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Abstract: With railway interoperability, new trains are allowed to move on the French railway
network. These trains may present different designs from standard trains. This work aims to
complete the current approach for vehicle admission on the railway network, which is defined in
technical baselines. Historically, computation rules for traffic conditions are based on simplified
analytical works, which are considerably qualitative. They have evolved through feedback and
experimental campaigns to comply with the track structure evolution. An efficient methodology
based on numerical simulation is needed to evaluate railway vehicle admission to answer this issue.
A perspective to update these computation rules is to evaluate the structural fatigue in the rail. That is
to say, fatigue is caused by bending and shear stresses. The complexity of the railway system has led
to an investigation at first of the vertical response of the railway track and quantifying its contribution
to the rail’s stress response. In that sense, this paper investigates the vertical track response to a
moving railway vehicle at low frequencies. For this purpose, a lightweight numerical model for the
track, a multi-body model for the vehicle, and a random vertical track irregularity are proposed.
More explicitly, the track model consists of a two-layer discrete support model in which the rail is
considered as a beam and sleepers are point masses. The rail pads and ballast layer are modelled
as spring/damper couples. Numerical results show a negligible effect of track inertia forces due to
high track stiffness and damping. Nevertheless, this assumption is valid for normal rail stresses but
not for ballast loading, especially in the case of sleeper voids or unsupported sleepers. Hence, the
prediction of the mechanical stress state in the rail for fatigue issues is achieved through a static track
model where the equivalent loading is obtained from a dynamic study of a simplified vehicle model.
A statistical analysis shows that the variability of the vertical track irregularity does not influence the
output variabilities like the maximum in time and space of the normal and shear stress.

Keywords: railway tracks; finite element method; vertical track irregularity; statistical analysis

1. Introduction

Currently, the procedure for railway vehicle admission on a track of the French railway
network is presented in a technical baseline. It is defined for conventional railway lines,
which are highly heterogeneous in terms of mechanical resistance. The procedure consists
of verifying the compatibility between the vehicle and the track regarding:

• the type of vehicle and its static wheel loads,
• the mechanical resistance of the track and its layout [1].

Then, for each combination of the track and the vehicle, the maximum allowed speed
of the vehicle Vmax is identified. Conventional lines are limited to a maximum speed of
220 km/h. When coupled to track geometry irregularities (i.e., minimum wavelength of
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3 m), a relevant frequency range of [0;20 Hz] is defined. This frequency range is also the
scope of security and passenger comfort matters [2], which concerns the railway vehicle
admission procedure. The current computation rules behind railway vehicle admission
are derived from simplified analytical works aiming to classify the network’s tracks with
respect to their flexural resistance [3]. These rules have evolved through feedback. However,
with the strengthening of the railway interoperability strategy, new trains with different
designs are allowed to move on the French railway network. Thus, the main objective
of this work is to complete the current approach to cover new trains and potentially new
track designs. Furthermore, increasing traffic density and enhancing the railway network’s
exploitation performances requires improvement of the current railway vehicle admission
rules. Finally, to ensure optimal network exploitation, it is necessary to provide quick
decisions for railway vehicle admission. The main objective of this work is to propose an
efficient methodology that supports the railway vehicle admission procedure and allows
for the definition of new rules for traffic conditions based on the evaluation of fatigue in
the rail. The proposed approach is based on numerical modelling of the railway track and
the vehicle to combine accuracy and speed.

In this context, several numerical models of the track have been developed in the litera-
ture. 3D finite element (FE) models allow for a better representation of the track components
and their constitutive laws, sometimes taking into account high speed configurations ([4–6]).
For instance, Mei et al. [7] studied the impact of vertical track defects and moving railway
heavy hauls on the dynamic stress at the subgrade surface modelled as a Mohr–Coulomb
constitutive law. Varandas et al. [8] focused on the estimation of the ballast and sub-ballast
long-term deformation through a 3D model where the ballast layer is assimilated to a non-
linear material law. Sayeed and Shahin [9] investigated the critical speed of the railway track
where ballast and interface layers were modelled as elastoplastic Mohr–Coulomb materials.
Although accurate, 3D models remain hardly suitable for industrial exploitations because
of the large computational time. Hence, reduced models have been proposed [10,11] where
the analysis of the overall domain is restricted to a reference cell by taking advantage of the
track periodicity. Then, reduction techniques are adopted to reduce the number of degrees
of freedom of the system (DOFS). In that case, non-periodic track irregularities cannot be
implemented. Other authors proposed 2D models with a plane stress formulation [12] or a
plane strain formulation [13]. These models give a good approximation of the stress in the
section of the track, but realistically, the stress response is heterogeneous with respect to the
track width. All these models are useful when an accurate characterisation of the subgrade
or ballast layer is required. Beam-like structured finite element models of the track are
more convenient to study the response of the track upper structure {rail, sleeper} than
moving vehicles which are represented by linear multi-body models. This model category
is suitable for industrial exploitations in terms of the computational costs and effectively
predicts the track dynamic response. For example, the computed vertical receptance curve
in the work of Xie and Iwnicki [14] indicates resonance occurring in the high-frequency
domain for a beam-like track model with two layers and discrete supports. It is essential to
supply the vehicle and track models with correct values of damping and rigidity to gain
representative results. This category of track models was used to study the dynamic effects
of vehicles moving on periodic defects such as corrugated rails [14–16] or wheelflats [17], or
non-periodic defects, including welded joint defects [18] and unsupported sleepers due to
degradation of the ballast [15]. The effect of long-wavelength track geometry irregularities
was also investigated in [19–21], where random track irregularities are generated from
single-sided power spectral density functions. This category of track models is still relevant.
For instance, the vertical dynamic response of a ballasted track under a moving multi-body
vehicle model was studied in [22]. More specifically, a sensitivity analysis on axle loads
showed a linear increase in the contact forces and transmitted forces of the track with axle
loads. The train running security and passenger comfort were studied in [23] through
the analysis of wheel–rail forces in a track–bridge model. In [24], the vertical interaction
between a track and a bridge was investigated. Moreover, the influence of dynamic train
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loads and temperature variations in the damage state of a tram ballastless track was studied
in [25]. In [26], the mechanical response of the different substructure layers was evaluated
using a rheological model of the track substructure, including plasticity (i.e., slider ele-
ments). Furthermore, a 2D two-layer model of the track was used in [27] to analyse the
critical velocity of the track and the instability of moving masses.

This paper is an intermediate step to answering the main objective. A beam-like
structure finite element model of the track is developed to investigate the bending and
shear stress response of the railway track and to quantify its contribution to the rail’s stress
response. The objective is to predict the stress state in the rail when the track is subjected to
the dynamic loading of a vehicle modelled as a multi-body system running on a track with
irregularities. Indeed, the idea is to quickly provide relevant information on the capacity of
the railway to bear the vehicle load.

The first section is dedicated to the description of the railway system model. It includes
the finite element model of the track, the methodology used to generate random vertical
track irregularities from existing measurements and a multi-body model of the railway
vehicle. Then, numerical applications are presented to study the effect of track inertia forces
on the mechanical stress response of the rail. The stress state in the rail is also analysed
to verify the possible predominance (or not) of the normal stress over the shear stress. In
the last section, a statistical analysis based on the Monte Carlo simulation is available to
identify the effect of the track irregularity variability on the rail’s stress response.

2. Materials and Methods
2.1. Finite Element Model of the Track

A lightweight finite element model of the track is developed. In the present work,
regarding the symmetry of the track in its longitudinal direction, only half of the track is
modelled (i.e., one rail). It describes a discretely supported rail on rail-pads and sleepers
laying on a ballast layer as shown in Figure 1.

Figure 1. Finite element model of the track.

In particular, considering the negligible longitudinal displacement, the rail is discre-
tised as two-node Timoshenko beam elements with two degrees of freedom each: a vertical
displacement vr,i and a rotation θr,i (Figure 2). The rail is also characterised by its specific
mass mr, shear and Young modulus G and E, cross-section Sr and moment of inertia Iy
concerning the y axis. The sleepers have only a vertical displacement vs,j. The sleepers
are assumed to be rigid, and their inertia is neglected. Thus, in the dynamic calculation,
they are only represented by point masses. They are linked to some rail nodes by parallel
spring/damper couples representing the rail-pad behaviour between a sleeper and the rail.
The ballast layer is also represented by parallel spring/damper couples.

Stiffness coefficients of the spring for rail-pads and the ballast are, respectively, kp, kb
and damping coefficients are, respectively, cp, cb. The finite element method to compute
degrees of freedom in the rail is recalled in Appendix A.
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Figure 2. Degrees of freedom of a rail beam element.

2.2. Track Loading

The vertical track response is studied in the low-frequency range [0;20 Hz] as it
concerns railway vehicle admission on conventional lines, which deals with security and
passenger comfort matters. It allows for uncoupling of the vehicle’s dynamic from the
track’s dynamic. Indeed, according to [28–30], at a low-frequency range, track inertia
forces are negligible compared to vehicle’s inertia and do not impact the vehicle’s dynamic
behaviour. On the one hand, receptance measurements of the track show that the natural
frequencies are much higher than the frequency range of interest ([0;20 Hz]). Indeed, a
first resonance is in the frequency range [50;30 Hz], a second one is in the frequency range
[200;600 Hz], and a third one is located around 1000 Hz as explained in [31]. On the other
hand, natural vibrations of the vehicle motion are in the area of [0;20 Hz] [30,32]. Therefore,
the vertical track loading is due to:

• the static wheel loads of the vehicle,
• the vehicle’s dynamic overloads due to irregularities of the track vertical profile.

2.2.1. Simulation of a Random Irregularity of the Track Vertical Profile
Track Inspection Techniques in the French Railway Network

For French conventional railway lines where speeds are limited to 220 km/h, track in-
spections are achieved by Mauzin cars (Figure 3). The vehicle includes 3 bogies, 8 wheelsets
and an extremely rigid car body that constitutes the reference plane for track geometry
measurements.

Figure 3. Mauzin car. Reproduced with permission from Jérémie Badinos and Thierry Vicol (SNCF
RÉSEAU); photo taken by Jérémie Badinos and Thierry Vicol, 2016.

Several geometry irregularities are recorded (gauge, alignment, cross-level and vertical
profile). Given the purpose of studying the vertical track response, only the vertical profile
irregularity is introduced. The vertical profile of the track is measured by the variations
between the vertical displacement of a wheel of the Mauzin car and the average of the
vertical displacements of all the corresponding wheels [33]. Besides this geometrical
measurement, track experts in France use a quality indicator for the track according to
which maintenance operations are planned. In more detail, for the vertical profile, the
longitudinal levelling (NL) is used. It is the standard deviation of the measured vertical
profile for a distance of 200 m [12].
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Methodology for Generating the Random Irregularity of Track Vertical Profile

Many authors proposed a theoretical modelling of the random irregularity for the track
vertical profile [7,19–21,34,35]. Ref. [20] considered the vertical track profile irregularity
as a stationary ergodic Gaussian random process that can be defined by a power spectral
density (PSD) and a zero expectation. The defect sample is then recovered by inverse
Fourier transform. This theoretical approach is simple to implement and gives a first
estimation of geometrical irregularities. However, generated track irregularities are not
well representative of real measurements in the French railway network. Generating the
vertical track irregularity from the PSD requires that the track is free from turnouts or
road crossing and that the railway line is free of track deterioration (e.g., ballast layer
deterioration) [20], which is not always possible to satisfy, particularly when a local change
in the track substructure is required. Besides, because of the interaction between the vehicle
and the track, track irregularities are, in reality, neither Gaussian nor stationary, according
to Perrin et al. [36].

A new approach is conducted in this paper to generate a random vertical track irregu-
larity r(x) from vertical defect measurements rmes(x) on different zones in alignment of a
given track. This allows us to create a sample representative of the measured track zones
and characterised by the richest frequency content in terms of frequency bandwidth and
magnitude response. It consists of the following steps:

1. A first preprocessing on the vertical measurements rmes(x) is achieved by removing
track zones which are in curves since the modelled track is fully in alignment. Ns is
thus the total number of track zones in alignment.

2. For each track zone, a discrete Fourier transfom (DFT) of the measured signal rmes(x)
is performed with zero padding, where N is the size of the longest signal, fn is the
frequency and i is the imaginary number:

Hmes( fn) =
N−1

∑
k=0

rmes(x(k)) e
−2πi

N k nfor 0 ≤ n ≤ N − 1 (1)

3. At each spectral component fn between 0 and the Nyquist frequency (i.e., 0 ≤ n ≤ N
2 ),

the maximum amplitude of the DFT Hmes among the Ns signals is extracted:

|H( fn)| = max
1≤α≤Ns

|Hmes( fn)|α (2)

4. By creating uniformly distributed random phases φn = φ( fn) in [0;2π] at each spectral
component, one can construct the positive frequency domain signal:

H( fn) = |H( fn)| ei φn for 0 ≤ n ≤ N
2

(3)

The negative frequency domain signal is calculated as the complex conjugate of the
positive frequency domain signal. Hence, the DFT H of the random vertical track
irregularity r(x) is built,

5. The track vertical irregularity r(x) is recovered by inverse fourier transform:

r(x(n)) =
1
N

N−1

∑
k=0

H( fk) e
2πi
N k nfor 0 ≤ n ≤ N − 1 (4)

2.2.2. Multi-Body Model of the Railway Vehicle

A model of a half-locomotive is proposed in Figure 4 due to the (~x,~z) symmetry plane
of the vehicle.
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Figure 4. Simplified multi-body model of a railway half-vehicle (i.e., only one rail of the track is
modelled).

It consists of a multi-body system where the car body is defined by a vertical motion
vc and a rolling motion θc. Each bogie has a vertical motion vbi and a rolling motion θbi.
As mentioned in Section 2.2, the track’s vibration is supposed negligible in front of the
irregularity amplitude. Thus, the vehicle is expected to follow the track irregularity profile
and the vertical displacements of the wheels vwi can instantly be written as a function of
the vertical irregularity profile r:

vw1 = r(V t)
vw2 = r(V t− dw)
vw3 = r(V t− db)
vw4 = r(V t− (dw + db))

(5)

where V is the speed of the vehicle, which is supposed to be constant, dw is the wheelbase
and db is the distance between the two bogie centrelines. The equations of motion of the
vehicle system are solved with a static equilibrium as the initial condition:

[Mv]{v̈}+ [Cv]{v̇}+ [Kv]{v} = {F}
{v(t = 0)} = [Kv]−1{F}
{v̇(t = 0)} = 0

(6)

The nodal displacement vector {v} and the force vector {F} are expressed by:

{v} =
{

vc θc vb1 θb1 vb2 θb2
}T

{F} =



−Mc g
0

−Mb g + cz1 (v̇w1 + v̇w2) + kz1 (vw1 + vw2)

−cz1
dw
2 (v̇w1 − v̇w2)− kz1

dw
2 (vw1 − vw2)

−Mb g + cz1 (v̇w3 + v̇w4) + kz1 (vw3 + vw4)

−cz1
dw
2 (v̇w3 − v̇w4)− kz1

dw
2 (vw3 − vw4)


(7)

The stiffness, damping and mass matrices are formulated as follows:
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[Kv] =



2 kz2 0 −kz2 0 −kz2 0

0 2
((

db
2

)2
kz2 + kθ

)
db
2 kz2 −kθ − db

2 kz2 −kθ

−kz2
db
2 kz2 2 kz1 + kz2 0 0 0

0 −kθ 0 2
(

dw
2

)2
kz1 + kθ 0 0

−kz2 − db
2 kz2 0 0 2 kz1 + kz2 0

0 −kθ 0 0 0 2
(

dw
2

)2
kz1 + kθ



[Cv] =



2 cz2 0 −cz2 0 −cz2 0

0 2
((

db
2

)2
cz2 + cθ

)
db
2 cz2 −cθ − db

2 cz2 −cθ

−cz2
db
2 cz2 2 cz1 + cz2 0 0 0

0 −cθ 0 2
(

dw
2

)2
cz1 + cθ 0 0

−cz2 − db
2 cz2 0 0 2 cz1 + cz2 0

0 −cθ 0 0 0 2
(

dw
2

)2
cz1 + cθ



[Mv] =



Mc 0 0 0 0 0
0 Jc 0 0 0 0
0 0 Mb 0 0 0
0 0 0 Jb 0 0
0 0 0 0 Mb 0
0 0 0 0 0 Jb



(8)

In the above equations, Mc is the half car body mass, and Jc is the half car body
moment of inertia concerning ~y axis. Mb and Jb are, respectively, the half bogie mass and
the half bogie moment of inertia concerning ~y axis. kz1 and cz1 are, respectively, the vertical
stiffness and damping of the primary suspension linking a bogie to a wheel. Finally, kz2 and
cz2 are, respectively, the vertical stiffness and damping of the secondary suspension linking
the car body to a bogie. An angular stiffness kθ and angular damping cθ are added at the
level of the secondary suspension as a calibration of the system’s rotational behaviour.

The resolution of the dynamic problem (Equation (6)) and wheels motion equations
allow for the calculation of the applied loads on the rail by each wheel of the vehicle. These
loads are, in a second step, applied to the track model as the track loading represented by
four variable loads, Nw1(t), Nw2(t), Nw3(t) and Nw4(t), moving at a constant speed V.

3. Results
3.1. Vertical Track Response to a Moving Half Vehicle

Parameters of the studied vehicle and track are listed in Table 1. As defined in
Section 2.2.1, a vertical track irregularity with wavelengths λ ∈ [3;30 m] is generated over
a length corresponding to 100 sleeper bays of the track (Figure 5a). Taking into account the
fact that only the track’s geometry is supposed to excite the vehicle’s dynamic, calculations
are decoupled. For the given vertical track irregularity, the dynamic loads Nw1(t), Nw2(t),
Nw3(t) and Nw4(t) applied by the vehicle on the track at the level of each wheel are at
first computed using the Newmark integration method (average constant acceleration
scheme) [37] (Figure 5b). The equivalent loads (at each time step, the position and the
amplitude of the force change) are then implemented in the track model developed in
CAST3M [38] in order to analyse its response. For the purpose of the study, the vehicle
speed V is taken equal to 216 km/h.
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(a) (b)

Figure 5. Random vertical track irregularity profile and its associated vehicle’s dynamic overloads. (a)
Generated vertical track irregularity in the wavelength domain λ ∈ [3;30 m].; (b) Dynamic vehicle’s
loads associated with the track defect for a vehicle speed of V = 216 km/h.

Table 1. Track [14] and vehicle parameters.

Parameter Notation Numerical Value

-Track system-
Rail density ρr 7850 kg m−3

Rail Young’s modulus E 210× 103 MPa
Rail cross section Sr 7.67× 10−3 m2

Rail second moment of area Iy 3.0383× 10−6 m4

Rail-pad vertical stiffness kp 350 MN m−1

Rail-pad vertical damping cp 50 MN s m−1

Half sleeper mass Ms 162 kg
Sleeper spacing l 0.6 m

Ballast vertical stiffness kb 50 MN m−1

Ballast vertical damping cb 100 MN s m−1

-Half Vehicle system-
Half car body mass Mc 23,400 kg

Half car body pitch moment of inertia Jc 965,979.7 kg m2

Half bogie mass Mb 6742.5 kg
Half bogie pitch moment of inertia Jb 5606.9 kg m2

Wheel mass Mw 1902.5 kg
Primary suspension vertical stiffness kz1 7.32565 MN m−1

Primary suspension vertical damping cz1 38.44 kN s m−1

Secondary suspension vertical stiffness kz2 1.2313 MN m−1

Secondary suspension vertical damping cz2 7.8164 kN s m−1

Secondary suspension pitch stiffness kθ 0.0098235 MN m rd−1

Secondary suspension pitch damping cθ 0.87128 kN m s rd−1

Wheel base dw 2.8 m
Distance between the two bogie centrelines db 9.7 m

The track behaviour is analysed over 100 sleeper bays (i.e., the irregularity’s length).
10 beam elements per sleeper bay are considered, and the time step is chosen so that 3 time
steps are necessary for a wheel to move from a node i to a node i + 1.

The finite length of the track model poses some challenges in efficiently represent-
ing the wave propagation problems in railway tracks because of wave reflection at the
boundaries. To avoid wave reflection, some authors such as Nguyen [39] added absorbing
boundary conditions. Indeed, some elements with high damping are introduced at the
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boundaries. Another methodology extends the domain significantly so that waves are
attenuated before they reach the boundaries. The latter method can be expensive and is
appropriate when damping in the structure is essential. For the current track model, a
buffer zone without defects is added on both sides of the track (second strategy). The use
of the second strategy is motivated by the fact that the modelled track has high vertical
damping values. Besides, thanks to the buffer zone, the steady state of the track system
is attained when the vehicle reaches the mid-zone area of the track (initial length of the
track without the buffer zone), which is known as the zone of interest ZOI. A sensitivity
analysis showed that a length equivalent to twice the vehicle’s length with a junction length
(i.e., transition from defected to zero defect zone) for the buffer zone was sufficient. The
comparison of the dynamic and static response of the track is then conducted.

3.1.1. Validation of the Hypothesis of Negligible Inertial Forces at Low Frequency

A comparison of the track dynamic response and its static equivalent response is
carried out (Equation (9)). More specifically, the shear force Tz, the bending moment My
and the vertical deflection uz in the rail are investigated. Figure 6 shows that the two
responses are very close.

[K]{u}i = {Q}i (9)

(a) (b)

(c)

Figure 6. Comparison of the dynamic and static responses of the track in the mid-region of the track
ZOI when the vehicle reaches the rail mid-length. (a) Vertical displacement. (b) Bending moment.
(c) Shear force.

An L∞ norm error is then introduced to quantify the gap between the static response
qsta and the dynamic response qdyn in the mid-region of the track between the simulation
times t1 and t2 corresponding, respectively, to the entry of the first wheel in the ZOI and
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the exit of the fourth wheel from the ZOI (Equation (10)). As it is reported in Figure 7, the
gap does not exceed 10%.

e(t) =
max

x∈ZOI
|qdyn(x, t)− qsta(x, t)|

max
x∈ZOI

|qdyn(x, t)| for q ∈ {Tz; My; uz} (10)

(a) (b)

(c)

Figure 7. L∞ norm error used to quantify the gap between the static and the dynamic responses of
the track in its mid-region ZOI. (a) For vertical displacement. (b) For bending moment. (c) For shear
force.

The very close responses can be explained by the fact that vertically, the track’s stiffness
and damping are very high on one side. On the other hand, the natural frequencies of the
track are higher than the range frequency of interest ([0;20 Hz]) [40]. The stress state can
thus be computed for a static track response to dynamic vehicle overloads. The buffer zone
is consequently reduced to the vehicle’s length so that initially, all vehicle’s wheels are in
the plane zone of the track.

3.1.2. Stress State in the Rail

The normal and shear stress fields (σxx,τ) are computed in the rail section at each node
of the zone of interest ZOI and each time step using Equation (11):

σxx(x, z, t) = −z My(x,t)
Iy

τ(x, y, z, t) =

√(
Tz(x,t)

Sr

∂g(y,z)
∂y

)2
+
(

Tz(x,t)
Sr

∂g(y,z)
∂z

)2 (11)

The determination of the shear stress τ requires computing before the warping func-
tion g(y, z), independent of the value of the shear force Tz. It only depends on the section
itself and allows us to compute the axial warping displacement in the beam due to shear
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forces [41]. Classically, the warping function is the solution of the Poisson equation with a
Neumann boundary condition (problem 12). The third condition in the problem formula-
tion is to ensure the unicity of the solution.

∆g = −z Sr
Iy

(in all the domain Sr)
∂g
∂y ny +

∂g
∂z nz = 0 (null Neuman condition on the boundary of Sr)∫

Sr
g ds = 0 (unicity condition)

(12)

where −z Sr
Iy

is a source term equivalent to a surface loading, ny and nz are the directional
cosines of the rail section edge’s normal vector~n defined in the principal coordinate system
(G,~x,~y,~z), G being the center of gravity of the rail section as reported in Figure 8.

Figure 8. Rail section edge: representation of its associated coordinate system (G, x, y, z) and the
unitary normal vector to the rail section edge~n.

Unlike regular sections, the analytical computation of the warping function g(y, z)
for the rail section is not possible. In this study, it is computed using the finite element
method. The rail section is discretised into triangular linear plane elements, and the
system (12) is solved by taking advantage of a thermic analogy observed in the stationary
heat equation (D ∆T = R, D is the conductivity matrice and T is the temperature field).
Indeed, the implemented method consists of solving a fictive thermic problem for the
meshed rail section. The conductivity coefficient is set to 1 to respect the equation form in
the problem (12) and the source term is R = −z Sr

Iy
. A fictive mass matrice is constructed

to convert integral writing of quantities to matrice writing, which is useful in the finite
element method. As an example, the y coordinate of the rail centre of gravity is written as:

yG =
1
Sr

∫
Sr

ydS (13)

Using finite element method, the y coordinates on the rail section are known at the
level of mesh nodes. Thus, the

{
y
}

i=1:Nn
coordinate vector of the mesh is written, where

Nn is the number of nodes. The y coordinate of the center of gravity G becomes:

yG =
1
Sr

∫
Sr

1
[
N(y, z)

] {
y
}

i=1:Nn
dS (14)

where Ni(x, y) are the shape functions and 1 is a unit function that can be expressed as:{
1 =

[
N(y, z)

] {
U
}

= 1T =
{

U
}T [N(y, z)

]T{
U
}

=
{

1
}

i=1:Nn

(15)
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Finally, the y coordinate of the center of gravity G is expressed as:

yG =
1
Sr

{
U
}T [M] {y

}
i=1:Nn

(16)

where
[
M
]

is the fictive mass matrice in question for a unit density:

[
M
]
=
∫

Sr

[
N(y, z)

]T [N(y, z)
]
dS (17)

The stress history of a rail Section P is examined. It is the first section located between
two sleepers right after the mid-length point on the rail, as shown in Figure 9a. More
specifically, Figure 9b shows the time evolution of the maximum stresses in this section P
max
(y,z)∈P

σxx and max
(y,z)∈P

τ. The shear stress and normal stress are seen to have the same order

of magnitude. Obviously, the highest value of normal stress is observed when each vehicle’s
wheel reaches Section P (the peak is observed under the wheel’s load). However, shear
stress peaks are observed on both sides of the wheel’s load position due to the shear load
discontinuity. It means that for Section P, the maximum shear stress is observed when a
wheel is located in the previous Section P − 1 and when it is located in the following Section
P + 1. The normal and shear stress fields in the rail section are hence shown in Figure 10
when the shear stress is maximum at the fourth peak. More specifically, extreme values of
the normal stress are located on the rail’s foot (tension) and the rail’s head (compression).
However, the shear stress is maximum in the rail’s web.

(a) (b)

Figure 9. Stress history of a given rail Section P due to the moving vehicle. (a) Position of the
rail Section P with respect to the track length. (b) Time evolution of the Maximum normal stress
max
(y,z)∈P

σxx and maximum shear stress max
(y,z)∈P

τ in Section P.
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rail’s head

rail’s foot

(a)

rail’s web

(b)

Figure 10. Stress field in Section P when the fourth wheel reaches the section (i.e., at the time of the
fourth peak in Figure 9b). (a) Normal stress σxx[MPa]. (b) Shear stress τ[MPa].

3.2. Statistical Analysis

A statistical analysis is realised in order to study the effect of the track irregularity
variability on the rail’s stress response variability.

In accordance with Section 2.2.1, 5000 vertical track irregularities random samples are
generated. One recalls that the random nature of the vertical track irregularity comes from
the random phases. The random variable Gr relative to the vertical track irregularity is
chosen as the maximum amplitude along the track (Equation (18)).

Gr = max
x
|r(x)| (18)

Then, for each track irregularity sample, the maximum normal stress and the maximal
shear stress in the rail with respect to time and space are computed:

Gσxx = max
x,y,z,t
|σxx(x, y, z, t)|

Gτ = max
x,y,z,t
|τ(x, y, z, t)| (19)

Distributions of the three random variables are presented in Figure 11.
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(a) (b)

(c)

Figure 11. Statistical distribution of the vertical irregularity and stresses random variables. (a) Vertical
irregularity variable Gr. (b) Normal stress variable Gσxx . (c) Shear stress variable Gτ .

The coefficient of variation CV is then computed for each distribution. Indeed, it
allows for the characterisation of the relative dispersion of the samples with respect to the
mean’s distribution µ:

CV =
s
µ

(20)

where s is the standard deviation of the distribution. The coefficients of variation associated
with the vertical track irregularity and stress variables are reported in Table 2. Indeed,
low values are obtained for the normal and shear stress variables compared to the track
defect variable. It shows that the track defect dispersion does not affect the stress state as
an output. Therefore, the stress state in the rail due to vertical loads of the vehicle can be
characterised through one deterministic simulation of the numerical vehicle’s model and
the track’s model.

Table 2. Coefficients of variation of the vertical irregularity, maximum normal stress and maximum
shear stress random variables.

CVr [%] CVσxx [%] CVτ [%]

25.18 4.81 4.71

4. Conclusions

In this paper, a lightweight and efficient finite element model of the track and a
simplified multi-body model of the vehicle were implemented to analyse the vertical
response of the rail under a moving vehicle in the context of the development of an
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efficient methodology to support the railway vehicle admission procedure in the French
railway network. The frequency range of interest being in [0;20 Hz], the track model
was uncoupled from the vehicle model as the track’s dynamic is negligible in front of
the vehicle’s dynamic, and it has no impact on it. A random irregularity of the track
vertical profile was generated from defect measurements on the French railway network. It
was assimilated to an excitation source of the vehicle system to compute dynamic vehicle
overloads. The normal and shear stresses were determined in the rail. It required the
computation of the rail’s section warping function using the finite element method to
estimate the shear stress.

A first investigation intending to compare the dynamic and static responses of the
track showed negligible effects of track inertia forces on its response. Indeed, the track’s
stiffness is more important than the vehicle’s stiffness in the vertical direction. The track’s
natural frequencies are higher than the frequency domain of interest [0;20 Hz], in which
dynamic railway phenomena are studied. Then, the stress state in the rail showed that
normal and shear stresses have the same order of magnitude because the distance between
two consecutive sleepers is relatively low compared to the section size. Finally, a statistical
analysis aimed to quantify the effect of the vertical track irregularity variability on the rail’s
stress response variability. It showed that track defect dispersion does not affect the stress
state as an output, meaning that the stress response of the rail is relatively insensitive to the
variability of vertical track irregularities.

5. Perspectives

Further investigations are intended to characterise the track’s lateral behaviour. This
will be performed by adapting both the vehicle and track model to 3D loads and irreg-
ularities. Unlike the vertical direction, the dynamic response of the track in the lateral
response is expected to be significant as the track is more flexible and less damped than in
the vertical direction. Then, fatigue analysis of the rail can be predicted using the Dang
Van Criterion. This will allow for the demonstration of the method in real practice for real
vehicles used on French railways. A comparison with the conventional approach must also
be performed. Thus, new admission rules based on this efficient numerical model can be
formulated.
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Appendix A. Recall of the Finite Element Matrices of a Two Nodes Timoshenko Beam

Finite element theory allows us to interpolate the vertical displacement and the rotation
in an element with respect to linear independant shape functions vector Ni(x):

{
vr(x)
θr(x)

}
=

[
N1(x) 0 N2(x) 0

0 N3(x) 0 N4(x)

]
vr,1
θr,1
vr,2
θr,2


=

(1− x
le
) 0

x
le

0

0 (1− x
le
) 0

x
le




vr,1
θr,1
vr,2
θr,2


(A1)

where le is the element length. Then, the deformations εxx and γxz are expressed as:

εxx = −z ∂θr
∂x = −z

{
0 ∂N3

∂x 0 ∂N4
∂x

}
vr,1
θr,1
vr,2
θr,2

 = −z {BF}


vr,1
θr,1
vr,2
θr,2



γxz = ∂vr
∂x − θr =

{
∂N1
∂x −N3

∂N2
∂x −N4

}
vr,1
θr,1
vr,2
θr,2

 = {BS}


vr,1
θr,1
vr,2
θr,2


(A2)

For a Timoshenko beam element, the stiffness matrix is a contribution of shear and
bending:

[Ke
r ] = EIy

∫ le
0 {BF}T{BF}dx + GκzSr

∫ le
0 {BS}T{BS}dx

=
EIy
le


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

+ GκzSr
le



1
le
2

−1
le
2

le
2

l2
e
3

− le
2

l2
e
6

−1 − le
2

1 − le
2

le
2

l2
e
6

− le
2

l3
e
3


(A3)

where κz is the shear coefficient. The rail mass matrix is expressed as follows:

[Me
r ] = mrSr

∫ le
0 {N}T{N}dx =

le
6

mrSr


−2 −2 1 1
−2 −2 1 1
1 1 2 2
1 1 2 2

 (A4)

Global mass matrix and global stiffness matrix of the rail are then obtained by assem-
bling element matrices.

The beam elements of the rail in contact with the rail pads are vertically connected to
the ground through the sleeper by spring-damper couples representing the behaviour of
rail-pads and the ballast layer. In this way, the rail vertical deflections vr,i and the sleepers
vertical deflections vs,j are involved. The stiffness, damping and mass matrix of a single
elastic support are then represented by:

[Ksup] =

[
kp −kp
−kp kb + kp

]
; [Csup] =

[
cp −cp
−cp cb + cp

]
; [Msup] =

[
0 0
0 Ms

]
(A5)

where Ms is the half-mass of a single sleeper.
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