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Abstract: Characterisation and quantification of nonlinearities in the engineering structures include
selecting and fitting a good mathematical model to a set of experimental vibration data with signifi-
cant nonlinear features. These tasks involve solving an optimisation problem where it is difficult
to choose a priori the best optimisation technique. This paper presents a systematic comparison
of ten optimisation methods used to select the best nonlinear model and estimate its parameters
through nonlinear system identification. The model selection framework fits the structure’s equation
of motions using time-domain dynamic response data and takes into account couplings due to the
presence of the nonlinearities. Three benchmark problems are used to evaluate the performance of
two families of optimisation methods: (i) deterministic local searches and (ii) global optimisation
metaheuristics. Furthermore, hybrid local–global optimisation methods are examined. All bench-
mark problems include a free play nonlinearity commonly found in mechanical structures. Multiple
performance criteria are considered based on computational efficiency and robustness, that is, find-
ing the best nonlinear model. Results show that hybrid methods, that is, the multi-start strategy
with local gradient-based Levenberg–Marquardt method and the particle swarm with Levenberg–
Marquardt method, lead to a successful selection of nonlinear models and an accurate estimation of
their parameters within acceptable computational times.

Keywords: nonlinear system identification; data-driven model; nonlinearity characterization; nonlin-
ear structures; nonlinear optimization; free play nonlinearity

1. Introduction

Efficient and lightweight engineering structures have been found to behave non-
linearly; some examples of multiple applications are microelectromechanical structures
represented in [1] and aerospace structures in [2,3]. Nonlinear effects need to be modelled
accurately in the design process and should also be taken into account for the condition
monitoring of strategic structures in the operational stages. While linear system identi-
fication and modal testing techniques have been widely developed and applied [4], the
lack of detailed knowledge about the structural mechanisms with nonlinear behavior has
motivated the development of Nonlinear System Identification (NSI) methods. Modal
testing and analysis of nonlinear mechanical systems has been investigated using the idea
of the nonlinear normal mode (NNM) [5–7] as an extension to linear modes for nonlinear
systems. After the detection of nonlinearities [8] in the initial stages of modal testing,
characterisation and quantification are crucial steps. Methods for the characterisation and
quantification of nonlinearities present in the structures have been developed using the
measured data whether in the time domain, frequency domain, or both; many of which
have been reviewed in [9]. Delivering mathematical models based on NSI in order to
predict the behaviour of nonlinear structures is currently undergoing a renaissance, giving
way to data-driven approaches [10]. The core challenge of any data-driven approach is
the identification of relevant optimisation methods that are not only capable of estimating
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nonlinear parameters of a given model but also powerful enough to select a suitable model
that describes the nonlinearity in the system. In this paper, we are looking at which optimi-
sation method works best when dealing with the challenge of nonlinear model selection
using time domain data.

Forced response data or resonance decay data in the time domain are normally used for
the identification of engineering structures. Forced response data have been used in many
nonlinear identification methods such as the restoring force surface method [11,12], subspace-
based techniques [2,13], NARMAX [14] and response control stepped-sine testing [15].
On the other hand, resonance decay data have been used to generate backbone curves by
Londoño et al. [16,17], where different nonlinear models could be fitted for the system
dynamics. Most of these methods use the linear least square technique as an optimisation
routine to find out the unknown parameters of a nonlinear model. In addition, Moore [18]
has developed the characteristic nonlinear system identification (CNSI) method based
on the transient response of hammer test to identify a model for local nonlinear attach-
ments where the pattern search optimisation method has been used to find the unknown
parameters of the assumed nonlinear model.

There are methods that have been developed for nonlinear model selection. For in-
stance, the Forward Regression Orthogonal Least Square (FROLS) algorithm is used in
the NARMAX context [14]. Mangan et al. [19] have introduced model selection via sparse
regression algorithms for linear-in-parameters problems. The polynomial nonlinear state-
space (PNLSS) method [20,21] has also been used to select nonlinear models based on high
order polynomials. However, different applications, such as the nonlinear identification of
aero-engine structure [22], showed that the number of parameters included in the selected
model by PNLSS is high and might not be parsimonious. In addition, the application of
machine learning [23], approximate Bayesian computation [24] and an optimisation based
framework using experimental data from stepped sine results [25] have been considered
for nonlinear model selection. More recently, the authors have proposed new optimisation
based model selection algorithms for structures with localised stiffness nonlinearities [26].
Modal equations of motions were used and nonlinear modal couplings related to the pres-
ence of local nonlinear elements were taken into account. The method uses the information
from linear modal testing and then finds the best combination of nonlinear models from a
library of nonlinear terms including linear- and nonlinear-in-parameters functions.

The main contribution of this paper is the performance evaluation and comparison
of ten powerful optimization algorithms (detailed in Section 2.3) when used in the task
of selecting the best nonlinear model to describe the dynamic behaviour of a nonlinear
mechanical system from its vibration response data. The search of models and their param-
eters are performed following the data-driven nonlinear system identification approaches
already proposed by the authors in [26]. Therefore, the scope of this paper is limited to the
comparison of optimisation methods as such, with the purpose of providing evidence to
facilitate the selection of the most suitable optimisation algorithm for the nonlinear system
identification of mechanical systems from vibration time-series data. For this purpose,
numerical single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF), in
combination with gap and polynomial nonlinearities, are considered for this study. This
nonlinearity form has been selected as it has been observed in mechanical structures such
as airplane wing-tips, ailerons and spoilers [27,28].

This paper is organised into the following sections: a detailed introduction to the
nonlinear model selection methodology is presented in Section 2. An overview of local and
global optimisation methods used for model fitting is presented in Section 3 along with their
effective factors adjusted according to the purpose of this study. Several evaluation criteria
are also discussed for assessing the performance of optimisation methods. We also describe
three nonlinear structural problems to benchmark a number of optimisation methods.
Results are discussed in Section 4 using metrics based on the performance/robustness trade-
off of optimisation algorithms and guidelines are discussed for the successful application
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of optimization methods in the nonlinear model selection of engineering structures. Finally,
concluding remarks are provided in Section 5.

2. Methods and Problem Definition
2.1. Nonlinear Model Selection for Dynamic Equations of Engineering Structures

In this section, the most relevant parts of optimisation based model selection and
parameter estimation strategies, which are developed in [26], are reproduced for com-
pleteness. The optimisation problem considers the dynamics of mechanical systems with
nonlinear stiffness that can be described by the following differential equation:

Mq̈ + Cq̇ + Kq +
r

∑
i=1

ρT
i fnli (ρiq) = F, (1)

where q̈, q̇ and q are, respectively, the acceleration, velocity and displacement m × n
matrices, m is numbers of degrees of freedom and n is the size of the time series data; M, C
and K are the m×m matrices of mass, damping and stiffness, F is the m× n force matrix.
It is assumed that the structure is proportionally damped [29], and that it includes localised
nonlinearities. The total number of the localised nonlinear elements existing in the system
is r and ρi is the location vector of the ith nonlinear element. The function fnli represents a
generic nonlinear stiffness model for the ith nonlinear elements.

It is common for mechanical structures to be approximately linear at low vibration
levels, but exhibit nonlinear behavior as vibration levels increase. Using the data from the
low vibration levels, the characteristics of the underlying linear system, that is, natural
frequencies (ωn), damping ratios (ζn), and mode shapes (Φ) can be identified using stan-
dard modal testing techniques, for example, Polymax [30]. The matrix of mode shapes Φ
is then used to express the system dynamics in the terms of the linear modal coordinates
u(t). This is done by using the linear transformation q(t) = Φu(t) (and its time derivatives)
in Equation (1), and pre-multiplying the resulting expression by the transpose of Φ [4],
to obtain:

Msü + Csu̇ + Ksu +
r

∑
i=1

ΦTρT
i fnli (ρiΦu) = ΦT F, (2)

where Ms, Cs and Ks are the so-called modal mass, damping and stiffness matrices, re-
spectively. For proportionally damped structures, the modal matrices are conventionally
defined as follows [4]:

Ms = ΦT MΦ =

m1 0
. . .

0 mn


n×n

(3a)

Cs = ΦTCΦ =

2ζ1ω1m1 0
. . .

0 2ζnωnmn


n×n

(3b)

Ks = ΦTKΦ =

ω2
1 0

. . .
0 ω2

n


n×n

. (3c)

Diagonal modal matrices indicate decoupling of the equations of motions in the
linear part; however, coupling among modal equations remains and is due to the presence
of nonlinear terms in the summation in Equation (2). The matrix of modal mass Ms is
identity, considering mass normalised mode shapes [4]. Therefore, all of the parameters
in Equation (3) are known and the location of nonlinear elements is also assumed to be
known. Only the nonlinear model ( fnl) and its parameters are unknown and need to
be identified. For more information on the quantification of linear parameters and their



Vibration 2021, 4 651

uncertainties on the nonlinear identification, one can refer to [26]. To identify the nonlinear
model ( fnl), harmonic excitation is used as an input force (F) at high vibration level, which
can excite the structure near resonance frequencies where it is more likely that certain
nonlinear effects (e.g., opening and closing a joint) are activated. It should be noted that
the contribution of nonlinear forces to the modal responses of the system depends on the
mode shapes and frequency band of the excitation force. The modes with a negligible
contribution to the system response are normally truncated to reduce the computational
effort [13].

The method proposed by Safari and Londoño [26] is used for nonlinear system identifi-
cation of the structural system described above. The unknown parameters of the nonlinear
dynamic system described in Equation (2) can be estimated by setting up an optimisation
problem. Different optimization algorithms (introduced in Section 2.3) are used to minimise
the mean square error (MSE) given by Equation (4) as the cost function that measures the
discrepancy between observed and predicted data:

minimize : MSE =
1
n

n

∑
i=1

(y∗mmi
− ymmi )

2

subject to :
1
nc

nc

∑
j=1

1
n

n

∑
i=1

(y∗cm(j)i
− ycm(j)i

)2 < εc

y∗ =ΦT F− (Msü + Csu̇ + Ksu)

y =
r

∑
i=1

ΦTρT
i fnl(ρiΦu),

(4)

where n is the size of the time series data; y∗ and y are the observed and predicted data,
respectively. Subscripts mm and cm denote the vector of main and constraint modes and
nc denotes the number of constraint modes. The main mode is set as the mode whose
frequency of vibration lies nearby the excitation frequency used in the harmonic forcing.
The constraint modes are selected as modes other than the main mode with a significant
contribution to the system response. These modes can be selected by observing the modal
responses. εc is the tolerance of the nonlinear inequality constraint, which indicates how
accurate the estimated model should satisfy the responses of constraint modes. It should
be noted that the model fnl is parametrized by a set of p parameters gathered in the
parameter vector θ. It is helpful to look at this problem as a search for the optimal point
in a p-dimensional parameter space spanned by the parameter vector θ. For example, the
nonlinear model fnl(q) = p(1)|q|q + p(2)q3 for quadratic+cubic stiffness nonlinearity has
a 2-dimensional parameter space with parameter vector θ = [p(1), p(2)].

Acceleration, velocity and displacement response records and also the applied exci-
tation force data are required as input to the nonlinear identification methodology used
in this paper. All this information could be made available from the numerical solver
directly while considering the simulation environment. On the other hand, the data from
the experiment are usually acceleration data, which can be pre-processed using numerical
integration [16,31,32] to obtain displacement and velocity response data. In this work,
acceleration response is integrated numerically to calculate velocity and displacement.

Based on the minimisation problem defined above in Equation (4), nonlinear model
selection is carried out using two independent algorithms: forward–backward (FB) and
the exhaustive search (ES) nonlinear regression. Both algorithms use a predefined and
comprehensive library of nonlinear terms typically encountered in common engineering
applications. In general, the FB algorithm concerns the forward selection process of nonlin-
ear terms from the library by adding them to the structural model. Afterwards, a backward
elimination process is performed to eliminate terms with a negligible contribution and
to provide a parsimonious model. On the other hand, ES regression explores all possible
combinations of the candidate nonlinear terms existing in the library up to a specific com-
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plexity based on their number of terms. Figure 1 shows the steps of FB and ES algorithms
for nonlinear model selection.

Two stopping criteria are introduced in the process of model selection. Mainly, MSE is
considered when its value drops lower than the user-assigned threshold < ε1 (Equation (5a)).
Besides, when the change of two consecutive MSE values is less than ε2 (Equation (5b)),
the algorithm stops and delivers the nonlinear model. These rules are applied contrariwise
when eliminating the nonlinear terms using backward regression. Notice that the latter
criterion is determinant in the cases when, by adding more nonlinear terms, the model
prediction accuracy does not improve significantly and so the extra complexity is not worth
it; in such cases, adding an extra term is rejected.

MSE(s) < ε1 (5a)

∆MSE(s)

∆s
< ε2. (5b)

In Equation (5), s is considered the iteration counter for model selection. The main
steps of the nonlinear model selection algorithms are presented in Figure 1.

1. Minimise MSE in Equation (4) considering one nonlinear term from Table (2) added to the dynamic
model in Equation (2).

2. Repeat step 1 considering different nonlinear term from Table (2) added to the dynamic model in
Equation (2), until all terms are individually added.

3. Select the nonlinear term that produced the minimum MSE value and keep it as part of the dynamic
model in Equation (2).

4. If conditions in Equations (5a,b) are not met, go back to step 1 and add another nonlinear term; otherwise
deliver the nonlinear dynamic model.

5. Start with the nonlinear model transferred from latest step.
6. Create a new nonlinear model by eliminating one nonlinear term and minimise the MSE in Equation (4).
7. Repeat step 6 by eliminating a differ nonlinear term form the model available in step 5.
8. Once removing each nonlinear term have been examined, select the nonlinear dynamic model with the

lowest MSE.
9. If conditions in Equations (5a,b) are not met, go back to step 5 and remove another nonlinear term;

otherwise deliver the nonlinear dynamic model.

1. Create all the possible combinations of nonlinear terms available in Table (2) and group them in N
groups by number of terms. Set s = 1;

2. Minimise MSE in Equation (4) for all nonlinear models in group “s” and select the nonlinear dynamic
model with minimum MSE.

3. If s = N and conditions in Equations (5a,b) are not met, then an acceptable nonlinear dynamic model
can not be found with the terms in Table (2). End routine.

4. if s < N, and conditions in Equations (5a,b) are not met, set s = s + 1 and go back to step 2; otherwise
deliver the nonlinear dynamic model.

(a)

(b)

Figure 1. Nonlinear model selection algorithms (a) FB, (b) ES (adapted from [26]).

Once the nonlinear model is selected and parameter estimation is completed, the fitted
model can be validated by comparing numerical (or experimental) time series. For more
information about the steps of the nonlinear model selection algorithms, the interested
reader may refer to [26].

2.2. Initialising, Scaling and Bounding for the Parameters

For better chances of reaching a global minimum, it is important to carefully define
a scaled search space and initial values for the unknown parameters. For this purpose,
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parameters in Equation (2) are scaled linearly based on the available maximum dynamic
responses of the system. The parameters of the nonlinear force are scaled by the sum of
the maximum absolute linear forces flmax (inertia max(|Msü|), damping max(|Csu̇|) and
stiffness forces max(|Ksu|)) divided by the maximum quantity of selected nonlinear term.
For example, in the case that the nonlinear force is described by fnl(q) = p(1)|q|q + p(2)q3,
its parameters p(.) are scaled such that fnl(q) = g(1)S(1)|q|q + g(2)S(2)q3 where the scale
factors are S(1) = ( flmax/max(||q|q|)) and S(2) = ( flmax/max(|q3|)). In addition, the
maximum displacement is used to scale the dead space or gap distance parameter in the
dead-zone nonlinear model so that the scaled search space is bounded to [0, 1]. This
example is presented in Section 3. Bounding is also considered for the parameters of the
nonlinear model in the scaled space. It is set to [−5, 5] for the scaled parameters g(.) as the
nonlinear force is not expected to exceed more than that since the contribution of nonlinear
force to the total force response should be significant to affect the dynamics of the system.
The algorithms consider the initial values assigned by the user in the scaled space for the
first iteration of model selection. Overall, scaling, bounding and initial values should be
adjusted by the user based on the information from the physical system. Afterwards, the
estimated parameters in the first iteration are set as an initial condition for the next iteration
in the model selection process.

2.3. Assessed Optimisation Methods

The NSI method used in this study can be categorized as a supervised learning
method that assumes the availability of input and output data of a process. In supervised
learning, the objective is to minimize error measures between the input and output as in
the Equation (4) given a model. It is important that the model which maps the input to
output be a parsimonious model. The parsimonious model is the simplest model with
great explanatory predictive power that fits data with a minimum number of parameters.
Optimisation methods can be employed to solve the minimisation problem defined in
Equation (4) and select a parsimonious model. An ideal optimization method for selecting
a model and estimating its parameters would be able to find the global optimum in a short
computation time. The optimization methods for parameter estimation can be divided into
three classes: linear, nonlinear local, and nonlinear global optimization methods. Below,
we present a brief introduction of the optimisation algorithms applied for nonlinear model
selection in this study.

In cases where the nonlinear functions included in the library are linear-in-parameters,
linear least square methods or extended least squares (ELS) would be best suited [10,14].
For the model selection of linear-in-parameters problems, there are applicable methods
such as the Forward Regression Orthogonal Least Square (FROLS) method based on the
modified Gram–Schmidt algorithm [14,33] and the sparse regression method [19] based
on the Akaike information criterion (AIC) [34]. However, the above least square based
methods cannot be applied to nonlinear-in-parameters problems, which is the case in many
engineering applications where the nonlinearities observed are generally more complex
functions, instead nonlinear optimisation methods can be used.

Nonlinear optimisation problems can be solved using local gradient-based or global
meta-heuristic methods. In this paper, we consider several competitive optimisation meth-
ods and they are summarised in Table 1.

Table 1. Classification of optimisation methods considered in the benchmarking.

Global Methods Local Methods

Nelder–Mead Simplex (NMS) Quasi-Newton (QN)
Particle Swarm (PS) Sequential Quadratic Programming (SQP)

Particle Swarm (PS) + local method Active-Set (AS)
Multi-start (MS) + local method Interior Point (IP)

Trust-Region-Reflective (TRR)
Levenberg-marquardt (LM)
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Local gradient-based methods [35] are generally efficient when the function to be
minimized is continuous in their first derivatives. Besides, they will converge to the local
optimum in the basin of attraction where they are initialised. The first gradient-based
algorithm we examine is the Quasi-Newton (QN) method. Basically, QN can be used for
unconstrained problems; however, we considered constraints using an implementation of
penalty in the cost function. On the other hand, the constrained optimisation problems can
often be solved in fewer iterations than unconstrained problems. The reason is that, taking
into account the limits in the feasible area, the optimizer can make informed decisions
regarding the directions of search and step length. Three variations of gradient-based
nonlinear optimisation methods, which take into constraints, are implemented herein
including the active set (AS), sequential quadratic programming (SQP), and interior-point
(IP) methods [36]. These methods are questioned for model selection in terms of accuracy
and efficiency in this study.

Another gradient-based optimisation algorithm considered in this paper is the trust-
region-reflective algorithm [36]. The trust-region-reflective can handle constraints; however,
it requires the overdetermined system of equations, that is, the number of equations must
be greater than or equal to the number of updating parameters. For the time-domain
approach, it is unnecessary to be concerned about the insufficient data to form an over-
determined system of equations. The Levenberg–Marquardt algorithm is also employed
in this paper to solve the nonlinear model selection problem. It combines two methods:
the steepest descent method and the Gauss–Newton method. The Levenberg–Marquardt
method acts more like a steepest descent method when the parameters are far from their
optimal value, and acts more like the Gauss–Newton method when the parameters are
close to their optimal value [36]. Distance from the optimal value measured based on the
steepness of the gradient when using 2-norm in the cost function. In this way, the algorithm
proceeds faster to the local minimum in the basin of attraction.

The first global method employed in this paper is a direct search strategy called
Nelder–Mead Simplex (NMS) search, which is a gradient-free global method. It is based
on a regular simplex and works with shirking and expanding strategy in the search
space [36]. Particle swarm (PS) optimization [37,38] is also considered a well-known global
algorithm for parameter estimation in this study among the other stochastic methods
such as simulated annealing (SA) and genetic algorithms (GA). Stochastic (also known as
probabilistic) methods can only guarantee global optimality asymptotically in the best case.

There are hybrid methods, such as scatter search (SS) [39] and the so-called multi-start
(MS) [40] strategies, which solve the problem repeatedly with local methods initialized from
different and randomly selected initial points. PS optimisation method can be considered
in the hybrid category as well when combined with local methods. The MS strategy and
PS optimisation in combination with one of the local gradient-based methods are used as
hybrid methods for nonlinear model selection and parameter estimation in this work.

Firstly, the performance of local gradient-based methods and two global methods:
NMS and PS optimisations are evaluated. Secondly, we evaluate PS and MS in combination
with a local method that outperforms the other local gradient-based methods. All of the
algorithms used in this paper have been implemented in MATLAB software.

2.4. Parameters of Optimisation and Model Selection Algorithms

Parameters that control the behaviour of the optimisation algorithm are presented in
this section. Stopping criteria used for the model selection algorithms defined in Section 2.1
initially set to be ε1 = ε2 = 10−6 for FB and ES algorithms. When starting backward regres-
sion, the stopping criteria are modified as 5% higher than the MSE (Equation (5a)) value
and its step-wise differentiation (Equation (5b)) over the last iteration of forward regression.
The number of initial points in the MS method and swarm size in the PS optimisation is
recommended with the classical setting of 20–50 particles for small problems. The best
results are obtained when the swarm is composed of 70–500 particles while a number of
70–100 particles are reported as the safest choice [41]. Following the recommendations,
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when using the MS algorithm, the number of initial points is defined as 100 times the size
of the parameter vector. The initial points are randomly generated in the search space. For
the PS optimisation method, the swarm size is set as 20 times the size of the parameter
vector, and the number of iterations is set as 200 times the size of the parameter vector.

2.5. Comparison of Optimisation Methods

A number of evaluation criteria have been used in the literature to compare the
performance of optimisation methods [42]. Upon the consideration of the model selection
problem in this study, we adopted a workflow consisting of several steps, which led to
the proposed evaluation criteria based on the efficiency of the optimisation algorithm and
on the accuracy of the optimised nonlinear model in predicting the system response. The
criteria are interpretable quantities, comparable across models and methods, and account
for computation time and objective function value.

The considered criteria in terms of rate of convergence are:

• CPU time
• Number of function evaluations (Equation (4))
• Number of iterations

and in terms of accuracy are:

• Number of the function added or eliminated
• Whether the functions selected are the true nonlinear function
• Complexity by number of terms overall
• How accurate are the prediction of the nonlinear model: error (MSE), dispersion of

error (standard deviation of errors)

3. Benchmark Problems

We consider three example problems varying in complexity from discrete lumped
mass to continuum systems with localized stiffness nonlinearities. Figure 2 shows the
discrete lumped mass examples including single-degree-of-freedom (SDOF) and 3DOF
nonlinear systems with one nonlinear element. The parameters of the underlying linear
system named mass, damping ratio and stiffness for the SDOF system in Figure 2a are
considered to be: M = 0.6874 kg; C = 1.35 N.sec/m and K = 3.3× 104 N/m ( fn = 34.73 Hz,
ζ = 0.0045). The underlying linear system for the 3DOF systems presented in Figure 2b are:

M = 0.68

1 0 0
0 1 0
0 0 1

kg,

K = 16386

 2 −1 0
−1 2 −1
0 −1 2

N/m

(6)

Damping matrix C is computed based on the classical Rayleigh damping method [29]
using mass proportional coefficient α = 2.1× 10−5 and stiffness proportional coefficient
β = 0.76 where the damping ratio is ζ = 0.0045. The location of nonlinear element for the
problem in Figure 2b is between the middle mass and ground. The location of nonlinear
elements is purposely selected for the 3DOF system such that the effect of nonlinearity
is dominant in the vibration modes 1 and 3. The nonlinear element does not affect the
response of the second mode, which is due to the fact that the middle mass is located in the
node point of the second mode. Node points correspond to the points in the mode shape
where the relative displacement is zero. Therefore, the information in terms of mode 1 and
3 will be adequate for the nonlinear identification and model selection process.
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Figure 2. Discrete system benchmark problems (a) SDOF, (b) MDOF with one nonlinear element.

The third example is the cantilever beam problem shown in Figure 3a that has been
studied widely in the nonlinear system identification literature [31,43,44]. In this example,
the cantilever beam is grounded by a nonlinear stiffness spring near the beam’s free end.
The beam is made of steel (with the modulus of elasticity E = 200× 109 N/m2, and density
D = 7800 N/m3), is uniform and homogeneous, and has a length of 1.311 m, a width of
0.0446 m, and a thickness of 0.008 m. The damping matrix is also computed based on the
classical Rayleigh damping method using mass proportional coefficient α = 0.21, stiffness
proportional coefficient β = 0.25, where the damping ratio is ζ = 0.0045. The beam is
discretised into 100 Euler–Bernoulli beam elements, where each element consists of two
nodes, each with a translational and rotational degree of freedom (DOF). Ten first mode
shapes and the Fourier amplitude spectrum of the acceleration response at the tip of the
beam under impulse force are shown in Figure 3b,c, respectively. It should be noted that
the Fourier amplitude spectrum in Figure 3c shows the characteristics of the underlying
linear system without the nonlinear stiffness element.

(b)

(c)

Figure 3. Cantilever beam with a nonlinear attachment benchmark (a) configuration, (b) the first ten
normalized mode shape functions φn(x/L), (c) Amplitude spectrum of acceleration response at the
tip of the beam.

The type of nonlinearity considered in all of the benchmark problems is in the form of
dead-zone (backlash) + polynomials, which is typically encountered in many engineering
applications, especially airplane wings as a free play nonlinearity [27,28]. The parameters
of the nonlinear element are set to be:
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fnl =


−9.05× 105|y|y + 1.05× 109(y)3 + 1000(y)
if |q| ≥ d/2;
0
if |q| < d/2,

(7)

where y = q− sign(q)(d)/2, d is the clearance and q is the physical displacement of the
system according to Equation (1). The clearance considered in these examples is 0.002 m, so
the nonlinear element activates when the response amplitude is higher than this distance.

The library of nonlinear terms used for model selection in this paper is presented in
Table 2. We note that, when the dead-zone element is selected in one of the model selection
iterations, the other nonlinear terms in the library are automatically updated to include the
dead-zone in a piece-wise function as shown in Equation (7).

Table 2. Nonlinear terms considered in the library.

No. Nonlinear Term fnl(q) No. Nonlinear Term fnl(q)
1 |q|q 7 sign(q)

√
|q|

2 q3 8 q
√
|q|

3 |q|q3 9 |q|q
√
|q|

4 q5 10 q3
√
|q|

5 |q|q5 11 Ff

(
2

(1+e(−σgq))
− 1
)
+ K f q

6 q7 12 Kd

(
q− sign(q) d

2

)
if |q| ≥ d/2

0 if |q| < d/2

In Table 2, Ff is the step force in (N), K f is the hardening coefficient in (N/m) and Kd

is the stiffness after contact in (N/m). We note that the constant value σg = 107 is used
here to define the transition between the two regimes of the function (term 11) in Table 2.

To generate the vibrational data, nonlinear differential equations of motions are
numerically solved using the Newmark-β method. The transient response of the structure
when it is vibrated using a harmonic excitation F = F0 sin(ωt) is computed and used for
nonlinear model identification. The amplitude of harmonic excitation is F0 = 5 N and ω
equals the natural frequency of the underlying linear structure. The sampling frequency
is Fs = 4480 Hz for all cases. The transient response is used as it contains information
about all of the underlying fundamental features of a dynamical system, including those
properties that are susceptible to change as a function of the vibration amplitude.

4. Results and Discussion

We assess the performance of the optimization methods listed in Table 1, when solving
the three benchmark problems presented in Section 3. For each problem, local gradient-
based and global optimisation methods are examined. The results are reported based on
benchmark problems, model selection algorithms, that is, Forward–Backward (FB) and
Exhaustive Search (ES). For reference, the computations were carried out using a standard
desktop computer (Intel(R) Core(TM) i5-8500 CPU @ 3.00 GHz processor with 16 GB RAM).

The convergence curves for all optimization methods and the three benchmark prob-
lems using the FB algorithm are presented in Figure 4. Initially, nonlinear terms are added
based on the forward approach, and then backward regression starts to eliminate the
terms with less contribution to the system responses. As expected, the optimisation results
indicate that the performance of the optimisation methods varies substantially among the
benchmark problems. It can be seen that in almost all of the optimisation methods, between
six to ten terms are initially selected by forward regression.

Some general behaviour can be observed. For instance, the decrease in the MSE
values using QN, AS, TTR and PS optimisation methods are not substantial by adding
terms and they do not reach the predefined stopping criteria sometimes, whereas, other
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algorithms reach the predefined stopping criteria for MSE by adding more terms. It can
also be observed that MSE values in the initial steps of selection start from a very high
value for TRR and LM and there is a sudden drop after selecting more terms, while the
results of other algorithms show a smoother convergence behaviour. This can be attributed
to the fact that TRR and LM try to find the correct model, and when the selected model is
not yet sufficient, the minimisation does not proceed further until the next term is added to
the model.

Furthermore, an interesting finding is observed in Figure 4 by comparing the results for
the three different benchmark problems. Studying the convergence of the LM optimisation
method as an example, it can be seen that forward regression stops after ten terms selected
for the SDOF system. This is nine terms for the 3DOF system and six terms for the Cbeam
system. It indicates that providing the information of coupled nonlinear modes to constrain
the optimisation algorithm is helpful in selecting the correct terms in fewer iterations of
the model selection algorithms.

QN

SQP

IP

AS

TTR

LM

NMS

PS

Figure 4. Model selection convergence curves for FB algorithm for the cases: (a) SDOF, (b) 3DOF, (c) Cbeam systems.

For the quantitative evaluation, we considered CPU time as a criterion for computa-
tional effort along with the number of the cost function calls and iterations in Figure 5. In
general, it can be seen that the computational effort is much lighter for the FB algorithm
in comparison with ES. In addition, it is obvious that the function calls and a number of
iterations are higher for ES, as it needs to cover many combinations in each iteration of the
model selection algorithms. It should be noted that the number of iterations counted here
is the sum of the iterations of the optimisation algorithm when estimating the parameters
of each combination. Overall, the computational effort for the PS optimisation method is
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higher than others and LM outperforms all other algorithms in terms of efficiency with
fast convergence.

In the following, we address the question of what is the best combination of optimi-
sation method and model selection algorithm that delivers the most accurate nonlinear
model. Figure 6 shows the total number of terms added to and eliminated from the
nonlinear model and a final number of nonlinear terms delivered when using different
optimisation methods and model selection algorithms. From Figure 6a,c,e, it can be ob-
served that the total number of added and eliminated nonlinear terms by the FB algorithm
is dropped substantially for the 3DOF and Cbeam problems in comparison with the SDOF
problem. It is due to the fact that the data related to higher modes are fed into the con-
straint function of the optimisation algorithm when identifying the 3DOF and Cbeam
problems. This observation suggests that constraining the optimisation using the data from
the coupled modes improves the performance of model selection algorithms, especially the
FB algorithm. The ES algorithm is less sensitive to the input data from different modes.
However, observations from Figure 6e indicate that more than three terms were added to
the nonlinear model of Cbeam structure using the ES algorithm. This can be attributed to
the over-constraining of the optimisation algorithm as the data of nine modes are used to
constrain the optimisation algorithm. This effect is explained more later in this section. It
should also be mentioned that the total number of nonlinear term expansions in the ES
algorithm is limited to five terms.

Figure 5. Efficiency criteria of optimisation methods for nonlinear model selection (a) CPU time, (b)
function calls, (c) number of iterations; (*: the number of vertical axes should be multiplied by ten).
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There is no clear difference among various optimisers in terms of a total number of
added and eliminated nonlinear models. Figure 6b,d,f shows the final number of terms
delivered by each model selection algorithm, and the red lines present the true number of
the terms, which is three terms defined in Section 3. It can be seen that forward regression
is not able to deliver the correct number of terms and the results demonstrate a comparable
performance among the optimisers. Only QN and LM optimisers were able to achieve the
correct number of terms (three terms) when using the FB algorithm and the others have
almost delivered a comparable final number of terms. The number of delivered terms using
the ES algorithm is correct for most of the cases and there are just a few optimisers that
selected more terms in the case of Cbeam, which is due to the high number of modes used
to constrain the optimisation method. Therefore, this performance evaluation suggests the
use of LM for model selection.

Figure 6. Evaluation of the number of terms processed by model selection algorithm using different
optimisation methods (a) SDOF terms added and removed, (b) SDOF number of terms delivered,
(c) 3DOF terms added and removed, (d) 3DOF number of terms delivered, (e) Cbeam terms added
and removed, (f) Cbeam number of terms delivered; (The red dashed lines present the true number
of the terms).

Figure 7 shows the methods that successfully solved the benchmark problems. The
color tiles indicate that the search method delivered the true nonlinear model and parame-
ters; white tiles indicate methods that were not able to deliver the true model as defined in
Section 3. It can be seen that, for the BF algorithm, only the LM optimiser was successful at
delivering the true model for all of the benchmark problems. Most of the optimisers are
successful to deliver the true nonlinear model using the ES algorithm.
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Figure 7. Delivering the true nonlinear model for each benchmark. Color tiles: successful; white tiles:
unsuccessful at delivering the true model.

Figure 8 shows the MSE values and standard deviation (SD) of error for the delivered
model considering all of the employed optimisation methods. The MSE value is computed
based on the error of estimated and true nonlinear force using Equation (4). It can be seen
that the MSE and standard deviation of error are low for TRR and LM in comparison with
the other methods. As a result, LM demonstrates high performance in terms of estimating
the true parameters correctly. The comparison of all methods reveals that LM possesses the
best overall efficiency and accuracy on the considered benchmark problems and settings.

Figure 8. Accuracy of the delivered model using different optimisation methods in predicting the
response (a) MSE of nonlinear force; (b) standard deviation (SD) of error.

Here, we provide some insight into the nonlinear model selection of a cantilever
beam. The responses of the ten first modes are considered in the model selection process
as described in Section 2.1. The first mode is considered in the optimization process
as the main mode and the other nine first modes are considered as constraint modes
(Equation (4)). The modal nonlinear force of four first mode is shown in Figure 9. It can be
seen that the contribution of higher modes in the response due to nonlinear modal coupling
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is low. Just considering a limited number of important modes will be enough to help the
optimisation algorithm in working out the parameters and the best nonlinear model. In
other words, modes with negligible contributions might have adverse effects on the model
selection process as those data have relatively less useful information if compared with
other modes, but increase computational effort.

(b)

True

Estimated

×

True

Estimated

(c)
×

True

Estimated

×
(d)

Figure 9. Nonlinear modal force-displacement responses fitted based on LM optimisation algorithm
(a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4.

Performance of Hybrid Optimisation Methods

Based on the study above, we further examined the performance of MS-LM and hybrid
(PS-LM) optimisation methods (Table 1) for nonlinear model selection. The SDOF system
used for this assessment and the results are reported in Table 3. Comparable accuracy
is expected for both multi-start and hybrid approaches since LM alone provides a good
solution for this specific example. Some insight can also be initiated by the nature of
these two different approaches. As can be seen, MS-LM is successful in finding the correct
nonlinear terms with high accuracy and PS-LM is failed to find the correct terms based on
the FB algorithm. However, the selected model by PS-LM has passed the stopping criteria
to be an acceptable model.

The difference between the results of MS-LM and PS-LM can be attributed to the way
they treat the optimisation problem. First of all, the optimisation problem is defined as
described in Section 2.1, where the nonlinear parameters are scaled and bounded. The MS-
LM method starts the LM gradient based method from different randomly generated initial
points in the search space. This way, MS-LM ends up in a different basin of attractions and
finally finds the minimum of all local searches. The reported minimum value is considered
as a global minimum. On the other hand, the PS optimisation method starts from randomly
generated initial points and the generated swarm moves toward the minimum in the
search space. When the swarm reaches a minimum and the PS optimisation method stops
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proceeding, it passed the minimum point information to the LM method. Afterwards,
the LM method starts searching from the minimum initial point provided by the PS
optimisation method. It should be noted that the basin of attraction that is found by the
PS optimisation method is not guaranteed to include the global minimum of the search
space for an n-dimensional cost function. Therefore, the LM method might not find the
global minimum in the basin of attraction prescribed by the PS optimisation method. As
a result, hybrid methods can potentially outperform the efficiency (convergence rate) of
the multi-start method while keeping their success rate. However, the results reported
here show that the MS method reaches a more accurate nonlinear model selection and
parameter estimation.

Table 3. Parameters assigned for nonlinearities in the example SDOF systems.

Criteria
SDOF-FB SDOF-ES

MS-LM PS-LM MS-LM PS-LM

CPU time (sec) 6652 5168 2027 5248
MSE 5× 10−13 4× 10−7 6× 10−13 4× 10−8

Success Yes No Yes Yes

5. Conclusions

This paper presents a comparative evaluation of ten optimization methods for non-
linear model selection and parameter estimation of nonlinear dynamic systems. Three
problems of different levels of complexities, each considering effectively the contribution
of one, two, and ten modal responses, have been examined. The nonlinear model selection
has been carried out using two different data-driven algorithms, that is, forward–backward
and exhaustive search algorithms. They have been used to select the best possible nonlinear
model from a predefined library of nonlinear terms and estimate its parameters. The time
domain vibration response data of the system were directly used as an input to the model
selection algorithms. A multi-criteria workflow was presented to compare different local
and global optimisation methods based on their performance in terms of efficiency and
accuracy. The properties of the underlying linear system and maxima of the system’s
dynamic responses were used to scale the search space of the defined optimisation problem.
The parameters of nonlinear models were also bounded in the scaled space to reflect physi-
cally meaningful behaviour. From a practical point of view, the FB algorithm is efficient in
terms of computational time and accuracy for structures with many nonlinear elements
and terms. The ES algorithm is more applicable for structures with limited nonlinear
elements as it could generate a huge number of combinations depending on the size of the
predefined library of nonlinear terms. Initially, gradient-based optimisation methods, along
with NMS and PSO algorithms, were evaluated. The results show that gradient-based
methods are efficient and accurate for nonlinear model selection problems. In particular,
the LM optimisation method outperforms all the other methods considered in this study
when finding the best model for the nonlinearity with a low computational effort. Based
on the results from the initial evaluation, the nonlinear model selection was performed
using the MS-LM and PSO-LM methods. Both of these methods were successful in fitting a
nonlinear model with high accuracy and a comparable run time. However, the MS-LM
outperforms the hybrid PSO-LM in finding a true predefined model. This is attributed to
the nature of MS and PSO methods. MS starts from different randomly generated initial
points in the search space and considers an equal chance for all of them, whereas PSO finds
a basin of attraction with a local minimum and initiates the local gradient-based method,
that is, LM within that basin. Therefore, these two hybrid methods are recommended to be
used in practice for the nonlinear model identification of engineering structures.

It is noteworthy that multiple time series (e.g., data from several vibration tests)
will need to be used in order to quantify the uncertainty of the nonlinear identification
framework studied in this paper. This will provide evidence of how reliable the nonlinear
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model identification method is. This challenging topic is currently under study but remains
unsolved. Similarly, we note that the data-driven nonlinear system identification strategy
used here can be further improved, for instance, by using statistical tools to assess the
model parsimony; nonetheless, as all optimisation algorithms presented here solved exactly
the same optimisation problem (with the respective decision rules and constrains), the
results presented above in terms of differences in the optimisation algorithms performance
is unlikely to change, that is, the final solution (model selected) might be different but the
comparative performance of the optimisation algorithms will remain essentially the same.
Furthermore, the model selection algorithms could be vastly sped up by taking advantage
of multi-core processors and parallel computing.
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