was [...] Read more.
Silent speech interfaces (SSIs) enable speech recognition and synthesis in the absence of an acoustic signal. Yet, the archetypal SSI fails to convey the expressive attributes of prosody such as pitch and loudness, leading to lexical ambiguities. The aim of this study was to determine the efficacy of using surface electromyography (sEMG) as an approach for predicting continuous acoustic estimates of prosody. Ten participants performed a series of vocal tasks including sustained vowels, phrases, and monologues while acoustic data was recorded simultaneously with sEMG activity from muscles of the face and neck. A battery of time-, frequency-, and cepstral-domain features extracted from the sEMG signals were used to train deep regression neural networks to predict fundamental frequency and intensity contours from the acoustic signals. We achieved an average accuracy of 0.01 ST and precision of 0.56 ST for the estimation of fundamental frequency, and an average accuracy of 0.21 dB SPL and precision of 3.25 dB SPL for the estimation of intensity. This work highlights the importance of using sEMG as an alternative means of detecting prosody and shows promise for improving SSIs in future development. Full article
(This article belongs to the Special Issue Feature Papers in Vibration)
Show Figures

Figure 1

16 pages, 2854 KiB  
Article
An Experimental Investigation of the Displacement Transmissibility for a Two-Stage HSLD Stiffness System
by Janik Habegger, Marwan Hassan and Michele Oliver
Vibration 2022, 5(4), 676-691; https://doi.org/10.3390/vibration5040040 - 08 Oct 2022
Cited by 1 | Viewed by 1730
Abstract
Vibration isolation across the frequency spectrum is a challenge in many applications, particularly at low frequencies where linear oscillators amplify excitation forces. To overcome this, nonlinear high static low dynamic (HSLD) stiffness oscillators have been proposed with the aim of reducing the resonant [...] Read more.
Vibration isolation across the frequency spectrum is a challenge in many applications, particularly at low frequencies where linear oscillators amplify excitation forces. To overcome this, nonlinear high static low dynamic (HSLD) stiffness oscillators have been proposed with the aim of reducing the resonant frequency while maintaining the high load capacities of much stiffer linear systems. A two-degree of freedom (2DOF) HSLD stiffness system is proposed to investigate the effectiveness of such systems. Experiments reveal that a 2DOF non-linear HSLD stiffness system outperforms a similar single-degree of freedom (SDOF) HSLD stiffness system, as well as similar SDOF and 2DOF linear systems. Three performance criteria are used to assess these systems, including (1) minimizing the resonant frequency and maximizing the isolation zone, (2) minimizing the magnitude of amplification at resonance, and (3) maximizing the ability to isolate large input frequencies. Exact numerical and approximate analytical simulations are validated using these experimental data. A sensitivity analysis of system parameters reveals that it is necessary to incorporate adjustability into the geometry of a design to counteract unavoidable manufacturing tolerances. Changes of less than 2% to the stiffness or geometry of a system can drastically change its dynamic response. Full article
Show Figures

Figure 1

17 pages, 1813 KiB  
Article
Influence of Interference between Vertical and Roll Vibrations on the Dynamic Behaviour of the Railway Bogie
by Mădălina Dumitriu and Ioana Izabela Apostol
Vibration 2022, 5(4), 659-675; https://doi.org/10.3390/vibration5040039 - 23 Sep 2022
Cited by 1 | Viewed by 1593
Abstract
This paper investigates the dynamic behaviour of a two-axle bogie under the influence of interference between the vertical vibrations of bounce and pitch—generated by the track irregularities—and the roll horizontal vibrations—excited by the asymmetry in the suspension damping that can be caused by [...] Read more.
This paper investigates the dynamic behaviour of a two-axle bogie under the influence of interference between the vertical vibrations of bounce and pitch—generated by the track irregularities—and the roll horizontal vibrations—excited by the asymmetry in the suspension damping that can be caused by the failure of a damper during exploitation. For this purpose, the results of numerical simulations are being used, as developed on the basis of two original models of the bogie-track system, namely the model of the bogie with symmetrical damping of the suspension—track and the model of the bogie with asymmetrical damping of the suspension—track, respectively. The dynamic behaviour of the bogie with symmetrical/asymmetrical damping is evaluated in five reference points of the bogie regime of vibrations, based on the Root Mean Square of acceleration (RMS acceleration). The results thus obtained highlight the characteristics regarding the symmetry/asymmetry of the regime of vibrations in the bogie reference points and the location of the critical point of the bogie regime of vibrations. The influence of the suspension asymmetry upon the dynamic behaviour of the bogie is analysed in an original manner, hence leading to conclusions that might establish themselves as the starting point of a new fault detection method of the dampers in the primary suspension of the railway vehicle. Full article
Show Figures

Figure 1

18 pages, 1971 KiB  
Article
How Far Should Poles Be Placed? Selecting Positive Feedback Controllers for Damping and Tracking Applications: A Complete Characterisation
by James MacLean, Majid Aleyaasin and Sumeet S. Aphale
Vibration 2022, 5(4), 641-658; https://doi.org/10.3390/vibration5040038 - 20 Sep 2022
Viewed by 1365
Abstract
Designers of Positive Feedback Controllers (PFCs) arbitrarily place poles into the left-hand half-plane of the complex plane without any detailed understanding of where to stop. This works aims to clearly demonstrate, via rigorous mathematical derivation, the conditions for which pole–placement becomes possible. It [...] Read more.
Designers of Positive Feedback Controllers (PFCs) arbitrarily place poles into the left-hand half-plane of the complex plane without any detailed understanding of where to stop. This works aims to clearly demonstrate, via rigorous mathematical derivation, the conditions for which pole–placement becomes possible. It also highlights the design limits for the family of second–order PFCs—the most popular PFC group. To this end, the complete family of PFCs, namely, Positive Acceleration Velocity Position Feedback and its derivatives, are analysed in great depth with respect to pure damping and also with respect to combined damping and tracking applications. To showcase the practical value and validity of this work, experimental results on a piezoelectric nanopositioner are also presented and discussed. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop