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Abstract: The focus of this investigation is on reduced order models (ROMs) of the nonlinear geo-
metric response of structures that are built nonintrusively, i.e., from standard outputs of commercial
finite element codes. Several structures with atypical loading, boundary conditions, or geometry
are considered to not only support the broad applicability of these ROMs but also to exemplify the
different steps involved in determining an appropriate basis for the response. This basis is formed
here as a combination of linear vibration modes and dual modes, and some of the steps involved
follow prior work; others are novel aspects, all of which are covered in significant detail to minimize
the expertise needed to develop these ROMs. The comparisons of the static and dynamic responses of
these structures predicted by the ROMs and by the underlying finite element models demonstrate the
high accuracy that can be achieved with the ROMs, even in the presence of significant nonlinearity.

Keywords: reduced order modeling; nonlinear geometric; basis functions; validations; structural
dynamics

1. Introduction

Finite element-based linear vibration analyses are commonplace in mechanical and
aerospace engineering applications: they are used in early design to meet specifications
but also in later phases to understand and correct observed issues; they provide the struc-
tural formulation for most aeroelastic analyses, etc. Their ease of use and computational
efficiency stems from three key properties of linear structural dynamic models:

(1) their dynamic response can be expressed in terms of a linear combination of time-
independent mode shapes scaled by time varying generalized coordinates. The
number of such combinations is, in general (for typical lightly damped structures),
very small in comparison to the number of degrees of freedom of the finite element
model and does not change if the mesh is refined.

(2) the governing equations for the generalized coordinates are fixed in form with coeffi-
cients that are directly extractable from the finite element model.

(3) the methodology is applicable regardless of the geometry of the structure, the consti-
tutive relation of its materials (so long as it is linear), the boundary conditions, and
the specific loading.

Moreover, such analyses can be performed with any of the standard commercial finite
element software and with any/most finite element types.

As is, however, the formulation breaks down if the deformations become large enough
that geometric nonlinear effects arise. Unfortunately, for fully clamped thin-walled struc-
tures, such effects become noticeable for peak transverse displacements that are rather
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small, e.g., of the order of only 1/10 of the thickness, and rapidly increase for larger de-
formations. The alternative to using linear modal methods is full finite element transient
analyses, the cost of which grows with the number of degrees of freedom and are much
slower in nonlinear geometric conditions than in linear ones. Accordingly, this alternative
is not possible at the design level.

Fortunately, reduced order modeling methods developed in the last two decades, e.g.,
see [1–35] and references therein, provide an extension of the linear modal methods to
the nonlinear geometric problem: they effectively meet the three above properties, with
some differences, and are also derivable from finite element models built in commercial
finite element software. The key differences with the linear approach are, first, that the set
of basis functions used to represent the response must include other functions than the
standard linear modes, e.g., the dual modes initially introduced in [3], further discussed
in [1,4,25], and implemented in [7–9,11,21,22,24,33] on different structures, or the more
recently devised modal derivatives [23,29]. Second, the governing equations for the gen-
eralized coordinates are cubic with respect to these variables, not linear, and, thirdly, the
evaluations of the coefficients of these equations is more involved than in the linear case.

The conditions, if any, on the applicability of the methodology are more difficult to
assess because the cubic governing equations used have been derived only under specific
conditions, i.e., a St. Venant–Kirchhoff material [36], or using the von Karman strain
definition [20], both of which should be applicable to at least moderately large deformations.
Validations in comparison with full commercial finite element computations (which often
use a different nonlinear formulation than those of [20,36]) are thus an important effort in
establishing confidence in the broad applicability of these reduced order modeling methods.

Quite naturally, the database of existing validation efforts has focused on fully clamped
straight and curved beams, flat plates, and curved shells, which exhibit especially well
the classical symptoms of nonlinear geometric problems: membrane stretching, stiffen-
ing/softening, snap-throughs, symmetric breaking, etc. Some validations to more complex
geometries have also been performed, e.g., a 9-bay stiffened panel [4,7], a segment of a ramp
panel [37], a MEMS resonator [29], joined wings [33], an exhaust cover plate [15], and a
perforated plate [20]. Regarding boundary conditions, besides fully clamped, cantilevered
structures have been considered in the context of a blade [10,11,21], beams [21,27], and
several 2D [21] and 3D [22,33] wings. Elastic supports have also been considered connect-
ing the structure to the ground instead of the clamped boundary conditions in context
with beams [7,12,30,38] and a blade [10,11,21], and one study included point support [3].
Finally, the loading has often been assumed to be either uniform pressure or concentrated
loads, with few studies [7,25,32] considering either a force exciting one particular mode or
a non-uniformly distributed load symptomatic of an aerodynamic loading.

In this light, the first focus of this paper is to (i) briefly describe the construction of
nonlinear geometric reduced order models (ROMs) and (ii) present detailed numerical
validations in comparison with full finite element results for four novel, rather atypical,
structural problems to further enrich the above database. The basis for these reduced order
models will be obtained as a combination of linear and dual modes. The second part of
this paper focuses on providing guidance on the details of the construction of these dual
modes (see review in the next section) to enable a non-expert to build them conveniently
and efficiently.

2. Nonlinear Reduced Order Modeling: A Focused Methodology Review

The reduced order modeling formulation adopted here represents the displacements
of the finite element degrees of freedom stacked in the vector u(t) as

u(t) =
N

∑
n=1

qn(t)ψ(n) (1)
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where qn(t) are the time-dependent generalized coordinates andψ(n) are the time-invariant
basis functions defined in the undeformed configuration. Based on that representation
and either assuming a St. Venant-Kirchhoff material [36] or using the von Karman strain
definition [20] leads to the following governing equations for the generalized coordinates
(summation over repeated indices implied)

Mij
..
qj(t) + Dij

.
qj(t) + K(1)

ij qj(t) + K(2)
ijl qj(t)ql(t) + K(3)

ijlpqj(t)ql(t)qp(t) = Fi(t),
i = 1, 2, . . . N.

(2)

In this equation, Mij denotes the elements of the mass matrix, K(1)
ij , K(2)

ijl , and K(3)
ijlp are

linear, quadratic, and cubic stiffness coefficients, and Fi = ψ
(i)TF is the modal force associ-

ated with mode i pulled back to the undeformed configuration as necessary. The damping
matrix Dij is added to collectively represent various energy dissipation mechanisms.

The non-intrusive estimation of the stiffness coefficients K(1)
ij , K(2)

ijl , and K(3)
ijlp using a

commercial finite element software can be achieved by imposing a series of specific static
displacements fields on the structural finite element model, determining for each one either
the associated modal forces or the tangent stiffness matrix, and matching this data to what
is predicted from the ROM, i.e., from Equation (2). This strategy is particularly efficient
if the set of displacement fields are first proportional to each basis function ψ(n), then
proportional to each pair (and each triplet for the modal force approach) of such functions;
see [1,4,39] for details.

The construction of the basis warrants a more detailed discussion. It should first be
recognized that the mode shapes used in the linear problem are, in general, not sufficient
to accurately describe the nonlinear response. Consider, for example, a clamped-clamped
uniform straight beam for which the linear modes are split into two families: those that
are purely transverse and the remaining ones that are purely in-plane. Assume next that
loading is purely transverse. When this loading is small, e.g., peak displacements of the
order of 1% of thickness or less, these displacements are purely transverse and thus can be
represented solely using transverse modes. However, for larger loadings, the beam will
need to stretch (the “membrane stretching” effect) since the deformed shape is longer than
the undeformed one, i.e., the beam will exhibit in-plane deformations that must also be
included to account for all deformations.

While the modeling of these in-plane displacements can be achieved using the in-plane
modes, this representation requires many of these modes, e.g., see the discussion of [20].
This is due in part to the difference in the natural frequencies of the lowest transverse and
in-plane modes, the latter being typically much higher than the former for elongated thin
walled structures. The in-plane displacements associated with the membrane stretching
exhibit frequencies that are of the same order as the transverse motions that induced them,
i.e., typically associated with the low frequency transverse modes, and thus much lower
than the in-plane natural frequencies. Thus, these in-plane displacements occur quasi-
statically and accordingly without direct connection with the corresponding mode shapes.
This situation is significantly worsened for general non-flat structures in which the mode
shapes do not split into transverse and in-plane families; a series of high frequency modes
would be necessary to model the membrane stretching, but finding which ones is a very
challenging problem (see discussion in [1]).

The above discussion demonstrates that the basis functions ψ(n) will include a set
of Nt linear modes V(i) of low natural frequencies, as would be in the linear case, but
also Nd additional basis functions for capturing the membrane stretching. The functions
are selected here as the “dual modes” first introduced in [3] and broadly used thereafter,
e.g., see [4,7–9,11,21,22,24,25,33,37,38]. Per the above comments, this strategy seeks the
high frequency components of the displacements that arise when the structure is forced
along the low frequency (typically transverse-dominated) mode shapes V(n). Moreover,
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it is sufficient that this forcing be static since the membrane stretching is a quasi-static
deformation. These observations led to the consideration of the static loadings

Fn = αnKFE V(n) (3)

on the finite element model, where KFE is its linear stiffness matrix and αn are factors to
be selected and so are the indices n of the modes. In the linear case, the response wn(αn)
of the structure to the forces of Equation (3) is simply αn V(n). In the nonlinear geometric
case, the displacement field is richer and includes contributions from other low frequency
modes as well as the desired high frequency components.

It should be noted that this information is, in general, different for different linear
modes V(n), and thus the analysis below will be repeated for each of these modes leading
to a succession of enrichments of the basis, initially comprised of Nt linear modes V(i) and
eventually reaching N = Nt + Nd basis functions ψ(n).

To capture the desired high frequency component in the nonlinear response wn(αn),
it is first projected on all the basis functionsψ(n) defined at this point, which include the Nt
selected linear modes and Ns < Nd dual modes obtained in prior steps. That is,

wn(αn) =
Nt+Ns

∑
i=1

γi(αn)ψ
(i) + Un(αn) (4)

where γi(αn) are the projection coefficients on the current basis and Un(αn) is a residual
orthogonal to all of the current basis functions. Owing to the nonlinearity of the response,
this residual does not scale, either linearly or nonlinearly, with αn and thus different values
of this factor will give rise to different residuals and different high frequency content. Since
the level of response of the structure along the mode V(n) is unknown in advance, an
ensemble of values of αn, denoted as αn,s s = 1, 2, . . . , ms should be considered that span
the expected level of response (see Sections 3 and 5).

Extracting the next dual mode(s) from the corresponding set of residuals Un,s is
achieved by first performing a proper orthogonal decomposition (POD) [40], leading to
ms orthogonal eigenvectors ϕ(n)

i , which are prime candidates to be the next dual modes to
be included in the basis. Practice with these computations has shown that some of these
eigenvectors, often those with some of the largest POD eigenvalues, are linear modes of
slightly higher frequencies than the Nt ones selected and thus are not the desired high
frequency components. Accordingly, a sorting of these eigenvectors must be performed
that is not simply based on the POD eigenvalues.

This effort is achieved here as in [3] by defining a strain measure associated with each
eigenvector. To this end, decompose first the residuals Un,s in its components along the
eigenvectors ϕ(n)

j as

Un,s =
ms

∑
j=1
β
(n)
sj ϕ

(n)
j (5)

where the coefficients β(n)sj are

β
(n)
sj =

[
ϕ

(n)
j

]T
Un,s[

ϕ
(n)
j

]T
ϕ

(n)
j

(6)

owing to the orthogonality of the POD eigenvectors. Then, the strain measure E(n)
i for the

eigenvector ϕ(n)
i is defined as

E(n)
i =

(
ms

∑
s=1
β
(n)
si

)[
ϕ

(n)
i

]T
KFE ϕ

(n)
i (7)
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To exhibit a high value of E(n)
i , a particular eigenvector ϕ(n)

i must be significantly
present in the residuals Un,s so that the term in parentheses in Equation (7) is large but also

must be associated with a large (linear) strain energy
[
ϕ

(n)
i

]T
KFE ϕ

(n)
i , and these are the

desired attributes for an eigenvector to be selected as dual mode.
Once the POD eigenvectors have been determined and their strain measures computed

and sorted from largest to smallest, it remains to determine how many of these eigenvectors
will be selected as dual modes. That number should be such that all novel information on
the deflection field present in the residuals Un,s has been extracted.

Two strategies have been used in the past to determine the number of eigenvectors nd
that should be selected as duals for a particular linear mode V(n) in Equation (3). In the first
one, all eigenvectors with strain measure larger than a stated fraction εE of the maximum
strain measure are selected. That is, assuming that the POD eigenvectors ϕ(n)

i have been

renumbered so that their strain measures are decreasing, adopt as duals ϕ(n)
i , i = 1, . . . ,nd

such that
E(n)

nd+1 < εE E(n)
1
≤ E(n)

nd ≤ E(n)
nd−1 ≤ · · · ≤ E(n)

1
(8)

The second strategy focuses directly on the “representation error” of the residuals Un,s

by a tentative set i ∈ I of the POD eigenvectors ϕ(n)
i . That is,

εrep(n, s, I) =

∥∥∥∥Un,s − ∑
i∈I
β
(n)
si ϕ

(n)
i

∥∥∥∥
‖Un,s‖

(9)

The dual modes are then selected as the set of eigenvectors ϕ(n)
i , i ∈ I, of minimum

size that leads to representation errors εrep lower than a specified threshold ε(th)rep for all
load cases s. Note in Equation (9) that the norms ‖•‖ are computed for each translation
degree of freedom over the entire set of nodes of the finite element model. There are thus
2 representation errors for plane structures (beams) and 3 in general, all of which must be
lower than the threshold.

It has been shown [3] that it is not sufficient to consider the duals derived from the
loadings of the form of Equation (3) to capture well the membrane stretching. Rather, it is
also necessary to consider loadings that are combinations of two different modes, i.e.,

Fij = αiKFE V(i) + αjKFE V(j) (10)

and, potentially, combinations of three different modes, although this need has never been
confirmed in any of the 35 validations considered thus far with a dual modes basis. The
need to consider combinations of 2 modes as in Equation (10) arises because the dominant
interaction term between transverse dominated modes and the membrane stretching is
consistently observed to be the quadratic stiffness terms K(2)

ijl , where i refers to a dual mode
but j and l to transverse ones, the same or different ones. Thus, the membrane stretching
displacements are, in general, not simply the combinations of effects induced by each
linear/transverse mode alone but also include terms related to pairs of these modes. The
determination of the duals associated with the combined loading of Equation (10) proceed
exactly as above for Fn.

In concluding this section, it should be noted that, when the first Nt basis ψ(n) are
linear modes V(n) as stated above—although this is not absolutely required—one has

KFE V(n) = ω2
n MFE V(n) (11)

where MFE is the finite element mass matrix. Then, Equations (3) and (10) can be rewrit-
ten as

Fn = αnMFE V(n) (12)
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and Fij = αiMFE V(i) + αjMFE V(j) (13)

where αn = αn ω
2
n.

3. Basis Construction: Implementation Details Review

The focus of this section is to discuss specific practical aspects of the general basis
construction strategy described in the previous section.

3.1. Selection of the Set of Linear Modes

The linear modes included in the nonlinear ROM basis should include all of the linear
modes that would be used in a linear analysis, but additional ones may be necessary to
reflect (i) nonlinear coupling between modes, (ii) bifurcations, and (iii) internal resonances.
These mechanisms may necessitate the addition of linear modes that were not present in the
linear analysis because the associated modal force is zero (for modes within the excitation
band), or modes outside of this band. A strategy to estimate nonlinear coupling between
modes is discussed in Section 5 and thus provides a means to anticipate the additional
linear modes to take to address this mechanism.

Experience with these mechanisms suggests that, if the linear modes are appro-
priately selected to model them, the predictions of the ROM can nevertheless be accu-
rate, e.g., see [25,41,42] for out of band modes, [7] for modes in band with zero or very
small modal force, [5,31,43–45] for bifurcations due to mechanical loads, and [27,41,42] for
internal resonances.

3.2. Selection of the Modes n in Equations

The nonlinear static problems with loading of the form of Equation (3) are relevant
to the response of the structure at the times for which this response is primarily along the
mode V(n). This observation has thus led to the original suggestion [3] that the modes
V(n) are those that are a “large” component of the response. For Equation (10), a similar
discussion suggests that at least one of the two modes V(i) or V(j) should be a “large”
component of the response.

These arguments are appropriate, but they, unfortunately, are based on properties of
the response that are yet unknown. Relying on the linear response to assess the overall
magnitudes of the linear modes contributions has generally led to a successful basis
except for situations where nonlinear coupling between some linear modes is large, a
bifurcation occurs, and/or internal resonance takes place. In those situations, the linear
modes that arise/are key in these mechanisms ought to be included among those used for
Equations (3) and (10).

An alternate strategy will be described in Section 5.

3.3. Selection of the Values αn

As stated above, an ensemble of values of αn in Equation (3) (or αn in Equation (11))
should be considered that span the expected level of response because the nonlinearity often
expresses itself differently at different deformation levels, although it tends to converge
as the deformation becomes large enough. In this light, the maximum values of αn have
been taken so that the peak transverse deflection is a multiple (1 to 4 say) of the thickness
for fully restrained structures and a fraction (e.g., 10%) of the span for cantilevered ones.
This criterion applies for both positive and negative deflections, both sets of which must be
represented in the values of αn. Overall, the number of cases (ms) considered for each linear
mode has usually been taken to be between 10 and 20, which was found to be large enough
for the duals to converge. Before carrying out the ensuing analysis of Equations (4)–(7), it is
recommended to record the stress induced by the displacements wn(αn) and to reject any
case for which the structure would have failed as such data would be beyond the useful
range of the ROM. The failure criterion often leads to a relatively modest maximum value
of the peak transverse deflection divided by thickness.
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Similar considerations apply to the selection of the values αi and αj of Equation (10)
(or αi and αj of Equations (12)–(13)), but the relative values of these quantities must be also
be discussed. Experience with the dual mode construction suggests that loadings of the
form of Equation (10) are important as they exercise the nonlinearity in the presence of
two modes, but the relative magnitudes of these modes does not play significantly in the
appropriateness of the final basis. Accordingly, the simple choice αi = αj (or αi = αj) has
been used consistently.

Section 5 presents additional discussion on the selection of the parameters αn.

3.4. Threshold Values for εE and εrep

The values of εE in Equation (8) have typically been selected between 0.01 and 0.001,
while ε(th)rep has been taken consistently to be 0.01. The representation error criterion appears
to be stricter than the energy measure one (Equation (8)).

4. Validations

The following numerical validations aim at extending the breadth of loading condi-
tions, boundary conditions, and geometries that have been considered in previous ROM
publications. They will be carried out by comparing the predicted responses by the ROM
and by the full finite element model for typical loadings. In all of them, a Rayleigh damping
was assumed with finite element and ROM damping matrices of the form

DFE = αMFE + βKFE (14)

and
DROM = αMROM + βK(1)

ROM (15)

with equal values of α and β on both. This model was selected because it is convenient to
impose on both finite element (in Nastran through DMIG entries or a DMAP alter sequence)
and ROM, and, thus, the results of dynamic validations are not subjected to differences
in damping.

4.1. Curved Cantilevered Beam

While most structures considered in validations have been restrained on all sides
(clamped, simply supported, or on spring support), some cantilevered examples have been
investigated, e.g., [10,11,21,22,27,33], in the context of wings and blades. One particular
observation drawn from them is that the membrane stretching-transverse deformations
coupling is, in general, smaller than it would be if the structure was restrained on all sides.
This occurs because the cantilevered structure is more free to stretch and thus exhibits
smaller membrane stresses, which affect the transverse behavior. In fact, when the structure
is flat, this coupling is so dramatically reduced [21] that the identification of the ROM
coefficients following the algorithms of [4,39] can be problematic and that an alternate
strategy, specific to flat structures, has been proposed [21].

It is desired here to assess whether such issues also occur when the structure is slightly
curved. To this end, the curved beam of [5,43] was reconsidered but cantilevered, as shown
in Figure 1, as opposed to fully clamped. The material properties were selected as: elas-
tic modulus of 10.6 Mpsi, shear modulus of 4.0 Mpsi, and density of 2.588 × 10−4 lbf-s2/in4.
The coefficients of the Rayleigh damping were selected as α = 1.0293 1/s and
β = 3.8677 × 10−5 s. The beam was modeled in Nastran using 144 beam elements (CBEAM).

The reduced order model of the beam was constructed under the expectation that it
would be subjected to a dynamic loading in the frequency band [0, 100] Hz, and, accordingly,
the first 3 linear modes of frequencies 9.05, 56.33, and 83.54 Hz were retained. The fourth
mode has natural frequency of 158.24 Hz and thus was not retained as it is significantly
above the excitation band cutoff. Given the Rayleigh damping coefficients, the damping
ratios of the 3 modes were 1.02%, 0.83%, and 1.11%.
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Figure 1. Cantilevered curved beam geometry.

For the determination of the duals, all 6 combinations of the 3 linear modes, i.e., 1-1,
1-2, 1-3, 2-2, 2-3, 3-3, were considered with the data generated as in Equations (12) and (13)
with the coefficients αi = αj, both positive or negative, spanning the range of induced
displacement with peak transverse deflection in the range of 1% to 10% of the span (positive
and negative). The representation error criterion of Equation (9) was used to determine
the number of duals. The threshold of 1% was achieved by taking a single dual for each
combination, see Table 1, leading to a 3L6D basis. The coefficients of the corresponding
ROM were then identified according to the tangent stiffness approach of [4].

Table 1. Maximum transverse and in-plane representation error (in %) of the dual data by the 3L6D
basis. Cantilevered curved beam.

Combination 1-1 1-2 1-3 2-2 2-3 3-3

Transverse <0.01 <0.01 <0.01 0.40 0.63 2.12
In-plane <0.01 <0.01 0.01 0.12 0.15 0.54

It is often found useful to do a static validation first, and a uniformly distributed load
was considered for that effort. The values of the generalized coordinates that would be
obtained in the linear case are (with respect to that of mode 1) 1, 1.42 × 10−2, −3.75 × 10−3,
and 7.44 × 10−4. Since the last value is quite small (in relation to that of mode 1), it would
appear that the current ROM basis of 3 linear modes is appropriate for this computation.
This expectation is confirmed by the results of Figure 2, which shows the transverse
(vertical) and in-plane (horizontal) displacements of the beam tip. An excellent matching
of the Nastran results is obtained for transverse deflections as large as 30% of the span!

Next, a dynamic validation was performed using a uniformly distributed pressure
varying as a bandlimited white noise in the frequency range [0, 100] Hz. Shown in Figure 3
are comparisons of the Nastran and ROM predicted power spectral densities of the trans-
verse and in-plane tip deflections corresponding to 80dB and 90dB excitations, which give
rise to standard deviations of tip transverse deflections of 4.15% and 7.73 of span or 8.30
and 15.46 thicknesses, respectively. Again, an excellent agreement is obtained.

4.2. Freely Expanding Plate

The next validation focuses on an atypical boundary condition that could be considered
between cantilevered and clamped. Specifically, the transverse displacement and rotation
will be constrained (as if being clamped), while in-plane displacements will be allowed (as
would be if cantilevered). A flat plate model is considered with this “freely expanding”
boundary condition (see Figure 4). Note that the in-plane displacements and the transverse
rotation are fixed at the plate middle to prevent the occurrence of rigid body modes. In
the finite element implementation, this single point boundary condition was actually
extended over a 3 × 3 array of nodes at the center of the plate (see Figure 5). The freely
expanding boundary condition is useful for structures that are heated as the thermally
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induced expansion is free to occur, thereby preventing the risk of thermal buckling, and
has apparently been used on the SR-71.

Figure 2. Deflections of the tip of the cantilevered curved beam as a function of the magnitude of
a uniformly distributed static load (positive down). Nastran and ROM predictions. (a) Transverse,
(b) in-plane.

Figure 3. Power spectral densities of the deflections of the tip of the cantilevered curved beam
Nastran and ROM predictions for uniformly distributed pressure bandlimited in [0, 100] Hz and with
magnitudes of 80 and 90dB. (a) Transverse, (b) in-plane.

The geometrical and material properties of this panel are given in Table 2. It was
discretized in Nastran using 16 × 12 4-node shell elements (CQUAD4), as shown in
Figure 5. The coefficients of the Rayleigh damping were selected as α = 12.838/s and
β = 2.061 × 10−6 s.

It was desired to construct a ROM in anticipation of a uniform (or doubly symmet-
ric) pressure distribution varying in time as a bandlimited white noise in the range of
[0, 1040] Hz, and the modes retained had that property. The natural frequencies (in Hz) and
corresponding damping ratios (in parentheses) of the first doubly symmetric modes were
found to be 110 (1.00%), 300 (0.53%), 525 (0.53%), 700 (0.60%), 704 (0.60%), and 1090 (0.80%).
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Figure 4. Boundary conditions of freely expanding plate.

Figure 5. Finite element mesh representation of freely expanding plate. The black dots are the nodes
at which the in-plane boundary conditions are imposed.

Table 2. Dimensions and material properties of freely expanding plate.

Length 0.3556 m
Width 0.2540 m

Thickness 0.00102 m
Density 2763 kg/m3

Young’s Modulus 73 GPa
Shear Modulus 27.731 GPa

The ROM was constructed using the 6 modes above (all effectively in band). Mode 1
was expected to be the significantly dominant mode, and, thus, the combinations considered
for the dual modes were 1-1, 1-2, 1-3, 1-4, 1-5, 1-6. In addition, the 2-2 combination was also
added, recognizing that mode 2 also has a notable contribution to the response. The peak
transverse displacements were selected to be 1.6 thickness. Selecting one eigenvector as
dual for each combination led to 7 duals and a 13-mode basis. The representation errors of
the data generated to create the duals by the 13 modes are well below the 1% threshold,
e.g., see Table 3. Accordingly, the 6L7D ROM basis was retained and the corresponding
stiffness coefficients were identified using the modal force approach of [39].
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Table 3. Maximum transverse and in-plane representation error (in %) of the dual data. Freely
expanding plate, 6L7D ROM.

Combination 1-1 1-2 1-3 1-4 1-5 1-6 2-2

In-plane x 0.038 0.073 0.073 0.046 0.074 0.048 0.058
In-plane y 0.044 0.028 0.034 0.043 0.028 0.026 0.158

Trans. z 0.017 0.012 0.015 0.021 0.025 0.012 0.042

The produced ROM performed very well in comparison with the full finite element
model. As an example, note the accurate matching of the power spectral densities of the
transverse response of the panel middle and the in-plane displacements of a corner obtained
with the ROM and the full finite element model shown in Figure 6. The excitation sound
pressure level is 147 dB, leading to standard deviations of the peak transverse displacement
of 1.2 thickness and in-plane displacements of the corners of 0.004 and 0.0008 thicknesses
in the x and y directions, respectively.

Figure 6. Power spectral densities of the responses predicted by Nastran and the ROM. Freely
expanding plate under an excitation of OASPL = 147 dB. (a,b) In-plane x and y displacements of the
bottom left corner, (c) transverse displacement of panel center.
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It was also of interest to check the applicability of the ROM to a similar but static
loading, and a uniform load was chosen for that purpose. Shown in Figure 7 are the
nonzero displacements along the middle lines y = 0 and x = 0 for the two different pressures
of 6000 Pa and 12,000 Pa, leading to large nonlinear deflections, i.e., peak transverse
deflections of 3.5 and 5.1 thicknesses. At the lowest, still high, level, the matching between
the 6L7D ROM and finite element model predictions is nearly perfect. At the very high
level of 5.1 thickness, the ROM underestimates the peak response by only 2%, a very good
prediction. Note in Figure 7a,c the zero in-plane displacements at the nodes with black dots
in Figure 5.

Figure 7. Displacements predicted by Nastran and the ROM 6L7D. Freely expanding plate, uniform
pressures of 6000 and 12,000 Pa. Displacements of the nodes along the (a,b) middle y = 0 line in the
(a) x (in-plane) and (b) z (transverse) directions, (c,d) middle x = 0 line in the (c) y (in-plane) and (d) z
(transverse) directions.
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It is interesting to compare the response of this panel to its fully clamped counterpart;
see Figure 8 for the transverse displacements of the panel center. The unconstrained in-
plane displacements have effectively reduced the nonlinearity of the panel in the transverse
direction, as is seen by (i) the increase in peak response in modes 1, 3, and 6, (ii) the reduced
shift of the peaks of the spectrum as compared to the natural frequencies, and (iii) the
smaller width of these peaks.

The reduced nonlinearity can also be drawn from the ROM coefficients. For flat
structures, one can differentiate two sets of cubic nonlinear terms for the linear modes
(see [21]). One set of coefficients corresponds to the in-plane displacements fixed; these
are the coefficients of the ROM as the linear modes are purely transverse and the duals
purely in-plane. Then, when imposing displacement fields along the linear modes to get
the coefficients K(3)

ijlp (see [4,39]) with all indices relating to linear modes, no in-plane motion

occurs. The other set of coefficients, referred to as condensed and denoted K̂(3)
ijlp, correspond

to the transverse nonlinearity observed when the in-plane displacements occur as needed.
These coefficients can either be derived from the ROM through a static condensation of the
in-plane/dual generalized coordinates or by an appropriate finite element computation
(see [21] for details).

Figure 8. Power spectral densities of the transverse responses of the panel center predicted by
Nastran for the freely expanding plate and its fully clamped counterpart under an excitation of
OASPL = 147 dB.

The difference between the corresponding ROM coefficients of the two sets quantifies
the softening induced by the membrane stretching/in-plane displacements. Since mode
1 is dominant in both responses, it is sufficient here to consider the coefficients K(3)

1111 and

K̂(3)
1111 (see Table 4). For the freely expanding plate, it is seen that K̂(3)

1111 is 17% of K(3)
1111,

i.e., the in-plane displacements reduce the nonlinear stiffening by 83%. For the sake of
comparison, for the identical but fully clamped plate, this reduction is only 31% (see Table 4).
Moreover, for flat cantilevered structures, this reduction is by factors of the order of 99%
with the ratio K̂(3)

1111/K(3)
1111 of the order of 10−4 or less (see [21]). Thus, as stated above, the

freely expanding boundary condition appears as an intermediate between fully clamped
and cantilevered.
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Analyzing the coefficients of Table 4, it should be noted that the transverse–in-plane
coupling coefficient K(2)

117 is actually smaller for the freely expanding plate than for the
fully clamped one, but it is the much reduced value of the in-plane natural frequency
(i.e., K(1)

77 ) that triggers the higher membrane stretching effect. It implies larger in-plane
displacements in comparison to the fully clamped plate, which induce the larger softening
of the transverse nonlinearity even though the coupling terms are smaller.

Table 4. ROM coefficients relating to the first linear mode (“1”) and first dual (“7”). Freely expanding
and fully clamped plates.

K(1)
11 K(1)

77 K(2)
117 K(2)

711 K(3)
1111 K̂(3)

1111

Freely Expanding 4.76 × 105 7.93 × 109 3.13 × 1011 1.56 × 1011 7.52 × 1012 1.29 × 1012

Fully Clamped 4.76 × 105 5.95 × 1010 5.30 × 1011 2.65 × 1011 7.52 × 1012 5.17 × 1012

4.3. Orthogrid Panel

The advantages of using finite element models developed in commercial software
and then reducing them to ROMs are most impactful on complex structures. This was,
in particular, demonstrated on the 9-bay panels of [4,7], but another interesting example
is the orthogrid panel created by Boeing [46] and subsequently considered in [47]. The
finite element model developed in [47] is shown in Figure 9 and its geometry and material
properties are summarized in Table 5. It consists of a flat rectangular skin stiffened on its
underside by an 18 × 10 array of stiffeners tapered at the edges and of identical material as
the skin. It was modeled within Nastran using 48,400 4-node shell elements (CQUAD4)
and approximately the same number of nodes for about 290,000 degrees of freedom (see
discussion in [47]).

Figure 9. Orthogrid panel (a) perspective view of the underside, (b) zoom of (a) near corner, and
(c) cross-section showing the skin (in blue) and a tapered stiffener (in white).
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Table 5. Orthogrid panel geometry and material properties.

Skin length 1.3492 m
Skin width 0.7015 m

Skin thickness 1.27 mm
Stiffeners thickness 1.78 mm

Stiffeners width 14.29 mm
Young’s Modulus 202.7 GPa

Poisson’s ratio 0.292
Density 8220 kg/m3

This panel was introduced in [46,47] for coupled aerodynamic–thermal–structural
analyses in which the structural deformations were considered quasi-statically. Accordingly,
the focus here is on the development of a ROM for static nonlinear analyses, so the selection
of the linear modes based on the frequency band of the excitation is not relevant. This
observation is clearly true not only for the nonlinear ROM but also for a linear modal
model. Following the above recommendations (Section 3), the linear modes to be used
for the linear problem will thus first be clarified, and this analysis will be achieved using
uncertainty propagation concepts.

Specifically, it is known that small variations in geometry and material properties,
collectively referred to as “structural uncertainty”, affect the response of structures, espe-
cially in zones of high modal density, which are prone to occur at “high” frequencies. Thus,
above a certain frequency band, the deterministic finite element solution is, in general, not
an accurate representation of the response of nominally identical but actually different
structures because the variability between them induces “large” random variations to the
response. The validity of the deterministic reduced order model to be developed thus
does not need to extend into that “high frequency” domain since there is no accurate
deterministic baseline model available. Effectively, this criterion provides an upper limit to
the number of modes to be considered.

This discussion is particularly relevant for the orthogrid panel of Figure 9, which is
composed of nominally identical cells connected to each other. It can thus be viewed as a
two-dimensional chain, and structures of this type are known to potentially exhibit local-
ization of the free response and high sensitivity of the forced response to small variations
of the properties of the chain elements.

The uncertainty propagation analysis was carried out on the linear structural problem
by adopting the nonparametric maximum entropy (MaxEnt) approach of [48,49] (see
also [36]) and assuming that the uncertainty is in the stiffness properties (since the desired
model is to be used for static analyses). This approach assumes that a (linear) ROM of the
structure has first been established and its stiffness matrix is denoted as KL. This matrix is
then replaced by a random one KL, which is expressed as

KL = L HK HT
K LT (16)

where L is any decomposition, e.g., Cholesky for simplicity, of KL as

KL = L LT . (17)
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Moreover, in Equation (16), the random matrix HK, see Figure 10, is lower triangular,
with all of its elements independent of each other and the off diagonal ones identically
distributed as zero mean Gaussian random variables with common standard deviation
σ. Finally, the diagonal elements of HK can be expressed as Hkk =

√
Yk/µ, where Yk is a

Gamma random variable of parameter pk. In these definitions, one has

σ = 1/
√

2µ; (18)

µ =
n + 1
2δ2 (19)

and pk = 2µ− k (20)

where n is the size of the matrix KL and δ represents the overall level of randomness,
defined as the coefficient of variation of the random matrix HK HT

K.
The first 200 linear, mass normalized modes of the orthogrid panel were selected

as basis for the above linear ROM. Accordingly, the matrix KL was 200 × 200, diagonal
with elements equal to the squared natural frequencies. Accordingly, L, see Equation (17),
was also diagonal with elements equal to the frequencies. Then, 50 samples of the full
random matrix KL were simulated as above with δ = 0.1, which induces coefficients of
variations (ratio of standard deviation by mean) of the 200 natural frequencies in the range
of 0.4% to 0.6% for the frequency up to about 1300 Hz and drops to the range of 0.1% to
0.2% afterwards.

Figure 10. Structure of the random HK matrices with n = 8, i = 2, and µ = 4.5 and 13.5.

To assess the impact of the uncertainty on the linear forced response of the panel,
the transfer functions of the response at various points were computed for each sample
of stiffness matrix KL assuming a uniformly distributed pressure on the skin varying
harmonically in time. A Rayleigh damping was selected for these computations with
α = 13.95/s and β = 2.386 × 10−6 s, which leads to damping ratios from 0.5% to 2% for
the modes in the current frequency range. Shown in Figure 11 are typical results of these
computations for the three locations of the panel shown in Figure 11a, i.e., the center point,
a quarter point, and a point close to the edge. The figures of Figure 11b–d display (in
yellow) the uncertainty bands of the transfer functions corresponding to the range between
the 5th and the 95th percentiles of the responses and thus include 90% of the responses.
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Note on these figures that the red lines indicate the natural frequencies of the deterministic
panel, which clearly become densely populated at high frequencies.

It is observed in Figure 11b–d that the uncertainty bands are narrow at low frequencies
when the natural frequencies are well separated but become much more wide where the
modal density is increasing. In these zones, the peaks also become broader due to the
interactions of the modes of varying (random) natural frequencies and mode shapes. In
these zones, i.e., for frequencies higher than 1100 Hz or so, the deterministic ROM would
provide only one estimate of the response vs. the wide range of responses that can be
expected from a physical panel. Accordingly, such a deterministic ROM should not be used
above 1100 Hz as it would not be accurate. This frequency is thus set as the upper bound
on the frequency range of interest. In this range, there are 33 linear modes of the panel,
which will all be included in the nonlinear ROM basis.

For the construction of the duals, the first 4 symmetric modes (Modes 1, 3, 9, and
11) and the first 4 asymmetric modes (Modes 2, 4, 5, and 6) were selected to generate
the required load cases (see Equations (3) and (10)). More specifically, the following
26 combinations of modes were considered: 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-9, 1-11, 2-2, 2-3,
2-4, 2-5, 2-6, 2-9, 2-11, 3-3, 3-4, 3-5, 3-6, 3-9, 3-11, 4-4, 4-5, 4-6, 4-9, and 4-11. For each
combination, a set of 14 load factors were used to generate 14 force loadings of various
magnitudes such that the maximum transverse displacement varies from 0.01 h to 4.0 h,
where h is the thickness of the panel skin.

The usual procedure from that point on is to adopt all linear modes, then add on the
dual modes one at a time from the residuals of the projections on all linear modes and
prior duals of the 14 nonlinear static responses corresponding to each combination of linear
modes considered. In this process, the first dual, i.e., the one associated with the dominant
linear mode, is not coupled to just this mode but to all linear modes to which it was made
orthogonal to by construction of the residuals. This property implies a broader coupling
between duals and all linear modes than is physically expected, which, unfortunately, has
been observed to be detrimental to the numerical stability of constructed ROMs with a large
number of basis functions—as is the case for this panel. This issue is purely numerical and
results from small inaccuracies in the identification of the large number of ROM coefficients.

A better approach proposed here is to construct first a “core reduced order model”, i.e.,
a ROM with only a few modes (linear and duals), that captures qualitatively the behavior
of the panel but does not quite have the accuracy desired. This core ROM is then extended
by adding sequentially linear modes and their associated duals as necessary. This process
narrows the coupling between modes and has been found to enhance the identified ROM
numerical stability.

For the current panel model, a core ROM including the 8 linear modes 1-6, 9, and
11 and 9 associated duals (i.e., ROM8L9D) resulting from the combinations of the basis
functions 1-1, 1-3, 1-5, 2-4, 3-4, 3-5, 4-4, 2-8, 3-7 (1 dual each) was selected. The construction
of the full ROM was then achieved by adding the linear modes 9-33 and, as necessary, their
duals. The steps were specifically:

1. given the available core basis (8L9D), the remaining linear modes in the frequency
range [0, 1100] Hz were first added to the core basis, yielding a 33L9D basis;

2. the residues of the nonlinear static response data corresponding to linear combinations
of linear modes not involved in the core ROM dual modes were computed by making
them orthogonal to the basis 33L9D;

3. the duals from the POD eigenvectors of these residues were selected and added to the
33L9D basis to obtain the modified full basis.
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For the current panel model, the selection of duals gave rise to a full basis of 33 linear
modes and 25 duals. The tangent stiffness matrix procedure was then used to identify the
nonlinear stiffness coefficients of this full ROM (33L25D), as well as the core one (8L9D).

Figure 11. Uncertainty band (in yellow) of linear frequency responses of the random linear ROM
samples to uniform pressure load. (a) Three locations on the panel where the uncertainty band results
are shown; (b) center point, (c) quarter point, and (d) edge point. The red lines indicate the natural
frequencies of the deterministic orthogrid.

The representation errors of the data corresponding to the 26 linear combinations of
Equations (3) and (10) are shown in Table 6 for both 8L9D and 33L25D bases. Note in this
table that the combinations with a * were used for the construction of the 9 duals of the core
8L9D model. For most of the combinations, the errors obtained with the 33L25D are below
or about the typical threshold of 1% in all 3 directions, suggesting that this basis should
be appropriate.
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Table 6. Maximum representation errors (in %) of the dual data by the two bases.

Orthogrid Panel

8L9D 33L25D

Combination x y z x y z

1-1 * 0.193 0.432 0.128 0.092 0.095 0.101
1-2 5.120 9.330 0.261 0.169 0.114 0.110

1-3 * 2.520 4.720 0.265 0.223 0.149 0.152
1-4 5.080 10.600 0.597 0.346 0.311 0.172

1-5 * 12.500 10.100 2.540 2.180 1.630 0.366
1-6 5.550 14.800 0.466 0.254 0.256 0.155
1-9 4.350 5.390 1.260 0.681 0.485 0.401

1-11 7.020 9.980 1.850 0.466 0.437 0.404
2-2 5.840 8.720 0.832 0.463 0.240 0.217
2-3 7.540 7.350 0.839 0.532 0.428 0.252

2-4 * 17.100 9.610 1.540 2.430 1.030 0.388
2-5 8.220 9.090 0.606 0.373 0.299 0.397
2-6 7.750 7.110 1.270 0.892 0.760 0.472
2-9 8.530 10.400 1.140 1.880 1.470 0.318

2-11 * 3.590 6.410 1.860 0.866 0.658 0.344
3-3 9.850 18.200 5.040 0.438 0.733 0.616

3-4 * 9.300 16.400 2.640 3.030 7.370 1.050
3-5 * 10.200 12.300 1.460 4.940 3.240 0.504
3-6 6.750 19.600 1.260 0.723 0.559 0.280

3-9 * 9.840 17.800 4.510 6.750 3.930 0.613
3-11 10.700 26.600 2.360 1.890 3.660 0.966
4-4 * 11.600 9.130 2.200 3.810 2.130 0.532
4-5 7.440 7.460 1.780 0.587 0.607 0.456
4-6 10.400 23.400 2.520 5.010 13.000 1.110
4-9 9.400 8.260 2.220 0.817 0.977 0.610

4-11 37.400 28.500 4.850 1.540 4.510 1.030
*: Combinations used for the 8L9D.

Nonlinear static validations were carried out for both the core (8L9D) and full (33L25D)
ROMs by comparing several nonlinear static responses obtained from Nastran and their
counterparts predicted by the ROMs. Three static pressure loadings of varying magni-
tude were considered for this effort: (1) a uniform pressure; (2) a pressure distribution
asymmetric in the y-direction (fore-aft) but symmetric in the x-direction (left-right); and
(3) a pressure distribution symmetric in the y-direction (fore-aft) but asymmetric in the
x-direction (left-right). The last 2 pressure distributions are depicted in Figure 12. All
pressures were applied only to the top surface of the panel skin.
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Figure 12. Asymmetric pressure distributions on the orthogrid panel.

For the uniform pressure loading, the pressure was varied from −20 kPa to +20 kPa,
with negative pressures applied toward the top surface. The maximum transverse displace-
ments computed by Nastran are about five and six thicknesses, for the negative and the
positive pressures, respectively.

Shown in Figure 13 is the resulting comparison of the displacements obtained by
Nastran and the two ROMs, at the center and a quarter point of the panel skin. Both ROMs
predict transverse displacements very well, at both the center and the quarter point, with
the full ROM slightly closer to Nastran. The predictions of in-plane displacements by the
two ROMs also agree well to Nastran results. Note that the in-plane displacements of the
center point are very small owing to the symmetry of the panel, and, thus, the comparison
there is not particularly worthwhile. Figure 14 confirms these results by displaying the
displacement fields along x, y, and z of the skin at the highest load level of 20 kPa at which
the peak transverse displacement is 4.4 thicknesses.

The above validation was repeated for the two asymmetric “split-uniform” pressure
distributions of Figure 12, and the corresponding predictions from Nastran and the ROMs
are shown in Figures 15–18. For these two asymmetric loadings, the 33L25D model still pro-
vides excellent predictions of the Nastran responses in all three directions, while the 8L9D
model is primarily successful at predicting the transverse displacements with noticeably
larger errors on the in-plane displacements.
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Figure 13. Static displacements induced by a uniform pressure on the orthogrid panel. Predic-
tions from Nastran and the 8L9D and 33L25D ROMs. (a,c,e) center point, (b,d,f) quarter point,
displacements along (a,b) transverse z, (c,d) in-plane x, (e,f) in-plane y.
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Figure 14. Displacement fields along x, y, and z of the skin predicted by Nastran and by the 33L25D
and 8L9D ROMs in units of thickness. Uniform pressure of magnitude +20 kPa.



Vibration 2022, 5 42

Figure 15. Static displacements induced by a fore-aft asymmetric pressure on the orthogrid panel.
Predictions from Nastran and the 8L9D and 33L25D ROMs. (a,c,e) center point, (b,d,f) quarter point,
displacements along (a,b) transverse z, (c,d) in-plane x, (e,f) in-plane y.
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Figure 16. Displacement fields along x, y, and z of the skin predicted by Nastran and the 33L25D and
8L9D ROMs in units of thickness. Fore-aft asymmetric pressure of magnitude +20 kPa.
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Figure 17. Static displacements induced by a left-right asymmetric pressure on the orthogrid panel.
Predictions from Nastran, the 8L9D and 33L25D ROMs. (a,c,e) center point, (b,d,f) quarter point,
displacements along (a,b) transverse z, (c,d) in-plane x, (e,f) in-plane y.
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Figure 18. Displacement fields along x, y, z of the skin predicted by Nastran and by the 33L25D and
8L9D ROMs in units of thickness. Left-right asymmetric pressure of magnitude +20 kPa.
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5. Further Discussions on Basis Construction
5.1. Linear Modes Selection

As discussed in Section 3.1, the selection of the linear modes to be included in nonlinear
ROM bases may be more challenging than it is for linear modal analyses, but the static
nonlinear responses to the loadings of Equations (3) and (10) or (12)–(13) provide some
support in this respect. Indeed, while these loadings are designed to primarily (entirely
in the linear case) excite either one or a pair of linear modes, the corresponding responses
include a much broader set of them because of the nonlinear static coupling that exists
between linear modes. A projection of these responses on a large number of linear modes
will thus point to the single or pair of modes excited but also to other modes that are
induced by the nonlinear static coupling mechanism. Any large contribution on modes
not excited directly would clearly signal modes that will respond because of this coupling.
Note that the above discussion and the derivations below are not applicable to the detection
of internal resonances that lead to a dynamic, not static, nonlinear coupling between linear
modes. Mathematically, the responses wn(αn) will be approximated by their projections
on a set of linear modes, i.e.,

wn(αn) ≈
NL

∑
i=1
ηi(αn)V(i) (21)

where NL is a “large” number, i.e., much larger than the number of linear modes taken
for the linear problem. Since these modes are orthogonal to each other with respect to the
mass matrix, the projection coefficients ηi(αn) can be obtained directly by premultiplying
Equation (21) by V(i)T MFE and applying the orthogonality property. This yields

ηi(αn) = V(i)T MFE wn(αn). (22)

Then, the ratio |ηi(αn)/ηn(αn)| can be used as a measure of the nonlinear coupling
between linear modes n and i when the former is excited at a level αn. Thus, using
the data that are already generated to determine the dual modes, one can assess which
linear modes i will be excited through the nonlinear coupling with mode n by plotting
the values of |ηi(αn)/ηn(αn)| vs. i. Any large peak of this curve indicates a linear mode
that should definitely be considered for inclusion in the basis, even if it is out of band
or not excited directly. The static response data generated with loadings of the form of
Equations (10) or (13) can be analyzed similarly.

The above analysis permits to explain some observations drawn in earlier investi-
gations, the first one of which relates to the beam of Figure 19 considered in [7]. The
beam is made of isotropic elastic material with the following properties: Young’s modulus
(E) = 205 MPa, Poisson’s ratio (v) = 0.3, density (ρ) = 1966.8 kg/m3. The beam thickness is
7.75 × 10−4 m, and it is 0.2286 m long and 0.0127 m wide. The springs are identical, with
stiffness k = 200 N/m.
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Figure 19. The clamped-clamped beam model supported by linear springs of [7].

It was found in [7] that the nonlinear response of the beam of Figure 19 involved
a large contribution of mode 3 even though that in-band mode was almost not directly
excited. Moreover, clear contributions of the out of band transverse modes 5–8, 10, and
11 were also observed. To clarify these findings, the data used in [7] to generate the dual
modes were analyzed again but, as above, focusing first on mode n = 1, which is the one
that is directly excited. The coefficients ηi(α1) were then evaluated for the 24 levels α1
of [7] and for modes i = 1, 2, . . . , 50, which is much larger than the 4 in-band modes. This
plot is shown in Figure 20a and shows clear peaks for the modes 1 (excited), 3, 6, 8, 11 but
also mode 34. The coefficients ηi(α1) of these modes, normalized by η1(α1), are plotted
vs. α1 on Figure 20b. As expected, at very low excitation levels, the contributions of the
non-excited modes are very small. It is also seen that the mode 3 response becomes very
significant, which confirms the observations of [7] that this mode is a dominant one.

Figure 20. Projection coefficients ηi(α1) of the static responses w1(α1). Beam on spring supports
from Figure 19. (a) ηi(α1) vs. linear mode i for all load levels α1,s. (b) Normalized coefficients
|ηi(α1)/η1(α1)| vs. load level α1,s for selected modes i = 3, 6, 8, 11, and 34.
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The plots of Figure 20 justify using linear modes 6, 8, and 11 in the ROM basis but
not modes 5, 7, and 10. The absence of these modes is, in fact, due to the symmetry of
the system, which leads to transverse modes that are either symmetric or antisymmetric.
Modes 1, 3, 6, 8, and 11 are all antisymmetric and do not couple with the symmetric ones,
i.e., modes 2, 4, 5, 7, 10. Repeating the above analysis with mode n = 2 leads to the results
of Figure 21, which show the coupling with the other key modes, i = 5, 7, and 10.

A similar analysis was also carried out for the hat section panel shown in Figure 22,
see [41,42], the material properties of which were selected as: Young’s Modulus of 2 × 1011 Pa,
shear modulus of 8 × 1010 Pa, and density of 7850 kg/m3. Of particular interest here
are the modes that are nonlinearly coupled to modes n = 1 and mode n = 6, which are
dominant modes in the response. Given the asymmetry of the structure, the loadings of
the form of Equation (3) with positive and negative αn,s factors do not lead to opposite
projections. Shown in Figure 23 are the normalized projection coefficients for the relevant
linear modes, which demonstrate that mode 1 is only very weakly coupled to other linear
modes, surprisingly most strongly to the higher frequency mode 18. On the contrary, mode
6 is very strongly coupled to mode 7 but also to mode 10 and, to a notably lower degree, to
mode 1. This figure highlights, in particular, the lack of symmetry of the plot for positive
and negative loadings when the structure is not symmetric, i.e., the coupling between
modes varies with respect to the loading direction. Note finally that the coupling as defined
here is not a symmetric property; the projection of the deflections induced by mode i on
mode j does not equate to the projection on mode i of the deflections induced on mode
j because the load levels αn will be different for these 2 loading scenarios as the level of
deflection is controlled, not the force level.

Figure 21. Projection coefficients ηi(α2) of the static responses w2(α2). Beam on spring supports
from Figure 19. (a) ηi(α2) vs. linear mode i for all load levels α2,s. (b) Normalized coefficients
|ηi(α2)/η2(α2)| vs. load level α2,s for selected modes i = 4, 5, 7, and 10.
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Figure 22. Hat stiffened panel geometry, boundary conditions, and finite element model.

5.2. Selection of the Values αn

Specific directions were given in Section 3.3 to select the load levels αn in Equations
(3) and (10). A small updating of these recommendations is provided here based on recent
experience. The first change relates to the peak values of αn for different mode numbers n,
which were recommended in Section 3.3 to correspond to an identical peak displacement.
This rule has led to reliable ROMs but occasionally larger bases than necessary because
the deformations induced for higher order, very stiff modes were overly conservative. A
more balanced selection focuses not on the peak deflection but rather on the peak stress, i.e.,
that peak values of αn for different mode numbers n correspond to an identical peak stress
dictated by a maximum displacement on the lowest mode of the order of 1-4 thicknesses.

Figure 23. Normalized projection coefficients |ηi(αn)/ηn(αn)| of the static responses wn(αn) vs. load
level αn,s for selected linear modes i, hat section of Figure 22. Mode (a) n = 1, (b) n = 6.

Consistent with this stress perspective, it is suggested here that the parameters αi and
αj not be taken equal but rather that αi ω

2
i = αj ω

2
j , which leads to approximately equal

stresses induced by the two modes i and j.
A second addition to Section 3.3 relates to the signs of αi and αj in Equation (10).

Not only should these two parameters admit positive and negative values, as stated
in Section 3.3, but these cases should also include equal and opposite signs of αi and
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αj. This entire dataset corresponding to 2 specific modes is then treated as discussed in
Section 2. This selection leads for structures with symmetries to dual that better respect
those symmetries than when the signs of αi and αj are always the same.

5.3. Revised Selection of the Number of Eigenvectors as Duals

It was emphasized in Section 3 that the information present in the deflections wn(αn)
must be well captured in constructing the dual modes to obtain a good ROM basis. To
this end, the number of POD eigenvectors retained as duals at each step (i.e., for each
combination) was dictated by the convergence criterion of either Equations (8) or (9). One
aspect that has not been considered to date is that duals that are selected when analyzing
later combinations actually improve the representation of the data analyzed for earlier
ones, even when the representation error threshold is low. This finding is clearly displayed
in Figure 24, which provides the representation error for the duals corresponding to the
combinations 1-1, 1-2, 1-3, 1-4, 2-2, and 2-3 for the clamped-clamped beam of Figure 25 and
Table 7 at the end of each step, i.e., after taking 2, 3, 2, 1, 2, and 1 duals, respectively, for
which convergence was assessed with the criterion of Equation (8) and ε(th)rep = 0.01.

The implication of the above finding is that the final basis provides a more refined
representation of the data that the target of ε(th)rep = 0.01 and thus may be over conservative,
i.e., leading to a ROM basis that may be larger than necessary for that target. Equivalently,
this finding suggests that it may not be necessary to take a full set of duals from one
combination in order to meet the target of the error threshold strictly, but rather let the
duals selected later from other combinations to help reduce the error further.

Figure 24. Representation errors of the combinations 1-1, 1-2, 1-3, 1-4, 2-2, and 2-3 at the end of the
POD analysis for each of these combinations taking 2, 3, 2, 1, 2, and 1 duals.

Figure 25. Clamped-clamped straight beam and loading.
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Table 7. Straight beam properties.

Beam Length 0.2286 m Young’s Modulus 205,000 MPa
Cross-section Width 0.0127 m Shear Modulus 80,000 Mpa

Cross-section Thickness 7.75 × 10−4 m Elements type CBEAM
Mass per unit length 7875 kg/m3 Number of elements 40

This perspective leads to a different strategy for the selection of the modes numbers n or
i and j considered in Equations (3) and (10). Specifically, rather than taking a limited number
of combinations following the informed arguments of Section 3.2, the displacements of
which are analyzed until strict convergence, one could consider a much broader, more
straightforward set of combinations and tentatively take only a limited number (say 1 or
2) of POD eigenvectors (with largest energy measure) as duals. However, to ensure that
all the information present in the deflections wn(αn) has been well captured at the end, a
revisit at that time of the entire set of data (i.e., for all combinations) should be carried out
and additional POD steps should be reformulated for combinations not meeting the target
threshold ε(th)rep .

In summary, this new strategy proceeds as follows:

(i) select a broad set of combinations of 1 and 2 modes
(ii) for each combination, analyze the data using Equations (4)–(7) and take the 1 or

2 POD eigenvectors with largest strain measure or largest drop in representation error
as dual.

(iii) when all combinations have been treated, recompute the representation error of the
data for each combination with the obtained basis.

(iv) for any combination with representation error in (iii) larger than the threshold of ε(th)rep ,
determine the residuals Un,s or Ui,j,s of the corresponding data with the final basis

and proceed with a POD to decrease the representation error to below ε
(th)
rep .

The process (i)–(iv) will lead to a basis that achieves the target threshold of ε(th)rep on
all combinations and is expected to have a smaller number of duals than using previous
approaches of Sections 3 and 3.2. Moreover, it will cover a broader set of combinations
requiring less informed decision as before and thus leads to a more automatic construction
of the dual modes.

Before demonstrating this new process in the following section, it should be noted
that a single POD of the entire data of all combinations taken together could be carried
out. This effort has been compared to the process (i)–(iv) and does not appear to lead to
a smaller basis. Yet, the analysis of each combination alone is advantageous because it is
fully expected that some combinations are more likely than others to be important, e.g.,
combinations involving lower order modes vs. those of higher order. This information is
rather intuitive and is more challenging to introduce mathematically (through a weighting
matrix) in a single POD framework.

5.4. Beam with Narrowly Distributed Loading

Most mechanical loading conditions (i.e., excluding heating) considered in previous
investigations have been either distributed over the entire structure and generally uniformly
or concentrated forces. To enrich this set of validations, the beam of Figure 25 is considered
here with a uniform loading only over the left 1/4 of its length, which is either static or
dynamic. It is desired to construct a ROM appropriate for an excitation band of [0, 1000]
Hz, which includes the first 5 linear modes of frequencies 79.63, 219.49, 430.23, 711.09,
845.13 Hz. For the static loading, the consideration of these 5 linear modes also appears
appropriate based on a linear analysis.

Following the discussion of Section 5.3, the dual modes were selected from the full set
of combinations of modes 1-4, i.e., 1-1, 1-2, 1-3, 2-2, 1-4, 2-3, 2-4, 3-3, 3-4, 4-4 in this order,
which reflects the relative magnitudes of the modes in the linear case. Mode 5 was only
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present minimally in the linear response and thus was not included in the dual selection.
The displacement data used was in the range of 0.01 to 1.5–2.0 thicknesses with the load
factors αi and αj spanning both positive and negative values and with both equal and
opposite signs, see Section 5.2. For each combination, the POD eigenvector with the largest
contribution to the total potential energy of the displacement data was selected as the dual
leading to a 5L10D ROM. Figure 26 shows the evolution of the representation errors for
the first 6 combinations as a function of the number of duals selected. It is clearly seen,
as in Figure 24, that taking duals for later combinations does also reduce the error for
earlier ones.

As discussed in Section 5.3, the next step is to check the representation errors of
the 10 combinations and their maximum values are show on Table 8. It is clearly seen
that these errors are not below the threshold of 1% for some of the combinations and for
both transverse and in-plane directions. This situation will be remedied by reconsidering
successively the data of the combinations with a representation error above the threshold
and selecting as many duals as necessary to lower this error to below the 1% threshold. The
representation errors of the 10 combinations will then be recomputed and any combination
with a representation error larger than 1% will again be used to obtain new duals. This
process was carried out first with the combination 1-4, which does not have the largest
representation error but involves a key low frequency mode. A single POD eigenvector
was selected and the representation errors with this 5L11D model were recomputed. At
this point, the combination 4-4 remained the only one with a representation error above
1%, 1.44% specifically, and a POD of its residuals after projection on the 5L11D basis was
carried out. The selection of the eigenvector with the largest strain measure as 12th dual
led to a drop of the error below 1% for that combination as well, ending the selection of
dual modes.

Figure 26. Representation errors of the combinations 1-1, 1-2, 1-3, 1-4, 2-2, and 2-3 as a function of the
number of duals taken—1 dual per combination.
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Table 8. Maximum representation errors of the 10 combinations for the fully clamped beam.

Combination 1-1 1-2 1-3 2-2 1-4 2-3 2-4 3-3 3-4 4-4

Transverse 0.21 1.11 1.90 1.80 5.46 1.91 5.08 2.53 4.71 7.38
In-plane 0.02 0.33 0.09 0.00 1.89 1.01 0.36 0.33 2.56 1.44

The reduction in the representation errors in the transverse direction was achieved by
adding the linear modes most effective in reducing the representation error, which were
determined by checking the curves of transverse representation error versus the number of
linear modes for all the 10 combinations. In this process, the linear modes 6, 8, 10, 11, 13,
16, 18, and 20 were added for a final ROM with 12 linear modes and 12 duals.

Both the 5L10D and 12L12D ROMs were identified using the tangent stiffness ap-
proach of [4] and an assessment of the accuracy of their predictions was performed on the
quarter beam loading of Figure 25 both in static and dynamic conditions. For the former,
3 loading levels were considered that lead to peak transverse displacements of 0.1, 0.75, and
2.5 thicknesses, i.e., low, medium, and high levels of nonlinearity. The corresponding values
of the pressure were 4, 50, and 500 N/m, which is indeed seen to increase significantly faster
than the peak transverse displacement level. Similarly, the peak in-plane displacements of
3 × 10−5, 3 × 10−3, and 0.04 thickness increase much faster than the peak transverse ones,
approximately quadratically.

The comparison of the static deformed shapes, in the transverse and in-plane direc-
tions, is shown in Figure 27, and it is seen that the agreement is excellent for all levels with
the 5L10D ROM. The corresponding results obtained with the 12L12D ROM are essentially
identical to the finite element ones.

For the dynamic validation, the time dependence of the loading was modeled as
a bandlimited white noise in the frequency band [0, 1000] Hz and its magnitude was
selected to yield a standard deviation of the peak transverse displacement of 0.72 thickness.
Moreover, the coefficients of the Rayleigh damping were selected as α = 12.838/s and
β = 2.061 × 10−6 s which led to damping ratios of 1.4%, 0.6%, 0.5%, 0.5%, and 0.6% on
the first 5 linear modes. Then, shown in Figure 28 is a comparison of the power spectra
at the middle and quarter points in both transverse and in-plane directions between the
finite element predictions and those corresponding to the 5L10D and 12L12D ROMs. It
is seen that the 5L10D model provides an excellent prediction over the excitation band,
up to 1500 Hz and a good one, especially for the in-plane displacements, from 1500 Hz
to 3000 Hz, which is significantly above the excitation band. Also shown on these figures
are the predictions obtained from the 12L12D and they match the finite element ones very
closely up to 3000 Hz. The inclusion of the extra, out of band, linear modes and duals
has thus led to the capture of the response not only in the excitation band but well above
it. This richer model thus permits to also capture accurately the out of band transfer of
energy that takes place. The excellent accuracy of the 5L10D model results from the low
representation errors of the dual data, see Table 8, over a broad ensemble of combinations
that include the 4 most significant modes.

In the POD strategy of Section 5.3, a dual derived from any loading combination
provides, in general, a reduction in the representation error for other loading conditions.
Thus, increasing the number of combinations to consider does not necessarily lead to a
similar increase in the number of duals. For example, considering the 15 combinations
that involve all 5 modes in band, i.e., 1-1, 1-2, 1-3, 2-2, 1-4, 2-3, 2-4, 3-3, 3-4, 4-4, 1-5,
2-5, 3-5, 4-5, and 5-5 leads after selecting 1 eigenvector as dual for each combination to
representation errors on all 15 combinations that are below 1%. So, the consideration of
5 extra combinations has led to only adding 3 more duals. The corresponding 12L15D
was also identified and its predictions of the static and dynamic loading conditions of
Figures 27 and 28 are very close to those of the 12L12D.
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Figure 28. Power spectral densities of the responses predicted by Nastran and the 5L10D and
12L15D ROMs, quarter beam loading. (a,b) Quarter point, (c,d) middle point. (a,c) Transverse and
(b,d) in-plane displacement.

6. Summary

The focus of this investigation has been on complementing the existing work on
reduced order modeling for the nonlinear geometric response of structures by, first, provid-
ing clarifications and recommendations for the determination of the basis and, second, by
demonstrating the validity and accuracy of this approach to four novel, atypical structures.
The basis used here is composed of a series of linear modes of the structures enriched by
dual modes that represent the membrane stretching induced by the large displacements.
Existing aspects of the construction of the dual modes are first reviewed in detail, but newer
aspects are also presented, the most important of which is how the POD process involved
in this construction is performed. This new process considers a broad set of loading com-
binations and takes a limited, e.g., one, eigenvector from each as a dual mode to form a
first set of them. Once a first pass through this data has been completed, a revisit of the
representation errors is carried out and additional POD steps are performed as needed
to ensure that the representation error for all the combinations is lower than the desired
threshold. This new strategy is expected to provide a more compact basis given a set of
loading conditions or permits to model a broader set of those with the same basis size.

It is shown next that a by-product of the construction of the duals is data that permit
to estimate the nonlinear coupling that exists between linear modes. This information is
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particularly useful in selecting which linear modes, especially out of band ones, must be
included in the basis.

The above existing and novel basis construction strategies are applied to four novel
structural problems that have atypical geometry, boundary conditions, or loading. These
include a freely expanding plate, an orthogrid panel of complex geometry, and a beam
loaded only on one quarter of its length. For each case, the construction of the basis is
detailed, and comparisons of the static and/or dynamic response predictions from both
the ROMs and the underlying finite element model are carried out for strongly nonlinear
responses. The excellent match between the finite element and ROM predictions in all cases
demonstrates the high accuracy that can be achieved with the proposed ROMs.
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