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Abstract: Regenerative suspension systems, unlike traditional passive, semi-active or active setups,
are able to convert the traditionally wasted kinetic energy into electricity. This paper discusses flexible
multi-objective control design strategies based on LMI formulations to suitably trade-off between
the usual road handling and ride comfort performance and the amount of energy to be harvested.
An electromechanical regenerative vehicle suspension system is considered where the shock absorber of
each wheel is replaced by a linear electrical motor which is actively governed. It is shown by simulations
that multivariable centralized control laws designed on the basis of a full-car model of the suspension
system are able to achieve larger amount of harvested energy under identical ride comfort prescriptions
with respect to scalar decentralized control strategies, designed on the basis of a single quarter-car model
and implemented independently on each wheel in a decentralized way. Improvements up to 40% and
20% of harvested energy are respectively achievable by the centralized multivariable H2 and H∞ optimal
controllers under the same test conditions.

Keywords: regenerative shock absorbers; energy harvesting; active control of automobile suspension
systems

1. Introduction

Research on regenerative suspension systems has gained increasing interest in recent years for
the potential energy savings achievable in implementing active control strategies that ensure enhanced
dynamic performance and the ability to convert wasted kinetic energy in electrical power for both energy
harvesting and self-powered implementation. The state-of-the-art in the field has been recently reviewed
in [1,2].

In a typical regenerative setup the viscous shock absorber is usually replaced by an electrical actuator
that can be regulated to mimic a standard shock absorber (virtual shock absorber) or to provide a more
general dynamical behavior in order to better trade-off between the conflicting requirements of harvesting
large amounts of energy and ensuring good road handling and ride comfort performance.

In [3] a multiobjective H∞ control design methodology has been recently proposed for actively
regulating regenerative suspension systems and it was shown to be much more flexible in trading-off
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among conflicting requirements and capable to dramatically improve the amount of harvested energy
with respect to PI controllers implementing virtual shock absorbers where the only design knob is the
dumping parameter.

The specificity of the control strategy proposed in [3], there referred to as Maximum Induced Power
Control (MIPC) strategy, is that it may directly consider the amount of energy to be harvested amongst
its objectives. This is done by imposing a model-reference prescription in closed-loop to the kinetic
energy coming from the road that makes it arbitrarily large and sign-defined. The rationale is that,
in the average, the amount of harvested electrical energy cannot be greater than the energy drained into
the system from the road unevenness. Thus, maximizing the energy induced by the road and making it
sign-defined may be a more effective control design objective in order to increase the amount of harvestable
energy. Simulations and comparisons undertaken in [3] have confirmed the flexibility and the potentiality
of the MIPC approach. A gain-scheduling version based on a LPV system formulation can be found
in [4]. Similar conclusions on the superiority of the MIPC approach in terms of energy requirements for
implementing the control strategy in comparison with standard passive control strategies were also drawn
out in [5], where experimental comparisons of several control laws were undertaken on a lab regenerative
shock absorber prototype.

One of the limitations of the MIPC approach described in [3] is that it is based on a quarter-car
model and is limited to regulate the behavior of the regenerative suspension system of a single wheel.
This approach obviously produces sub-optimal results because the four MIPC control laws are individually
applied to the four wheels of the vehicles in a decentralized way, and the pitch and roll motions have not
directly been taken into account in the design phase. As a consequence, each regulated suspension has the
same dynamic behavior and provides the same amount of energy. Then, the total amount is simply given
by four times the energy harvested by a single wheel. This approach, although suboptimal, is anyway of
interest here because it will be used as a baseline solution for comparison purposes.

The main contribution of this paper is to present complete multivariable centralized MIPC approach
is presented for the four wheels of a vehicle based on a full-car model of the regenerative suspension
system. Both multi-objective H∞ and H2 state-feedback control strategies are presented based on standard
LMI control design formulations. Dynamical output feedback control syntheses are also possible but the
details are not presented here for space limitation.

A final example is provided where comparisons among the decentralized state-feedback H∞ solution
of [3], and the centralized state-feedback H∞ and H2 solutions presented here are reported. From these
simulations, as expected, it clearly results that the multivariable centralized H∞ and H2 MIPC approaches
proposed here overcome the decentralized implementation because of the better system description,
the coordinated implementation of the four controllers and the extra degrees of freedom available for the
optimization. Moreover, it is also found that the centralized H2 approach allows one to harvest larger
amount of energy for the same ride comfort requirement than the H∞ MIPC approaches.

2. The Model and the Overall Control Architecture

2.1. The Full-Car Regenerative Suspension Model

The full-car regenerative suspension schematic under consideration is depicted in Figure 1. In such
a system, the passive viscous dampers, usually present in any passive suspension systems for all four
wheels, are here replaced by electromechanical actuators that generate forces fi(t), i = 1, . . . , 4 so as to
suitably dampen the vertical, pitch and roll motions of the car body.

The 7DOF mathematical model proposed in [6] is used here to describe the pitch θs and roll ϕs

rotational motions (with Ip and Is the corresponding moments of inertia) and the vertical motion of the
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sprung mass ms along its center of mass zs. They consist of the following coupled linear differential
equations (the dependance on the time is omitted for simplicity)

Ir ϕ̈s = − k f t f (zs1 − zu1) + k f t f (zs2 − zu2)− krtr(zs3 − zu3) + krtr(zs4 − zu4)

+ t f f1 − t f f2 + tr f3 − tr f4
(1)

Ip θ̈s = − k f a(zs1 − zu1)− k f a(zs2 − zu2) + krb(zs3 − zu3) + krb(zs4 − zu4)

+ a f1 + a f2 − b f3 − b f4
(2)

ms z̈s = − k f (zs1 − zu1)− k f (zs2 − zu2)− kr(zs3 − zu3)− kr(zs4 − zu4) + f1 + f2 + f3 + f4 (3)

where zui, i = 1, . . . , 4 denote the vertical motions of the four unsprung masses described by

mu1z̈u1 = k f (zs1 − zu1)− kt f (zu1 − zr1)− f1 (4)

mu2z̈u2 = k f (zs2 − zu2)− kt f (zu2 − zr2)− f2 (5)

mu3z̈u3 = kr(zs3 − zu3)− ktr(zu3 − zr3)− f3 (6)

mu4z̈u4 = kr(zs4 − zu4)− ktr(zu4 − zr4)− f4 (7)
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Figure 1. Full-car schematic for a regenerative setup.

In the above equations mu1 and mu2 represent the front wheels whereas mu3 and mu4 the rear ones,
whose coupling with the road is simply modeled by the elastic stiffnesses kt f and ktr (for the front and rear
couples of tires respectively). Moreover, k f and kr are the front and rear suspension stiffnesses respectively.
Notice in particular that zsi, i = 1, . . . , 4 represent the vertical motions of the car body corners that, under a
usual small pitch and roll angles assumption, are related to ϕs, θs and zs via the following linear expressions

zs1 = t f ϕs + aθs + zs żs1 = t f ϕ̇s + aθ̇s + żs (8)

zs2 = −t f ϕs + aθs + zs żs2 = −t f ϕ̇s + aθ̇s + żs (9)
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zs3 = tr ϕs − bθs + zs żs3 = tr ϕ̇s − bθ̇s + żs (10)

zs4 = −tr ϕs − bθs + zs żs4 = −tr ϕ̇s − bθ̇s + żs (11)

Finally, the parameters a, b, t f and tr characterize geometrically the car body, zri, i = 1, . . . , 4 denote
the road profiles, zsi − zui, i = 1, . . . , 4 the suspension strokes and zui − zir, i = 1, . . . , 4 the tire deflections.

2.2. Power Flow Analysis

In order to arrive to consistent guidelines on how to maximize the harvested electrical power, a power
flows analysis of the regenerative suspension system is accomplished in this subsection. To this end,
with reference to Figure 1, one notes that the only exogenous signals that provide power to the regenerative
suspension system are the four road profiles zri and no dissipative units, like viscous shock absorbers
are present.

Then, by writing down the total energy E = K + V of the system, as the sum of the kinetic energy K
of the masses and the potential energy V of the springs, one has

K =
1
2

Ir ϕ̇2
s +

1
2

Ip θ̇2
s +

1
2

ms ż2
s +

1
2

mu f (ż2
u1 + ż2

u2) +
1
2

mur(ż2
u3 + ż2

u4) (12)

V =
1
2

k f [(zs1 − zu1)
2 + (zs2 − zu2)

2] +
1
2

kr[(zs3 − zu3)
2 + (zs4 − zu4)

2]

+
1
2

kt f [(zu1 − zr1)
2 + (zu2 − zr2)

2] +
1
2

ktr[(zu3 − zr3)
2 + (zu4 − zr4)

2]

(13)

Because power cannot be dissipated within the suspension system of Figure 1, it can only be exchanged
with the road via its irregularities zri and with the electromagnetic devices via the exchanged forces fi.
In particular, such an exchanged power can be positive or negative. In fact, the road can introduce kinetic
energy via the irregularities and absorbs part of the potential energy of the suspension during their
discharging. On the other hand, the electromagnetic devices can act either as motors or generators by
introducing or absorbing energy from the system.

Then, it makes sense to consider the power exchanged with the road Ps and the mechanical power
exchanged with the actuators Pm and express the total instantaneous power Ė in terms of the above
two terms

Ė(t) = Ps(t) + Pm(t) (14)

By exploiting (1)–(7) and after direct mathematical manipulations one arrives to

Ė = − kt f [(zu1 − zr1)żr1 + (zu2 − zr2)żr2]− ktr[(zu3 − zr3)żr3 + (zu4 − zr4)żr4]

+ f1(żs1 − żu1) + f2(żs2 − żu2) + f3(żs3 − żu3) + f4(żs4 − żu4)
(15)

and, on the basis of the above considerations, one can recognize that the power contribution from the road
profiles and the actuators are clearly indetifiable

Ps(t) = −kt f

2

∑
j=1

(zuj − zrj)żrj − ktr

4

∑
j=3

(zuj − zrj)żrj (16)

Pm(t) =
4

∑
i=1

fi(żsi − żui) (17)
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As a result, as far as the exchanged power flows are concerned, the system can be considered as a
series of two-port subsystems, as depicted in Figure 2, where the power Ps exchanged with the road acts at
one terminal of the first subsystem, the mechanical power Pm is then exchanged with the electromechanical
actuators that provide/request the electrical power Pe. In all terminals of the two-port systems we adopt
the convention that the power is entering into the system when positive.

Full-Car

System
Actuators

𝑃𝑠( ሶ𝑧𝑟𝑖 , 𝑧𝑢𝑖 − 𝑧𝑟𝑖) 𝑃𝑚(𝑓𝑖 , ሶ𝑧𝑠𝑖 − ሶ𝑧𝑢𝑖) 𝑃𝑒(𝑣𝑖 , 𝑖𝑖)

Figure 2. Power flows with the corresponding dual variables.

The above expressions for Pm and Ps generalized the ones achieved in [3] for a single regenerative
suspension system derived from a quarter-car model and the same considerations can be drawn out here,
briefly recalled hereafter for the reader convenience:

1. Ideally one would like to dispose of a control action capable to make both quantities large and sign
defined for all time:

Pm(t) << 0, Ps(t) >> 0 and Pm(t) = −Ps(t), (18)

If this were possible it would imply Ė(t) = 0, which would ensure that the system has a perfect
transfer of energy from the road to the electrical batteries.

2. Because fi(t) are directly manipulable variables, it is quite easy to make Pm(t) < 0 sign-defined.
However, ∫ T

0
|Pm(t)|dt ≤

∫ T

0
|Ps(t)|dt (19)

expresses an obvious constraint on the energy that can be harvested in any interval [0, T] of interest,
which cannot be larger than the energy provided by the road. Thus, it might make nonsense to try to
maximize Pm by suitably design the control actions if Ps were small without disposing of any control
degree of freedom to increase its amount any further.

3. Observe first that Ps is zero when the road profiles are all completely flat (żri = 0, i = 1, . . . , 4) or
when the tire deflections are all zero, (zui(t)− zri(t) = 0), i = 1, . . . , 4. Thus, high levels of energy
harvesting on flat roads are incompatible with good road handling performance. From a control
perspective, observe also that Ps depends on the regulated variables zui. Thus, if Ps were made
sign-defined and as large as possible, viz. Ps >> 0 via a suitable control law this would increase the
harvested energy regardless of the behavior (the sign) of Pm. Roughly speaking, making Ps > 0 it
would provide a barrier for the internal energy of the system from flowing back towards the road.

The above considerations were at the basis of the Maximum Induced Power Control (MIPC)
decentralized design approach of [3] that will be extended here to the multivariable centralized case.
It is expected that the more degrees of freedom arising in driving all four electromagnetic actuators by a
single multivariable centralized controllers make easier the achievement of the above control requirements
with respect to the use of four decentralized and no coordinated control actions.
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2.3. Electromechanical Actuator Model

In this paper we consider four identical linear permanent-magnets electromechanical devices depicted
in Figure 3 as a force actuators (LPMA) for the four wheels. Simple linear models of the generic LPMA
actuator are given by

vai(t) = Raiii(t) + Lai
dii(t)

dt
+ Ki żi(t) (20)

żi(t) = żsi(t)− żui(t) (21)

fi(t) = Kiii(t) (22)

for i = 1, . . . , 4 where fi are the damping forces, ii the armature currents, vai the armature voltages and
żi the speed of the suspension stroke. The parameters Rai and Lai represent respectively the armature
resistances and inductances while Ki are the force constants. The terms Ki żi(t) represent the back EMF
voltages whereas the forces are proportional to the corresponding armature currents. The electrical power
Pei(t) = ii(t)vai(t) results to be given by

Pei(t) = Rai2i (t) + La
dii(t)

dt
ii(t) + Ki żi(t)ii(t), (23)

where: Pdi = Raii2i (t) represents the power dissipated by the Joule effect, Pci(t) = Lai
dii(t)

dt
ii(t) the

electrical power stored in the inductance Lai and Pmi(t) = Ki żi(t)ii(t) the mechanical power acting on the
i-th actuators. For a more accurate analysis of the dynamics of electromechanical devices well suited for
energy harvesting purposes and their models see e.g., [7], where a discussion of the validity of assuming
constant the coupling coefficients between the electrical and mechanical parts of the device is reported.

Figure 3. Permanent magnets linear electrical actuator.

Thus, Equation (23) suggests to work with electrical machines characterized by high voltages and low
currents, in order to have small Joule losses and, in turn, a good efficiency. This requires actuators with
large values of force constants Ki and small values for Rai. Other losses are relevant only for high currents
and are here neglected for simplicity.

2.4. The Overall Control Architecture

Figure 4 depicts the overall control architecture where two nested control loops are present. The inner
one is governed by the Current Controller (CC) while the outer controller is termed Regenerative Vibration
Controller (RVC) and it is in charge to provide the currents set-points to the inner CC controller.
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The CC controller aims at regulating the armature current loops in the bank of four bidirectional
DC-DC converters which establish the bidirectional electrical power flows between the battery and the
four actuators. Its design is not considered here while we focus on the design of the RVC controller which
is expected to provide the usual control performance of standard active suspension systems plus the ability
to harvest as much energy as possibile. Among many, for brevity, only optimal H∞ and H2 centralized and
decentralized static state-feedback control actions will be considered for the design of the RVC controller.
Dynamic output feedback approaches will be considered in a future work.

Regenerative
Vibration

Controller (MIPC)

Permanent
Magnet DC
Machines

Full-Car
System

Sensors

DC/DC
converters

Currents
Controllers 

(CC)

Batteries

Road profiles

signals for switches

currents feedbacks

measuramentscurrents commands
u y

Figure 4. Overall control architecture.

3. RVC Control Design Specifications and LMI Based Designs

3.1. Ride Comfort and Road Handling Control Specifications

Traditional control specifications in classical passive and active suspension systems mainly consists
of finding a suitable trade-off between the ride comfort and road handling requirements, see e.g., [8,9].

Ride comfort is related to the passengers perception of vibrations at various frequency (0.5–80 Hz)
that greatly depends on the capability of the suspension systems to attenuate the perceived acceleration
levels as much as possibile, especially at those frequencies more dangerous for the human body (0.5–5 Hz).
Studies have shown that ride comfort may be directly related to sprung mass vertical accelerations z̈s

and/or z̈si.
In order to avoid subjectivity, the ISO-2631 standard (see [10]) defines an index, referred to as the Ride

Index (RI), that quantifies the human exposure to vibration by weighting the perceived acceleration by a
human sensitivity curve defined by a band-pass filter:

Ride Index =
√

a2
wx + a2

wy + a2
wz (24)

ai,RMS =

√
1
T

∫ T

0
a2

wi(t)dt i = x, y, z (25)

where awi is the acceleration along the i-th axis weighed by the following filter:

Wk(s) =
81.89s3 + 796.6s22 + 1937s + 0.14

s4 + 80s3 + 2264s2 + 7172s + 21196
(26)

Lower values of the ride index imply better vibrations attenuation.
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Road handling is another important objective, related to vehicle and passengers’ safety. It becomes
extremely important in sportive/racing cars. It can usually be represented by the tire deflection zu − zr

that has to be minimized in some norm.

3.2. Energy Harvesting Control Specification

A further requirement of a regenerative suspension system is that to harvest energy from the road
unevenness. Based on the above considerations, this requirements is here optimized by making Ps

sign-defined and as larger as possible.
This condition could be achieved by trying to enforce the following conditions on the tire deflections

in closed-loop

zui(t)− zri(t) = −αżri(t), i = 1, 2, 3, 4 (27)

where α > 0 is a free constant design parameter. If all such conditions were satisfied for all time instants,
the power Ps would result

Ps(t) = −
[

kt f

2

∑
j=1

(zuj − zrj)żrj + ktr

4

∑
j=3

(zuj − zrj)żrj

]

= αkt f (ż2
r1(t) + ż2

r2(t)) + αktr(ż2
r3(t) + ż2

r4(t))

(28)

In this way, in principle, Ps(t) would be always positive (the power would always flow from the road
to the suspension system) and large as desired by choosing a suitable large α. However, it is worth pointing
out that making the tire deflections large is in contrast with good road handling performance. Moreover,
high levels of harvested energy require high armature currents that increase the electrical losses in the
actuators. Then, depending on the application at hands, a suitable trade-off among the above conflicting
control specifications has to be addressed in the design the RVC controller that can naturally formulated
as a multi-objective optimal control design problem.

In fact, conditions (27) can be reformulated as the following model reference errors zpi(t to
be minimized

zpi(t) = zui(t)− zri(t) + αżri(t), i = 1, 2, 3, 4 (29)

3.3. State-Space Realization for the RVC Control Synthesis

Because the need of having a system description which uses the derivatives żri instead of zri as
exogenous signals for causally realizing zpi in (29) we extend to the full-car case the alternative state-space
representations used in [11,12] for the quarter-car model. The following state-space representation results

ẋ(t) = Ax(t) + Bu(t) + Eżr(t) (30)
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corresponding to the following system vectors

x =



zs1 − zu1

zs2 − zu2

zs3 − zu3

zs4 − zu4

ϕ̇s

θ̇s

żs

zu1 − zr1

zu2 − zr2

zu3 − zr3

zu4 − zr4

żu1

żu2

żu3

żu4



u =


i1
i2
i3
i4

 żr =


żr1

żr2

żr3

żr4

 (31)

for certain matrices A, B and C detailed in [13].
It is worth pointing out that the above state-space realization is not minimal in that the state has

dimension 15 while the 7DOF full-car model (1)–(7) could be realized by a state of dimension 14. This choice
is dictated by the greater easiness in specifying the various control objectives for the design of the controller
that this realization offers.

The extra dimension has as a consequence that rank{A} = 14. In fact, it can be observed that A
has one dominant real eigenvalue in zero and seven couple of pure imaginary coniugate eigenvalues.
The eigenvalue in zero expresses the fact a linear combinations of state components remains constant during
the free evolutions of the systems. In particular, it is found that the following linear dependence arises

tr(zs1(t)− zs2(t))− t f (zs3(t)− zs4(t)) = 0, ∀t (32)

along all the free evolutions of the system (zri(t) ≡ 0, i = 1, . . . , 4). This condition trivially results by
considering (8)–(11) and expresses the fact that in a rigid body the positions of three points are sufficient to
characterize the positions of all other points of the body.

The state-space realization (30) is fully controllable. Thus, if the state is fully measurable (y(t) = x(t))
linear state-feedback control laws can be freely designed. On the contrary, if only an output is available

y(t) = Cyx(t) + Dyuu(t) + Dywzr(t) (33)

it is also full observable for many choices of sensors. For example, in [13] it is shown that the pair (A, Cy)

corresponding to the following output

y = [ zs1 − zu1 zs2 − zu2 zs3 − zu3 zs4 − zu4 z̈s1 z̈s2 z̈s3 z̈s4 ]
T (34)

is full observable. In this second case, one has full freedom in designing any form of dynamic output
feedback control laws.
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Finally, for control design purposes it is convenient to introduce the following performance vector

z(t) = Cx(t) + Du(t) + Fżr(t) (35)

z =
[

z̈s1 z̈s2 z̈s3 z̈s4 i1 i2 i3 i4 zp1 zp2 zp3 zp4
]T (36)

where all conflicting objective variables of interest are considered. In particular, z(t) collects the four
vertical accelerations z̈si accounting for the drive comfort requirements, the four control actions ii used to
moderate the control energy so as to mitigate the electrical losses and the four variables zpi defined in (29)
related to the energy harvesting specifications. Again, details on the C, D and F matrices can be found
in [13].

3.4. Frequency Shaping of the State-Space Realization

A common practice in the design of optimal control laws is that of shaping the control objectives in
frequency in order to penalize/enhance the performance in certain frequency bands of interest. This can
be done by filtering the signals of the control systems.

By denoting with Wai(s) the scalar, stable and proper filter shaping the vertical acceleration of the
body corner z̈si(t) and with Wui(s) the one related to the current ii(t), the objective vector z(t) results
filtered by the diagonal multivariable filter Wz(s) defined as:

Wz(s) = diag {Wa(s), Wu(s), I4} (37)

In particular, the aggregate filters Wa(s) e Wu(s) have the following structure

Wa(s) = diag {Wa1(s), Wa2(s), Wa3(s), Wa4(s)}

Wu(s) = diag {Wu1(s), Wu2(s), Wu3(s), Wu4(s)}
(38)

and for simplicity are assumed identical

Wa1(s) = Wa2(s) = Wa3(s) = Wa4(s)

Wu1(s) = Wu2(s) = Wu3(s) = Wu4(s)
(39)

It is convenient to select the Wai(s) filters according to the ISO-2641 recommendations and using (26)
to shape the accelerations in order to have the objectives directly related to the Ride Index. On the contrary,
Wui(s) are usually selected as high-pass filters in order to penalize the control actions at high frequency.

The energy of the road profiles are optionally shaped by a suitable bank of filters as well

Wd(s) = diag {Wd1(s), Wd2(s), Wd3(s), Wd4(s)} (40)

Wd1(s) = Wd2(s) = Wd3(s) = Wd4(s) (41)

Thus, by denoting with (Az, Bz, Cz, Dz) e (Ad, Bd, Cd, Dd) the state-space representations of the filters
Wz(s) and Wd(s), with xz and xd the corresponding states, on the basis of the following extended state

xg =
[

xT xT
z xT

d

]T
(42)
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one gets the extended state-space representation{
ẋg(t) = Agxg(t) + Bguu(t) + Bgw żr(t)

z̃(t) = Cgzxg(t) + Dgzuu(t) + Dgzw żr(t)
(43)

with

Ag =

 A ∅15×20 ECd
BzC Az BzFCd

∅4×15 ∅4×20 Ad

 Bgu =

 B
BzD
∅4×4



Bgw =

 EDd
BzFDd

Bd

 Cgz =
[

DzC Cz DzFCd

]

Dgzu = DzD Dgzw = DzFDd

(44)

3.5. H2 and H∞ Optimal State Feedback Designs

We assume hereafter that the state is measurable and that the system (43) is fully controllable.
This happens to be true when no loss of controllability arises from the introduction of the shaping filters
(poles/zeros cancellations). Thus, state-feedback control laws of the form

u(t) = Kxg(t) (45)

can be arbitrarily designed. In particular, the following closed-loop system results{
ẋg(t) = (Ag + BguK)xg(t) + Bgw żr(t)

z̃(t) = (Cgz + DgzuK)xg(t) + Dgzw żr(t)
(46)

with
T(s) = (Cgz + DgzuK)(sI − (Ag + BguK))−1Bgw + Dgzw (47)

being the closed-loop transfer matrix between ż(t) and z̃(t).

3.5.1. Optimal H∞ Control Synthesis

The H∞ optimal state-feedback control law

u(t) = K∞xg(t) (48)

that minimizes the H∞ norm of (47), that is

K∞ := arg min
K
‖T(s)‖H∞

(49)
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can be achieved by solving the following LMI optimization problem [14]

min
X,Y,γ

γ

s.t.
Acl + AT

cl Bgw (CgzX + DgzuY)T

∗ −γI DT
gzw

∗ ∗ −γI

 < 0

X = XT > 0

(50)

where Acl := AgX + BguY. If the problem is feasible, the optimal H∞ state-feedback gain is given by

K∞ = YX−1 (51)

3.5.2. Optimal H2 Control Synthesis

The H2 optimal state-feedback control law

u(t) = K2xg(t) (52)

that minimizes the H2 norm of (47), that is

K2 := arg min
K
‖T(s)‖2

H2
(53)

can be achieved by solving the following LMI optimization problem [14]

min
X,Y,Q,ν

ν

s.t.Acl + AT
cl Bgw

∗ −I

 < 0X (CgzX + DgzuY)T

∗ Q

 > 0

X = XT > 0

Q = QT > 0

Tr(Q) ≤ ν,

(54)

where Acl := AgX + BguY. If the problem is feasible, the optimal H2 state-feedback gain is given by

K2 = YX−1 (55)

4. Simulation Results

Several Matlab/Simulink simulations have been undertaken for assessing the full-car H2 and H∞

MIPC approaches presented here and compare them with the quarter-car H∞ state-feedback solution
described in [3]. The latter control law, designed for the suspension systems of a single wheel, will be then
applied to all four suspension systems in a decentralized way.
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The three control approaches, namely H∞ decentralized, H∞ centralized and H2 centralized, will be
compared on the same car, actuators and driving scenario with the available design knobs tuned to achieve
the same Ride Index for the three control strategies.

In particular, three values of the Ride Index will be considered: RI = 0.25, RI = 0.47 and RI = 0.70 that,
according to the ISO 2631 RI classification, correspond respectively to not uncomfortable, a little uncomfortable
and fairly uncomfortable likely passengers reactions

Road’s profiles complying with the ISO-8608 standard [15] have been used in the simulations.
In particular, all simulations have been undertaken by assuming to drive on a C straight road at 70 Km/h.
Figure 5 depicts the corresponding profiles
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Figure 5. Road profiles zr1(t), zr2(t), zr3(t) and zr4(t) used in the simulations.

The same standard class-C vehicle and actuator considered in [3] (where all relevant parameters are
listed) is used here.

The following dynamical weights have been used in the three control strategies

Wai(s) = ρ Wk(s) (defined in (26)) (56)

Wui(s) = β
s + 1

s + 10
(57)

Wdi(s) = γ
10

s + 1000
(58)

with ρ, β, γ and α in (29) as free design knobs. The fact that the regulation of the Ride Index can be simply
achieved by tuning the few control design knobs testifies favorably on the flexibility of the proposed
MIPC approach.

4.1. Simulations for Ride Index = 0.25

The values of design knobs values used in the RI = 0.25 simulations are reported in Table 1 whereas
the plots of the acceleration z̈s1, actuation current i1(t) and the harvested electrical power Pe1(t) under the
three control laws are reported in Figure 6
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Table 1. Knobs tuning—RI = 0.25.

RI = 0.25 (Excellent Comfort/Smallest Harvesting)

Control ρ β γ α

H∞,dec 0.2067 100 10 30
H∞,cen 0.42 3.45 1 27
H2,cen 0.5 2 1 29
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Figure 6. (top) Accelerations z̈s1(t), (middle) Actuation current i1(t), (down) Instantaneous harvested
electrical power Pe1(t).

4.2. Simulations for Ride Index = 0.47

In Table 2 the design knobs values used in the RI = 0.47 simulations are reported while the plots of
the corresponding acceleration z̈s1, actuation current i1(t)and the electrical power Pe1(t) under the three
control laws are reported in Figure 7.

Table 2. Knobs tuning—RI = 0.47.

RI = 0.47 (Trade-off between Comfort/Harvesting)

Control ρ β γ α

H∞,dec 0.323 100 10 42
H∞,cen 1.67 2.25 1 30
H2,cen 0.82578 3.764 1 31
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Figure 7. (top) Accelerations z̈s1(t), (middle) Actuation current i1(t), (down) Instantaneous harvested
electrical power Pe1(t).

4.3. Simulations for Ride Index = 0.70

Finally, in Table 3 the values of the design knobs used for the case RI = 0.70 are reported while the
plots of the acceleration z̈s1, actuation current i1(t) and the harvested electrical power Pe1(t) under the
three control laws are reported in Figure 8.

Table 3. Knobs tuning—RI = 0.70.

RI = 0.25 (Perceivable Discomfort/Largest Harvesting)

Control ρ β γ α

H∞,dec 0.42 100 10 47
H∞,cen 2.82 3 1 33
H2,cen 2.167 4–69 1 33
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Figure 8. (top) Accelerations z̈s1(t), (middle) Actuation current i1(t), (down) Instantaneous harvested
electrical power Pe1(t).
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4.4. Average Harvested Electrical Power

Finally, next Table 4 summarize the average harvest electrical power during the simulations.
From the simulation it results that the H∞,cen and H2,cen regulators, designated on the basis of the

full-car suspension model, guarantee good rider performance and higher levels of harvested energy with
respect to the H∞,dec controller in all the situations tested. Moreover, the ride comfort performance of
the H∞,dec regulator, designated on the basis of the quarter-car suspension model and implemented in a
decentralized way, degrades remarkably at the increase of the energy harvesting requirements. This can be
seen from the accelerations z̈s1(t) plots but similar conclusions can be drawn out by observing the sprung
mass accelerations z̈s(t) and the pitch and roll angles evolutions (non reported here for space limitations
but available in [13]).

As far as the amount of harvested energy during the simulations, Table 4 allows one to observe that
the centralized H∞,cen and H2,cen regulators always are able to recover more energy than the decentralized
H∞,dec controller, the more at lower values of the RI index. Moreover, it can be seen that the H2,cen regulator
recovers the largest amount of electric power, while the H∞,cen regulator is more robust in rejecting the
exogenous signals acting to the system.

Table 4. Average harvest electrical power. The percentages express the improvements with respect to the
H∞,dec control achievements for the same RI.

Average Harvest Electrical Power

Control RI = 0.25 RI = 0.47 RI = 0.70

H∞,dec 4 × 100 W 4 × 124 W 4 × 153 W
H∞,cen 4 × 120 W (+20%) 4 × 141 W (+13%) 4 × 160 W (+4.5%)
H2,cen 4 × 141 W (+40%) 4 × 154 W (+24%) 4 × 168 W (+10%)

5. Conclusions

The usage of regenerative suspension systems in modern electrical/hybrid cars could contribute to the
vehicle’s autonomy with a modest degradation to the usual ride comfort and road handling performance.
The integration of such systems with other existing energy harvesting devices, such as regenerative brakes,
may help the diffusion of this kind of cars, providing together a total amount of many tens/hundreds watts.

This paper has complemented the results achieved in [3] on the design of active control laws for the
regulation of regenerative suspension systems by extending the scalar MIPC approach there presented
for a quarter-car system to the general multivariable solution achieved on the basis of a full-car model.
Moreover, both the H∞ and H2 state-feedback solutions have been considered based on a novel and ad-hoc
state-space realization and have been shown to be enough flexible and powerful to easily trade-off amongst
conflicting energetic and dynamic requirements.

From the simulations it results that the centralized solutions have to be preferred with respect to
the decentralized one. In fact, from Table 4 it results that the improvements on the harvested energy
are increasingly higher (up to 40% for the centralized H2 and up to 20% for the centralized H∞ optimal
controllers) as the ride index RI decreases. This is especially important in the large part of cars usage,
where maintaining low values of the ride index is of paramount importance for ensuring a good ride
comfort. It is also found that the centralized H2 control is able to gain the double of the energy harvested
by the centralized H∞ control for the same value of the ride index.

An important contribution of this work is the demonstration that the coordination of the
control actions achievable by a multivariable design has to be preferred than a simpler decentralized
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implementation. The usage of modern H2 and H∞ multi-objective control design methodologies make the
extra numerical complexity for the multivariable design negligible.
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