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Abstract: The drilling process is among the most crucial steps in exploration and production activities
in the petroleum industry. It consists of using mechanical mechanisms to crush rocks by the drill
bit to pass through the different geological layers. The drill-string continuously transforms the
rotational movement from the top drive motor to the drill bit through the drill pipes. Due to the
strong interactions with the rocks, aggressive vibrations can arise in the drill-string in its three
dimensions, and consequently, this may create three types of synchronous vibrations: axial, lateral,
and torsional. The severe status of the latter is known as the stick-slip phenomenon, and is the most
common in rotary drilling systems. Based on field observations, it has been inferred that the high
frequency stick-slip vibrations may lead to drill-string fatigues and even to premature rupture. In the
best case, it reduces the drilling efficiency by decreasing the rate of penetration, due to which the
drilling operations become proportionally expensive. The main novelties of this research work are the
design of an H∞ observer-based controller to mitigate the high frequency stick-slip vibrations, and
the quantitative analysis of the vibrations’ severity for ten degrees of freedom model. The observer
is designed to estimate the non-measurable rotational velocity of the drill bit due to the severity of
the vibrations, while the controller is dedicated to suppressing the vibrations by using the top drive
inputs. Thus, many scenarios have been considered to test and analyze the observer performance and
the controller robustness. Furthermore, a comparison with the LQG observer-based controller has
been conducted, where H∞ has demonstrated better efficiency in suppressing the stick-slip vibrations
under unstructured perturbations.

Keywords: petroleum industry; high frequency stick-slip vibrations; h∞ observer-based controller;
rotary drilling systems; drill bit velocity

1. Introduction

The drilling process is the ensemble of all operations that allow the digging of holes in
the earth either vertically, deviated, or even horizontally. The petroleum industry generally
uses rotary drilling systems to ensure the production of hydrocarbons (Figure 1a). Since
this process is one of the main essential parts of the well’s total cost, its efficiency, reliability,
and performance are very important features for deep well drilling. The occurrence of
drill-string vibrations is one of the main restrictive factors of these drilling aspects because
it reduces the borehole quality and generates premature wears of the drilling equipment.
Moreover, in extreme cases, it encourages the drill-string breakage by holding the drilling
operations. Therefore, mastering the dynamics of such vibrations and its suppression in a
robust way have been attracting a lot of interest in the last few years by researchers due to its
great economic outcomes in the petroleum industry [1]. To this end, the most common type
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of vibration, known as stick-slip, has been considered in this research work. The stick-slip is
primarily a torsional vibration generated by the drill-string elasticity and the discontinuous
nature of the torque on bit (Tob) [2]. Even though the diameter of the borehole can be larger
than the drill pipes’ diameter, there will often be a direct contact between the drill-string
and the borehole of the well. This is caused by two main reasons: the first is due to the
bending of the long drill-string, which is caused by its weight and imbalance centrifuge
forces, while the second reason is due to the fact that the well deviation has become more
considerable due to deep target reservoirs. Hence, the frictional contact forces can be
considerable enough to cause the stick-slip vibrations along the drill-string.

Aiming to overcome the repercussions of the stick-slip vibrations appearance during
drilling, many contributions and approaches have been developed in the last few years.
From a practical point of view, the drillers have adopted a method based on manual drilling
parameters’ manipulation by reducing the Wob and increasing the top drive rotational
velocity (or torque). Even this procedure can free the drill bit from the stuck phase, it
takes considerable time in which the borehole can face too many vibrations [3]. Thence,
more reliable and robust automatic approaches have been developed and introduced as
plug-in software solutions. More accurately, the soft torque rotary system (STRS) was first
introduced in [4], and it is based on eliminating the stick-slip vibrations by the top drive
torque manipulation in a closed-loop form. This solution was subsequently adopted by
other companies under different names [5,6]. However, it necessitates a direct measurement
of the drill bit velocity [7], which is not possible if the measurement while drilling (MWD)
tool is not logged. From an academic point of view, several papers have been published
about different control strategies for stick-slip vibrations mitigation in the drill-string [8,9],
most of which have used a two degrees of freedom model of the rotary drilling system in
the controller design [10–14]. This model has proven to be simple, practical, and sufficient,
but only if the supposition given by [15], which indicates that stick-slip occurs at low
frequencies, is verified. A model with several degrees of freedom has been proposed
by [16], and a non-linear model by [6]. The latter works assumed that the drill bit angular
velocity is measurable, which necessitated the implementation of MWD tools for real-
time control purposes. More recent works in this topic proposed the use of observers
for drill bit velocity (and torque) estimation [17], then stick-slip mitigation based on PI
controller [18,19]. In these works, the top drive velocity and torque have been considered
as the control input signals to mitigate the stick-slip vibrations in the drill-string. Even
the observer estimations were acceptable, but the tuning process of the PI controller has
influenced the controller robustness. Another approach based on automatic variation of
the Wob has been adopted in [20] to eliminate these vibrations. However, its limitation
is mainly due to the slow dynamic caused by the Wob variation in comparison to the
dynamics of stick-slip vibrations [1,21].

This research work is focused on the estimation and control of drill bit velocity to
suppress the high frequency stick-slip vibrations in a more robust way by using the H∞
observer-based controller. The main novelty of this work is that an observer is designed on
the basis of a linear model to estimate the non-measurable states as well as the unknown
input of ten degrees of freedom model subject to nonlinear input. In addition to that, the
severity of the stick-slip vibrations has been quantitatively analyzed on the basis of the
outcomes of the designed observer. A comparison with LQG observer-based controller has
been conducted, for which H∞ has demonstrated better performance in suppressing the
high-frequency stick-slip vibrations under the unstructured perturbations. The manuscript
is organized as follows. In Section 2, the types of vibrations have been overviewed with
some focus on stick-slip vibrations whose severity has been quantitatively classified. The
open-loop model with ten degrees of freedom has been tested under different scenarios to
validate the model reliability and its estimated drill bit velocity. In Section 3, the mathemat-
ical design of H∞ observer-based controller has been detailed for the drill-string model,
where the estimation results allowed us to design and investigate the controller robustness.
In Section 4, different scenarios have been introduced to test the proposed observer-based
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controller against the high frequency stick-slip vibrations severities. Moreover, the pro-
posed controller results have been compared with the LQG observer-based controller, for
which H∞ has demonstrated better performance than LQG, especially toward the un-
structured perturbations. Section 5 presents conclusions and recommendations for future
research works.

2. Drill-String Model under Stick-Slip Vibrations

Based on [18], the vibrations can be generally classified into three categories: free,
forced, and self-sustaining. In self-sustaining vibrations, a periodic force is regenerated,
which then excites the vibrations themselves. Thus, if the system is prevented from vibrat-
ing, then the excitement force disappears [22]. On the other hand, for forced vibrations, the
excitation force is independent of the vibrations, and it can persist even when the vibrations
are suppressed [23]. Fortunately, the drilling process vibrations regime is self-sustaining,
due to which a constant disturbance can lead to unstable oscillating regime, which in
its turn evolves towards a stable limit cycle [24,25]. Therefore, the stick-slip vibrations
themselves can generate their own excitement through the axial vibrations [26]. Hence, by
eliminating the high-frequency stick-slip vibrations as quick as possible, we can prevent
the generation of the other types of vibrations too [27].

2.1. Torsional Vibrations

The severe torsional vibrations manifest as the stick-slip phenomena, in which a
cyclic drill bit stop can be noticed [7]. During the stick phase, the drill-string shown
in Figure 1b, rotated by the top drive from the surface, is twisted due to its elasticity,
while the drill bit will remain stuck until the cumulated bottom torque becomes greater
than the static frictional torque [2]. The sudden drill bit sleep leads to abnormal drill-
string acceleration, and it may even exceed the top drive velocity by several times [28].
Even though the nonlinear dynamic of stick-slip vibrations is poorly understood, most
researchers have concurred that during this cyclic phenomenon, the drill bit velocity
variations are synchronized with resistant torque variations [1,17]. This is mainly due to the
difference between the static and dynamic frictions between the polycrystalline diamond
compact (PDC) cutting edges and the rocks of the geological layer being drilled [29–32].
The mathematical equations of motion for the drill-string under stick-slip vibrations are
generally established based on a torsional system with one or two degrees of freedom
as given in [4,12,29,30,33]. It has been concluded through these research works that the
torsional vibrations appear more when using the PDC drill bit because it consumes more
torque than the tri-cone bit, for example [27]. Since the stick-slip is a self-sustaining
phenomenon, it is necessary to develop a new approach for the reliable estimation, fast
detection, and robust suppression of such harmonics. The new mathematical formula
given by (1) has been proposed in this study to quantify the stick-slip vibrations’ severity
SS% [34].

SS% =
∆ Speed

Mean (Speed)
(1)

The change in drill bit rotational velocity is normalized by its mean; the SS% is
classified into four levels as detailed in Table 1. So, the elimination of this type of vibration
will be based on its severity level.

Table 1. Stick-slip severity classification.

Stick-Slip Severity Level Classification SS%

0 Verylow 0 to 50%

1 Low 50% to 100%

2 Mean 100% to 150%

3 High >150%
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2.2. Drill-String Model

The drill-string model developed in this study is based on dividing the drill-string into
ten parts connected in series, where each part is presented by a torsion pendulum subjected
at its ends to viscous and dry frictions. The upper part is attached to the top drive, while
the lower part is related to the borehole assembly (BHA), which is under viscous friction
and the Tob. The mathematical model of the drill-string can be studied in two equations:
the first equation is dedicated to the dynamic of the Top drive as given by Equation (2),
while the second is dedicated to the BHA as given by Equation (3) [21].{

Jt
..
ϕt = nKI − k∅− C

( .
ϕt −

.
ϕb
)
− Ct

.
ϕt

L
.
I = U − RI − nK

.
ϕt

(2)

Jb
..
ϕb = k∅+ C

( .
ϕt −

.
ϕb
)
− Cb

.
ϕb − Tob

( .
ϕb, Wob

)
(3)

where Jt is the equivalent moment of inertia, ϕt,
.
ϕt,

..
ϕt are the position, the angular velocity,

and the acceleration of the upper part of the drill-string, ϕb,
.
ϕb,

..
ϕb are the position, the

angular velocity, and the acceleration of the lower part of the drill-string (BHA), Ct is the
viscous friction coefficient, k is the stiffness constant, C is the viscous friction coefficient
under torsion, n is the torque transmission ratio of the gearbox, K is the torque constant, I is
the current consumed by the electrical motor of the top drive, U is the power supply voltage,
and R and L are the armature resistance and inductance, respectively, with ∅ = ϕt − ϕb. Jb,
Cb are respectively the equivalent moment of inertia and the viscous friction coefficient at
the BHA. Tob

( .
ϕb, Wob

)
is the unknown torque on bit, which is a function of the drill bit

velocity and the weight on bit [35]. The rock-bit interaction block diagram, which includes
the Tob, is shown in Figure 2. Equations (2) and (3) have been rewritten in the state space
form given by (4). { .

x(t) = Ax(t) + BΓ(t)

y(t) = Cx(t)
(4)
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where x(t) ε R4 is the states’ vector, Γ(t) ε R2 is the inputs’ vector, and y(t) ε R2 is the outputs’
vector, with x(t) =

[
∅ .

ϕt
.
ϕb I

]T, Γ(t) =
[

Tob U
]T, and y(t) =

[ .
ϕt I

]T [36].

A =


0 1 −1 0

− k
Jt

− (Ct+C)
Jt

C
Jt

nK
Jt

k
Jb

C
Jb

− (Ct+C)
Jb

0

0 − nK
L 0 − R

L

, B =


0 0
0 0

− 1
Jb

0
0 1

L

, C =

[
0 1 0 0
0 0 0 1

]

The mathematical model given by the previous matrix is for two degrees of freedom.
However, in this study, we have used a ten-degree of freedom model given by [37] as
illustrated in Figure 3.

2.3. Open Loop System Responses

The scenarios carried out in this subsection have the objective of testing the model
reliability against different top drive input torque signals. In addition, it is a crucial step
to investigate and validate the effectiveness of the H∞ observer before designing the
controller in cascaded structure [38,39]. The input variations were mainly based on drillers’
recommendations extracted from practical drilling experiences [40,41].
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2.3.1. Scenario 1: Constant Weight on Bit

In this simulation scenario, the drilling system has been driven under constant Wob
(154 kN ≈ 16 t) while varying the supply voltage of the top drive motor [42]. The obtained
Tob and the supply voltage are shown in Figure 4a,b, respectively, the velocities of top drive
and the BHA are illustrated in Figure 5a, and the stick-slip severity is given in Figure 5b.
It can be noticed that the vibrations were very high at the beginning (class 3), then from
t = 13 s they become within the permissible vibration range (classes 0 and 1). Because of
the staircase descent of the top drive supply voltage, the severe stick-slip vibrations have
been minimized to remain at a secure severity level, which cannot be guaranteed if we start
with a supply voltage of 250 v. A similar scenario has been run with the staircase ascent of
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the voltage as shown in Figure 6a. The drilling system is under severe state of stick-slip
vibrations (class 3) with severity greater than 200%, as shown in Figure 7a,b. Figure 6b
shows the resultant torque on bit for this scenario. To exit the high frequency stick-slip
vibrations mode, the top drive must be operated with a practically high supply voltage, and
then gradually brought back to its nominal voltage (250 Vdc), as highlighted in Figure 6a.
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2.3.2. Scenario 2: Constant Power Supply Voltage

In this second scenario, the drilling system is driven under constant power supply
voltage (200 Vdc) while varying the weight on bit [35]. At the beginning, the Wob is
considered constant, and perturbation is applied at t = 30 s (Figure 8b). This directly affects
the torque on bit, as shown in Figure 8b, which causes the occurrence of torsional vibrations,
as shown in Figure 8c. Consequently, the system momentarily enters the class (3) severity
level as illustrated in Figure 8d. These vibrations have been remarkably amplified by
increasing the Wob at t = 60 s when the system enters class (3) severity level permanently.
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In the scenario 2.2, the Wob is ramped up to 154kN, which is the threshold where
stick-slip vibrations occurred in the scenario 2.1, as shown in Figure 9a. At this limit, the
Wob is maintained constant. Thus, the drilling system is driven without stick-slip or even
torsional vibration as given in Figure 9c,d. At t = 60 s, a disturbance takes place on the
Wob, after which the drill-string is subjected to severe high frequency stick-slip vibrations
(Figure 9c), and the system enters the class (3) severity in a permanent way, as demonstrated
in Figure 9d.
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3. H∞ Observer-Based Controller Design

The H∞ observer-based controller designed in this study is a dynamic output feedback
approach with two-stage cascaded structure as shown in Figure 10a,b [39,43]. In the first
stage, the control system generates an estimate of drill bit velocity to be controlled using
the measured speed and current of the top-drive outputs and the known input, which is
the top-drive power supply voltage [42]. This estimation’s generation is obtained by the
designed observer with unknown Tob input. Then, the estimation is iteratively corrected till
the estimated states are close enough to the measured states with an acceptable threshold
error. Since in this study the constructed model has ten degrees of freedom, the resisting
torque appears at the drill bit in the form of cutting and frictional torques [17]. Henceforth,
the control strategy that will be considered is the drill bit velocity stabilization around a
given nominal value under the presence of the resisting torque [25].
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3.1. H∞ Approach

The development of an observer-based controller using the H∞ approach is refor-
mulated to solving particular case of standard H∞ problem. Therefore, the mathematical
synthesis of the state model (4) is mandatory for designing an observer with unknown
input cascaded with the controller [39]. Figure 11 shows the closed loop form of drill-string
model with the designed H∞ observer-based controller in the rotary drilling system.
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3.1.1. Observer Synthesis with Unknown Inputs by H∞

Consider the augment system (5) obtained from the original state model (4). The sys-
tem has been rewritten in this state space form in order to analytically verify its observability
and controllability through solving the Riccati equations. In addition to that, this form
can be seen as a full H∞ control problem, from which the gain of the H∞ observer-based
controller will be calculated [21,36].

( .
x(t)

.
Tob(t)

)
=

(
A E
0 0

)(
x(t)

Tob(t)

)
+ B1W(t) +

(
B2
0

)
u(t)

z(t) = C1g

(
x(t)

Tob(t)

)
y(t) =

(
c2 0

)( x(t)
Tob(t)

)
+ D21W(t)

(5)

In model (5), the matrices B1, C1g, D21 are chosen in an appropriate way to fulfill
the necessary and sufficient conditions of the H∞ approach. Moreover, the matrices Bi
represent an unknown input observer designed by the tuning procedure. Therefore, we
take B1 =

(
b1 05×2

)
, D21 =

(
02×5 I2×2

)
, and

C1g =


1e−6 0 0 0 0

0 1e−6 0 0 0
0 0 1e−6 0 0
0 0 0 5 0
0 0 0 0 0

 with b1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1e2 0
0 0 0 0 27e3

 (6)

The vector W(t) constitutes the perturbations on the states of the model and the
measurements. It should be noted that there is no requirement on disturbances for the H∞
approach unlike the LQG approach for instance [24,44]. Therefore, the observer ensuring
the performance criterion is given by (7).

.
x̂z(t) =

(
Ag − LhCz

)
x̂z(t) + Bzu(t) + Lhy(t)

ẑ(t) = C1g x̂z(t)

ŷ(t) = Cz x̂z(t)

(7)

with Ag = Az =

(
A E
0 0

)
and Lh is the gain observer such that

Lh = −Y∞CT
z (8)

Y∞ is the solution of the Riccati Equation (9), which guarantees the observability of
the expanded system [36].

AgY + YAT
g + Y

(
γ−2CT

1gC1g − CT
ZCz

)
Y + BzBT

z = 0 (9)

3.1.2. Controller Synthesis by H∞

The drill bit velocity controller has been developed based on a reference model [45],
i.e., the velocity of the drill bit is forced to follow the proposed reference velocity model.
Thus, the model given by (7) is augmented to the model described by (10).



Vibration 2022, 5 274




.
ρ(t)
.
x(t)
.
ζ(t)

 =

 αm 0 0
0 A 0

−αcm αcr 0

 ρ(t)
x(t)
ζ(t)

+

 bm 0
0 b1
0 0

( r(t)
w(t)

)
+

 0
B2
0

u(t)

z(t) = Cm

 ρ(t)
x(t)
ζ(t)

+ D12u(t)

y(t) =

 ρ(t)
x(t)
ζ(t)


(10)

where αm, bm, Cm are the state matrix, control, and observer of the reference model respec-
tively, with αm = −0.7, bm = 0.7, Cm = 1, r(t) is the input of the reference model, and
ρ(t) is the output of the reference model, which the drill bit velocity should follow. ζ(t) is
the integral of tracking error, and α is the controller tuning parameter, with α = 10. The
matrices b1, D12 are chosen in an appropriate way. Moreover, the two matrices C1m and
D12 constitute the tuning matrices required to bring back the response of the designed
controller to the desired performance, where:

b1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, C1m =

(
0 0 0 10 0 5
0 0 0 0 0 0

)
and D12 =

(
0
1

)
(11)

In a more compact form, the system (11) is rewritten as:
.
xm(t) = Amxm(t) + β1W(t) + β2u(t)

z(t) = C1mxm(t) + D12u(t)

y(t) = xm(t)

(12)

Then, the control ensuring internal stability [25] and guaranteeing the performance
criterion is written as:

u(t) = Fhxm(t) (13)

with
Fh = −βT

2 X∞ (14)

where X∞ is the solution of the Riccati Equation (15), which guarantees the controllability
of the system [36].

AT
mX + XAm + Xm

(
γ−2β1βT

1 − β2βT
2

)
Xm + CT

1mC1m = 0 (15)

4. Results and Discussion

Many scenarios have been considered in this part in order to study and test the
robustness of the designed H∞ observer-based controller for different situations in the
drilling field. First, the estimation precision of the designed observer without any controller
has been investigated, and then the controller has been activated in order to evaluate the
complete H∞ observer-based controller bloc. The parameters used in these scenarios are
namely the moments of inertia of the rotating parts, the stiffness of the drill pipe, and
the viscous friction coefficients. These parameters have been calculated from the basic
equations and the fundamental rig parameters, such as: the length of the drill pipes and
the drill collars, the diameter and thickness of the drill-string and drill presses, the mud
viscosity, etc.
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4.1. Observer Performance Tests

In these tests, the controller has been disabled while applying the following scenarios
to study the estimation precision of the designed observer.

4.1.1. Scenario 3: Constant Wob with Step Voltage

A constant Wob equal to 0.7 of the overall drilling weights, which is equivalent to
29 tons, has been applied over the simulation time. A step voltage that rises from 300 V to
450 V at t = 10 s has been also considered as shown in Figure 12a,b. Figure 13a shows the
measured and the estimated drill bit velocities with the estimation errors. Hence, it can
be noticed that the system suffers from high frequency stick-slip vibrations of class (3) as
demonstrated in Figure 13b. Then, by increasing the top drive power supply voltage, the vi-
brations have become of class (1) at t = 23 s, which is a tolerable region. This operation takes
a considerable time (13s) to eliminate the vibrations. Due to their high frequency content,
such vibrations can create too much damage during such a time period [45,46]. In addition
to that, the observer has provided good estimation of the unknown Tob, which is treated as
a disturbance on the drill-string dynamic model, as given by Figure 14. It is also noticeable
that the measurable states of the system, namely the Top drive velocity and current, have
been estimated with good accuracy, as demonstrated in Figure 15a,b, respectively.
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4.1.2. Scenario 4: Random Wob with Constant Voltage

Through this scenario, the observer behavior against random Wob variations has been
examined. The randomness of this input is stimulated by the dynamic axis of the drill-
string [47]. For this, the inputs shown in Figure 16a,b have been applied. The H∞ observer
has provided good estimation results for the drill bit velocity as shown in Figure 17a,
and for the unknown Tob input, as shown in Figure 17b. The measured inputs shown in
Figure 18a,b of the top drive have a fluctuating behavior around 500A (for the current),
and around 15 rd/s (for the velocity). The large peak of the current at the beginning is
mainly due to the direct start of the motor without activation of the controller. Further, the
velocity and the current fluctuations have been well estimated with acceptable accuracy,
even with the presence of unknown Wob characterized by arbitrary dynamics, as shown in
Figure 18a,b.
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estimated current and velocity of the top drive respectively. It can be concluded that H∞ 
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appear on the top drive inputs during the drilling process. Hence, the controller robust-
ness can be maintained even in such situations, since the observer estimations results can 
have a direct influence on the controller robustness. 
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Figure 17. Measured and estimated variables by the designed observer for Scenario-4: (a) Rotational
velocities, (b) Stick-slip severity.
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4.2. Scenario5: Disturbed Measurements

In this scenario, the system has been driven with a constant voltage equal to 650 V
and constant Wob equal to 103 kN, as demonstrated in Figure 19a,b. Then, disturbances
have been introduced to the top drive current and velocity with non-zero mean signal with
frequency of 1kHz as given in Figure 20a,b [48]. As expected, the H∞ observer has arrived
to filter the unstructured perturbations unlike other observer, such as the Kalman filter.
This is mainly caused by the supposition put on the choice of covariance matrices, whilst
H∞ design did not require any restrictions in terms of their choices. Figure 21a,b show the
estimated velocity and torque of the drill bit, and Figure 22a,b demonstrates the estimated
current and velocity of the top drive respectively. It can be concluded that H∞ estimation
performance has not been affected by the unstructured perturbations that can appear on
the top drive inputs during the drilling process. Hence, the controller robustness can be
maintained even in such situations, since the observer estimations results can have a direct
influence on the controller robustness.
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Figure 19. Test inputs of the observer for Scenario-5: (a) Top drive motor voltage, (b) Applied Weight
on bit.
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4.3. Scenario6: Parametric Variation 
This time the system’s inputs are as follows: a constant supply voltage of 650 V with 

a constant Wob of about 103 kN as shown in Figure 23a,b [49]. However, a variation of 
the parameters, namely resistance (r), inductance (l), length, and mass of string, has been 
applied. These are related to the calculation of the moments of inertia and the viscous 
friction coefficients [50]. As shown in Figures 24 and 25, the designed observer has 
demonstrated good performance against the parametric variations. However, it showed 
sensitivity to the torque constant variation (K), as given in Figure 24b. The torque con-
stant has a deviation of 3% from its nominal value [49]. 
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Figure 21. Measured and estimated variables by the designed Observer for Scenario-5: (a) Rotational
velocities, (b) Tob.

4.3. Scenario6: Parametric Variation

This time the system’s inputs are as follows: a constant supply voltage of 650 V with
a constant Wob of about 103 kN as shown in Figure 23a,b [49]. However, a variation
of the parameters, namely resistance (r), inductance (l), length, and mass of string, has
been applied. These are related to the calculation of the moments of inertia and the
viscous friction coefficients [50]. As shown in Figures 24 and 25, the designed observer has
demonstrated good performance against the parametric variations. However, it showed
sensitivity to the torque constant variation (K), as given in Figure 24b. The torque constant
has a deviation of 3% from its nominal value [49].
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Figure 22. Measured and estimated variables by the designed Observer for Scenario-5: (a) Top-drive
current, (b) Velocity.
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In this part, the performances of the full H∞ observer-based controller have been 

discussed. Keeping in mind that the controller receives the estimated state in order to 
provide output feedback to the top drive [43], the main objective of the controller is to 
impose a predefined dynamic on the top drive that ensures the tracking of the desired 
reference by the drill bit [51]. 

4.4.1. Scenario 7: Voltage Step Reference Tracking 
In this scenario, the control system is subjected to a step reference that rises from 0 to 

7 rd/s, then from 7 rd/s to 15 rd/s without applying any additional weight on the bit. 

Figure 23. Test inputs of the observer for Scenario-6: (a) Top drive motor voltage, (b) Applied Weight
on bit.

Vibration 2022, 5, FOR PEER REVIEW  16 
 

 

 
(a) (b) 

Figure 23. Test inputs of the observer for Scenario-6: (a) Top drive motor voltage, (b) Applied 
Weight on bit. 

  
(a) (b) 

Figure 24. Measured and estimated variables by the designed Observer for Scenario-6: (a) Rota-
tional velocities, (b) Tob. 

  
(a) (b) 

Figure 25. Measured and estimated variables by the designed Observer for Scenario-6: (a) 
Top-drive current, (b) Velocity. 

4.4. Performance Tests of Observer-Based Controllers 
In this part, the performances of the full H∞ observer-based controller have been 

discussed. Keeping in mind that the controller receives the estimated state in order to 
provide output feedback to the top drive [43], the main objective of the controller is to 
impose a predefined dynamic on the top drive that ensures the tracking of the desired 
reference by the drill bit [51]. 

4.4.1. Scenario 7: Voltage Step Reference Tracking 
In this scenario, the control system is subjected to a step reference that rises from 0 to 

7 rd/s, then from 7 rd/s to 15 rd/s without applying any additional weight on the bit. 

Figure 24. Measured and estimated variables by the designed Observer for Scenario-6: (a) Rotational
velocities, (b) Tob.

4.4. Performance Tests of Observer-Based Controllers

In this part, the performances of the full H∞ observer-based controller have been
discussed. Keeping in mind that the controller receives the estimated state in order to
provide output feedback to the top drive [43], the main objective of the controller is to
impose a predefined dynamic on the top drive that ensures the tracking of the desired
reference by the drill bit [51].
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Figure 25. Measured and estimated variables by the designed Observer for Scenario-6: (a) Top-drive
current, (b) Velocity.

4.4.1. Scenario 7: Voltage Step Reference Tracking

In this scenario, the control system is subjected to a step reference that rises from
0 to 7 rd/s, then from 7 rd/s to 15 rd/s without applying any additional weight on the
bit. Figure 26a,b shows the velocity and voltage of top drive responses to this first input
scenario. It is clear that the controller has guaranteed the tracking of the reference with
acceptable error and within a short time. Figure 27a,b shows the controller output for
the top drive current and velocity respectively. This demonstrates that the controller has
provided smooth values with fewer fluctuations. Thus, this signal can be handled by the
top drive without any abnormalities. Moreover, the increase of current consumption (at
t = 15 s) is caused by the increase in viscous friction due to the increased speed of the
drill-string, which means that H∞ controller can be straightforwardly implementable in
the top drive machines.
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(Figure 28a) with a reference velocity of 7 rd/s. It can be noticed from Figure 29a that this 
increase caused a complete stop of the drill bit for 2 s, followed by high frequency 
stick-slip vibrations (Figure 28b). Then, the designed controller forced the drill-string to 
leave this stuck phase and mitigate the vibrations by tracking the desired outputs in 7s 
(Figure 29). Moreover, the control signals sent to the top drive are shown in Figure 30a,b. 
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4.4.2. Scenario 8: Wob step Tracking Reference

This time, the control system is subjected to a Wob step reference in order to test
its robustness. To do this, the Wob has been increased from 25 kN to 180 kN at t = 10 s
(Figure 28a) with a reference velocity of 7 rd/s. It can be noticed from Figure 29a that this
increase caused a complete stop of the drill bit for 2 s, followed by high frequency stick-slip
vibrations (Figure 28b). Then, the designed controller forced the drill-string to leave this
stuck phase and mitigate the vibrations by tracking the desired outputs in 7 s (Figure 29).
Moreover, the control signals sent to the top drive are shown in Figure 30a,b.
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4.4.3. Scenario 9: Stick-Slip Mitigation

In this scenario, the controller performance’s improvement in suppressing the high
frequency stick-slip vibrations has been investigated. The drilling system has been driven
with a deactivated controller at the beginning and with Wob = 180 kN and a voltage of
300 V. These inputs cause the generation of the stick-slip phenomenon in the drill-string [9].
At t = 10 s, the controller has been activated, as shown in Figures 31 and 32a,b. These figures
demonstrated that after 5s from controller activation, the vibrations have been reduced
from class (3) to class (1). Then, they have been completely mitigated in a very short time
in comparison to manual manipulation procedures used nowadays in the drilling fields.
Moreover, the control law shown in Figure 33a,b is very smooth and can be injected into an
operational top drive without too many technical restrictions.
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In this scenario, the ability of the designed approach to filter the unstructured dis-

turbances on the Wob has been studied [24]. The perturbations are generally initiated by 
the axial dynamic of the drill-string, which has been previously neglected in the mathe-
matical model of the drill-string [26]. First, the drilling system is driven with constant and 
disturbed Wob, and with deactivated control. Then, at t = 60 s, the controller has been ac-
tivated. Figure 34 shows the attenuation of the velocity fluctuations of drill bit by the ac-
tivated controller. The stick-slip severity has also been reduced from class (3) to class (1) 
by activating the controller, as shown in Figure 35a. Moreover, Figure 35b shows the 
required controller voltage that should be applied to the top drive. It can be noticed that 
this is a smooth and tolerable input. 
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by activating the controller, as shown in Figure 35a. Moreover, Figure 35b shows the 
required controller voltage that should be applied to the top drive. It can be noticed that 
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Figure 33. Observer-based controller responses for Top drive, Scenario-9: (a) Current, (b) Velocity.
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4.4.4. Scenario 10: Wob Disturbances Filtering

In this scenario, the ability of the designed approach to filter the unstructured dis-
turbances on the Wob has been studied [24]. The perturbations are generally initiated by
the axial dynamic of the drill-string, which has been previously neglected in the math-
ematical model of the drill-string [26]. First, the drilling system is driven with constant
and disturbed Wob, and with deactivated control. Then, at t = 60 s, the controller has
been activated. Figure 34 shows the attenuation of the velocity fluctuations of drill bit
by the activated controller. The stick-slip severity has also been reduced from class (3) to
class (1) by activating the controller, as shown in Figure 35a. Moreover, Figure 35b shows
the required controller voltage that should be applied to the top drive. It can be noticed
that this is a smooth and tolerable input.
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4.5. Scenario 11: Performance Limitations

In this scenario, the controllers’ performances have been tested under extreme condi-
tions by imposing disturbances on the Wob (Figure 36) and on both the top drive velocity
and current (Figure 37a,b), along with parametric variations on the length of drill pipes
and drill collars. These variations are of the order of 130% of the nominal value, plus a
variation in the torque constant of the order of 103%. Figure 38 shows that the designed
H∞ observer-based controller has provided a better estimation than LQG even for this
scenario [44]. Moreover, the LQG control law shown in Figure 39a is very disturbed and
cannot be implemented in operational top drive, while the H∞ has provided a better
control law as shown in Figure 39b. Figures 40–42 show the obtained results of H∞ in
comparison to LQG for torque on bit, top drive current, and top drive velocity, respectively.
It is clear through these figures that the designed controller has provided better estimation
and control than the LQG even for this scenario where extreme conditions have been
considered. Therefore, we can conclude that the proposed H∞ observer-based controller is
better than LQG and can guarantee better robustness in operating rotary drilling systems.
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However, it should be taken into consideration that since the H∞ observer-based
controller proposed in this study was based on solving two cascaded Riccati equations,
the choice of the covariance matrices B1, B2, and D12 is very crucial for the approach
convergence. Hence, it is highly recommendable to run many tests and scenarios with
different covariance matrices values in the drilling field in order to guarantee that no
matter what the top drive input signals are, the control system will converge to its required
dynamic in the most robust way. Based on the obtained results in this research work,
and in order to preserve the obtained robustness of the H∞ observer-based controller, we
recommend the implementation of signal filters that can normalize and adapt the top drive
input signals, namely the torque and the angular velocity, in an appropriate way similar to
the simulation scenarios provided in this research work.
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5. Conclusions

This work was devoted to the design of an observer-based controller in rotary drilling
systems. The motivation behind this choice of control strategy includes the technical and
practical difficulties that arise when measuring the down hole drilling torque and speed.
For this reason, an observer with unknown input was inserted into the control loop. This
observer with unknown input was capable of producing estimations of the real states
of the drilling system, in addition to an estimate of a primordial quantity of the drilling
process, which is the torque on bit. The approach adopted in this work to mitigate the
high frequency stick-slip vibrations in a robust and efficient way in the drill-string of rotary
drilling systems was the H∞ observer-based controller. A model of ten degrees of freedom
of the drill string was developed based on the Simscape environment of Simulink/Matlab.
Moreover, a model of the rock–bit interaction was established under the same environment
along with the top drive model. To estimate the downhole states, especially the bit speed
and the torque on bit, an observer was first designed and tested under different scenarios
by comparing the measured and estimated states to ensure the reliability of the observer
before designing and discussing the controller robustness and performance. The obtained
results of the observer were very promising. Thus, the controller was implemented in
cascade to ensure the tracking task. This controller’s purpose was to drive the drill bits
peed, relying upon the unknown in put observer outcomes in such a way to keep the bit
speed steady even under extreme conditions of the weight on bit, model uncertainties,
and measurement noises. That is why the obtained observer-based controller has been
tested under different possible and probable scenarios from the drilling field. The obtained
results have demonstrated that the controller robustness is very high, for which the high
frequency stick-slip vibrations were suppressed in less than 5 s. This is a very short
time in comparison to the manual suppression adopted nowadays in the drilling fields.
Moreover, the severity of stick-slip vibrations has been quantitatively evaluated through the
proposed empirical equation. Furthermore, the H∞ observer-based controller performance
has been qualitatively compared to the LQG observer-based controller. The proposed
approach demonstrated good performance even for an extreme case, in which it provided
a rejection to unstructured perturbations unlike the LQG approach. Therefore, based on
the obtained results, it is highly recommendable to implement the designed approach on
an operating rotary drilling system towards the development of the so-called smart rotary
drilling systems.
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