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Abstract: Most current surface fire simulators rely upon Rothermel’s model, which considers the
local properties of fuel, topography, and meteorology to estimate the rate of spread, and utilises the
concept of elliptical growth to predict the evolution of the fire perimeter throughout time. However,
the effects of convective processes near the fireline, which modify fire spread conditions along the
fire perimeter, are not considered in this model. An innovative fire prediction simulator based on the
concept of fireline element displacement, which is composed of translation, rotation, and extension,
rather than a point-by-point displacement, is proposed in this article. Based on the laws of convective
heat fluxes across and along the fireline and on laboratory experiments, models to estimate the
angular rotation velocity and the extension of the fireline during its displacement are proposed. These
models are applied to a set of laboratory experiments of point ignition fires on slopes of 30◦ and 40◦

and, given the fact that the rate of spread of the head, back, and flank fire are known, the evolution
of the fire perimeter can be predicted. The fire spread model can be applied to other situations of
varying boundary conditions provided that the parameters required by the model are known.

Keywords: fire behaviour; slope; topography and wind effects; fireline rotation; fireline extension;
convective effects; prediction simulator

1. Introduction

The modelling of forest fire propagation has been the subject of extensive research
using different methodologies to address this very complex phenomenon. In [1–5], a
comprehensive analysis of fire behaviour modelling can be found. Given its prevalent
nature, surface fire behaviour is the object of many studies aiming to produce fire prediction
models to estimate the development of a fire under arbitrary conditions. A large number
of these models and their fire prediction systems [6–12] use the semi-empirical approach
based on the model proposed by Rothermel [13] and extended upon with the Behave
System [14,15].

The Rothermel model is based on a large database of laboratory scale experiments,
using a wide set of fuel beds under controlled slope or wind conditions. A mathematical
model based on the statistical analysis of experimental data is proposed to estimate the
basic rate of spread of a fire under no slope and no wind conditions. Assuming an additive
vectorial effect of slope and wind, correction functions to adjust for the influence of either
slope or wind are proposed. Given the limited nature of the experimental conditions, these
equations can only be applied strictly to predict the head fire rate of spread (ROS) in the
direction of the slope gradient or wind vectors.

The Rothermel model assumes that the ROS value is defined by the local properties
of the fuel bed, the slope, and the wind. As local convective processes induced by the
fire are not involved, the dynamic behaviour of the fire is not considered in the model.
Therefore, if the local properties remain constant, the value of the ROS will also be constant.
In [16] it was shown that even in nominally permanent and uniform boundary conditions,

Fire 2024, 7, 121. https://doi.org/10.3390/fire7040121 https://www.mdpi.com/journal/fire

https://doi.org/10.3390/fire7040121
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fire
https://www.mdpi.com
https://orcid.org/0000-0001-6108-7793
https://orcid.org/0000-0001-9255-4219
https://orcid.org/0000-0002-1255-9667
https://orcid.org/0000-0002-9972-4601
https://doi.org/10.3390/fire7040121
https://www.mdpi.com/journal/fire
https://www.mdpi.com/article/10.3390/fire7040121?type=check_update&version=2


Fire 2024, 7, 121 2 of 22

in general cases, the ROS value varies with time, as the case of the eruptive fire illustrates
very well [17,18].

Despite these limitations and the absence of analysis regarding the evolution of the
ROS in different directions, ref. [14] assumes that a point fire ignition on a slope or under
permanent wind conditions spreads taking a form that is well described by a simple or a
double ellipse. To the knowledge of the present authors, the concept of elliptical growth
was never validated in the sense of justifying why a point ignition fire develops from an
initial circular form to an ellipse or to any other of the many shapes that are found in fire
perimeters. Several authors recognize that different shapes, including rectangles, can be
used to approximate the perimeters of real fires [19,20].

Based on the Huygens principle, the fire perimeter spread was estimated by modelling
it as the propagation of a wave, defined by a series of ellipses corresponding to the spread
of point-ignited fires at each location at the fire perimeter [21–25]. Various mathematical
models and fire behaviour prediction systems have refined the ellipse-shaped fire propaga-
tion model by incorporating additional variables [6,11,26,27]. Although the ellipse-shaped
propagation approach remains useful, these models do not fit well with the linear shape of
the straight fireline that are observed in many fires.

As shown in [28], a non-horizontal fireline spreading on a uniform slope does not
spread parallel to itself, prompting the author to define a rotational movement of the
fireline. Based on laboratory and field experiments, as well as on the analysis of real fires,
it was shown that this lack of uniformity of the local rate of spread—contradicting the
Rothermel model—is due to the transverse convection along the fireline, which modifies
the ROS value along its length. This concept was extended for wind driven fires in [29] and
used to show that the fire perimeter is not always a regular line, but instead can assume
patterns which are referred to as zigzag shapes [30]. In [31], the spread of backfires at a
laboratory scale in slope or wind conditions was analysed. A semi-empirical model to
estimate the rotational velocity of the fireline was proposed in [32].

Given the necessity to account for convective processes at the fire front near each point,
the present work adopts the concept of fireline displacement to predict the evolution of
the fire front as opposed to a point-by-point approach. This involves reviewing previously
proposed concepts of fireline rotation and extension as well as developing a new formu-
lation for the extension laws. The fireline displacement model validated through testing
with the predictions of point ignition fires from laboratory experiments conducted with
uniform fuel beds on different slopes. The model explains the continuous evolution of a
point ignition fire to the shapes that are observed in the experiments and will be used as a
learning tool to create a library of parameters enhancing its applicability to a wider set of
boundary conditions.

2. Fireline Displacement Model

Current fire spread simulators (which are used to predict fire behaviour) rely on
knowing the components of the rate of spread (ROS) vector at each point of the fireline
over time. The most common modelling approach for estimating local ROS is the one
proposed by Rothermel [13], which assumes that the ROS at any given point depends solely
on local properties such as slope, fuel cover, and wind velocity. Among other limitations,
this model overlooks the convective processes generated by the fire as a whole as well as
those from neighbouring sections of the fireline. Recognizing the challenges associated
with determining the ROS at each point along the fire perimeter, an alternative approach is
proposed which involves leveraging empirical data or models to determine the ROS values
at the head, flank, and back of the fire.

2.1. Modeling Approach

The present modelling approach addresses the common scenario of a fire originating
at a single point that spreads in the landscape forming a closed line perimeter, with a
well-defined head fire, two flanks, and a tail (Figure 1). In this general scenario, the line
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representing the head fire will typically be a curved line and its ROS value will be a function

of time
→
R1(t). The same will happen with the rear fire

→
R2(t) and the flanks (

→
R3l(t) and

→
R3r(t)). Assuming that the values of these functions are known, the evolution of four
designated reference points of the fire front—Q1, Q2, Q3, and Q4—can be estimated over
time, as is shown in the figure for two steps of time. The prediction of the evolution of the
fire perimeter requires the knowledge of the position of each element of the fireline. The
present modelling approach assumes that the positions of the four reference points Qi are
known at each time step and can be used as anchor points to determine the evolution of
the remaining elements of the fireline.

Fire 2024, 7, x FOR PEER REVIEW 3 of 23 
 

 

defined head fire, two flanks, and a tail (Figure 1). In this general scenario, the line 
representing the head fire will typically be a curved line and its ROS value will be a 
function of time 𝑅 (t). The same will happen with the rear fire 𝑅 (t) and the flanks (𝑅 (t) 
and 𝑅 (t)). Assuming that the values of these functions are known, the evolution of four 
designated reference points of the fire front — Q1, Q2, Q3, and Q4 — can be estimated over 
time, as is shown in the figure for two steps of time. The prediction of the evolution of the 
fire perimeter requires the knowledge of the position of each element of the fireline. The 
present modelling approach assumes that the positions of the four reference points Qi are 
known at each time step and can be used as anchor points to determine the evolution of 
the remaining elements of the fireline. 

 
Figure 1. General view of fire with a single point ignition spreading along main direction. The 
dashed line represents the main axis of head fire front propagation. 

To simplify our approach, we consider the case shown in Figure 2, where a fire is 
ignited on a homogeneous fuel bed on a flat surface, with either constant wind flow or 
uniform slope. In this scenario, the path of the head fire forms a straight line, which is a 
symmetry line for the fire perimeter. 

 
Figure 2. Schematic view of fire perimeter of a point ignition fire spreading under constant and 
uniform wind or slope conditions. Reference points Q1, Q2, and Q3 are shown. 

Figure 1. General view of fire with a single point ignition spreading along main direction. The dashed
line represents the main axis of head fire front propagation.

To simplify our approach, we consider the case shown in Figure 2, where a fire is
ignited on a homogeneous fuel bed on a flat surface, with either constant wind flow or
uniform slope. In this scenario, the path of the head fire forms a straight line, which is a
symmetry line for the fire perimeter.
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To model the evolution of the fire front, the fire perimeter was divided into a number
of n fireline elements (FLEs), and the movement of each was predicted in a succession of
time steps ∆t.

Reference FLE—four references FLEs centred on the points Q1, Q2, Q3, and Q4 were
selected. The evolution of these reference elements is known, and they can be used as
anchors to define the position of the other elements of the fireline. To ensure that the
partition of the fireline includes these reference FLEs, it was proposed that the number of
fireline elements is a multiple of four: n = 4k, k being an integer number.

Each fireline element Ei is defined by its start and end points, denoted as Pi(xi, yi) and
Pi+1(xi+1, yi+1) respectively. The length and inclination of each element in relation to the
driving force that is moving the fire (wind or slope) are determined by:

si =

√
(yi+1 − yi)

2 + (xi+1 − xi)
2, (1)

βi = atan
(

yi+1 − yi
xi+1 − xi

)
. (2)

A radial coordinate was introduced for each point, defined as:

θi = atan
(

yi
xi

)
. (3)

To simplify the modelling, the fire perimeter was divided into sections based on the
quadrants in Figure 2. Due to the symmetry of the problem, only Section 1 in quadrant
1: (0◦ < θ < 90◦) and Section 2 in quadrant 4: (−90◦ < θ < 0◦) were considered, with the
assumption that the other two are identical.

2.2. Displacement of a Fireline Element

Let us consider a fireline element limited by points P1 and P2 at a given time and
analyse its displacement during the time interval ∆t (Figure 3). A local coordinate system
was defined where the OX axis coincides with element P1 and P2. The coordinates of these
points are P1(0, 0) and P2(s, 0).
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The local ROS vectors at these points are:

→
R1 = a.

→
e1 + b.

→
e2, (4)
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→
R2 = c.

→
e1 + d.

→
e2. (5)

The following auxiliary pair of vectors, designated as translation and rotation vectors,
respectively, are defined as:

→
R1T =

a − c
2

.
→
e1 +

b + d
2

.
→
e2, (6)

→
R2T =

c − a
2

.
→
e1 +

b + d
2

.
→
e2, (7)

→
R1ω =

a + c
2

.
→
e1 +

b − d
2

.
→
e2, (8)

→
R2ω =

a + c
2

.
→
e1 +

d − b
2

.
→
e2. (9)

It can be seen that
→

R1T +
→

R1ω =
→
R1 and

→
R2T +

→
R2ω =

→
R2. It should be noted that the

components of these ROS vectors represent linear velocities (m/s) (or cm/s in the present
analysis). To convert them into linear distances, it is necessary to multiply them by the time
interval ∆t(s) of the analysis.

The displacement of element P1P2 can be decomposed in a translation to P′′
1P′′

2

followed by a rotation, to become P′
1P′

2, as indicated in Figure 3.

Designating the position vector of point
→
Pi by Pi, it can be written as: →

P′
1 = a.∆t.

→
e1 + b.∆t.

→
e2

→
P′

2 = (s + c.∆t).
→
e1 + d.∆t.

→
e2

(10)

 →
P′′

1 =
( a−c

2
)
.∆t.

→
e1 +

(
b+d

2

)
.∆t.

→
e2

→
P′′

2 =
[
s +

( c−a
2
)
.∆t

]
.
→
e1 +

(
b+d

2

)
.∆t.

→
e2

. (11)

2.3. Analysis of Fireline Extension

It can be shown that the total extension of the FLE is given by:

ds = s′ − s =
(
s′ − s′′

)
+ (s′′ − s) = dsT + dsω. (12)

The FLE extension coefficient is defined by:

ε =
ds

s.∆t
. (13)

From Equations (1), (12), and (13), the values of s′, ds, and ε can be determined:

s′ =
√
[s + (c − a).∆t]2 + [(d − b).∆t]2, (14)

ds =
√
[s + (c − a).∆t]2 + [(d − b).∆t]2 − s, (15)

ε =
ds

s.∆t
=

√[
1

∆t
+

(c − a)
s

]2
+

[
d − b

s

]2
− 1

∆t
. (16)

Let us define X associated to translation and Y associated to rotation:

X =

∣∣∣∣ c − a
s

∣∣∣∣, (17)

Y =

∣∣∣∣d − b
s

∣∣∣∣. (18)
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For a given value of ∆t, ε can be defined as a function of both X and Y:

ε =
ds

s.∆t
=

√[
1

∆t
+ X

]2
+ Y2 − 1

∆t
. (19)

As parameters X and Y are associated with the translation and the rotation of the FLE,
respectively, it can be concluded that, in the general case, the extension coefficient has both
a rotation and a translation component. This relationship is shown in Figure 4 where the
values of ε are plotted for fixed values of ∆t equal to 15 s and 20 s, as a function of X for
given values of Y. As can be seen, if Y = 0, ε is equal to X. In the other cases, it varies with
both X and Y.
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Note that in [32] the analysis of the fireline displacement was incorrect. It was erro-
neously assumed that the components a − c = c − a = 0, which represents a specific case
depicted in Figure 3.

2.4. Estimation of Local Value of Fireline Extension

To estimate the value of ε for each FLE, the local ROS at each point of the FLE must
be known. Three adjacent FLEs—Ei−1, Ei, and Ei+1—make the angles βi−1, βi, and βi+1,
respectively, with the OX axis (see Section 2.4.2). The modulus and direction of the local
values of the ROS were estimated at points Pi and Pi+1.

2.4.1. Approximate Value of the Modulus of the ROS

According to the present approach, the local values of the ROS are known only for:

Head fire θ = 90◦ → R = R1, (20)

Lateral fire θ = 0◦ → R = R3, (21)

Backfire θ = −90◦ → R = R2. (22)
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It is assumed that the ROS modulus varies continuously along the perimeter of the
fireline. For each point Pi(xi, yi) of the fireline perimeter, the angular coordinate ξ was
defined based on the position angle θ, as defined by Equation (4):

ξ =
2.θ
π

(23)

Among the various possible functions that can be used to represent the variation of
the modulus of the ROS along the fire perimeter, the following set of equations to describe
the variation of the modulus R of the ROS with θ or ξ was proposed:

0 < θ <
π

2
→ R = R3 + (R1 − R3).ξm1 , (24)

−π

2
< θ < 0 → R = R3 + (R2 − R3).(−ξ)m2 , (25)

m1 and m2 were considered as empirical parameters of the model that have to be
defined for the first and the fourth quadrants, respectively.

Assuming values of R1 = 1.2 cm/s, R2 = 0.4 cm/s, and R3 = 0.6 cm/s, Figure 5 shows
the evolution of R according to Equations (24) and (25) for the indicated values of m1 or m2.
As shown in this figure, the one-parameter power function used in this model can produce a
wide range of variations of the ROS along the perimeter. For low values of m, starting from
θ = 0◦, the modulus of R remains close to R3 for increasing or decreasing values of θ, and
then changes rapidly to either R1 or R2 while the opposite happens for large values of m.
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2.4.2. Approximate Value of the Direction of the ROS

It was assumed that the direction of the ROS vector Ri at point Pi coincides with the
bisector of the lines perpendicular to the two adjacent FLEs Ei−1 and Ei (Figure 6). It is
possible to show that the angle between these two lines is given by βi − βi−1, therefore the
components of Ri and Ri+1 can be determined:

ai = −|Ri|.sin
(

βi−βi−1
2

)
bi = |Ri|.cos

(
βi−βi−1

2

) , (26)
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ci = |Ri+1|.sin
(

βi+1−βi
2

)
di = |Ri+1|.cos

(
βi+1−βi

2

). (27)
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and ROS vectors at points Pi and Pi+1.

To estimate the FLE extension coefficient for each FLE, components ai, bi, ci, and di were
calculated using Equations (26) and (27). The values of X and Y were then computed using
Equations (17) and (18). Finally, knowing the value of ∆t, the ε coefficient was calculated using
Equation (19). To account for the approximate nature of the present approach, a correction
coefficient kE to evaluate the values of εc in any given step of the calculation is used:

εc = kE.ε. (28)

2.4.3. Extension of the Reference Element Containing Q1

It was found that when using the present model to estimate the extension of the
element E1 that contains the reference point Q1, assuming that this element remains parallel
to itself (β = 0◦), the rotation of the second element E2 creates a very large difference in the
values of a and c, resulting in a high value of the ε coefficient for this FLE. To overcome this
problem, it was assumed that the extension coefficient of this element follows a law similar
to that of an element of the fireline with uniform ROS that was analysed in [32], yielding:

εo =
ko

t
. (29)

In this equation, ko is a constant that can be estimated at the beginning of fire spread
or adjusted to achieve a better overall agreement between the model and the experimen-
tal results.

2.5. Fireline Rotation Law

The problem of fireline element rotation was analysed in [32]. Considering the convec-
tive flow induced by the presence of a non-horizontal fireline on a slope, it was shown that
there is a variation of the ROS along the fireline that produces the rotation of the fire front.

Assuming that the ROS variation due to the flow component uy perpendicular to the
FLE is given by the following empirical law:
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R = Ro.
(

1 + a1.uy
b1
)

, (30)

and that the increase of the uy component along the OX axis due to the cross flow ux
induced along the fireline element is given by:

duy

dx
= a3.ux

b3 . (31)

The following law for determining the rotational velocity of a given FLE was deduced:

ω =
dβ

dt
= Ro.a1.b1.a3.uy

b1−1+b3 .(cosβ)b1−1.(sinβ)b3 . (32)

The units of ω are ◦/s. The parameters a1 and b1 in Equations (30) and (32) depend on
the fuel bed properties and can be determined from independent experimental tests. In the
case of fuel beds composed of dead needles of Pinus pinaster needles, the following values
were determined: a1 = 3.54; b1 = 2.14 [32]. The units of a1 are complex but the numerical
value indicated corresponds to the uy expressed in m/s.

The values of a3 and b3 in Equation (31) depend on the fire spread conditions. In [32],
it is reported that for tests with pine needles on a slope, the following values were obtained:
for a 30◦ slope: a3 = 58.1◦ and b3 = 0.29; for a 40◦ slope: a3 = 128.2◦ and b3 = 0.45.

The Equation (32) can be written in the following form:

ω = Aw.(|cosβ|)b1−1.(|sinβ|)b3 . (33)

To avoid problems in the evaluation of ω using Equation (33), the modulus of the
trigonometric functions is utilised. In this equation, Aw (◦/s) is an empirical parameter that
encompasses the dependence on the local ROS—contained in Ro and uy—as well as the
other empirical coefficients a1, b1, and a3, which will be determined for the present set of
experiments and its value adjusted in the simulation model.

Using the values of the model parameters, the shape of the function given by Equation (33)
for fire spread in pine needles in 30◦ and 40◦ slopes is shown in Figure 7, with Aw = 1 ◦/s.
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3. Materials and Methods
3.1. Laboratory Experiments

The laboratory experiments were conducted at the Forest Fire Research Laboratory
(LEIF) at the University of Coimbra in Lousã. The tests with a point ignition fire on a slope
were conducted on the Canyon Table DE4, as described in [32]. The table measures 6 × 8 m2

and can be inclined from 0 to 40 degrees. In the tests, a rectangular fuel bed measuring
2 × 6 m2 composed of dead needles of Pinus pinaster with a load of 0.6 kg/m2 (dry basis)
was used. These tests followed protocols and methodologies described in previous works
by the team [16,33,34].

Continuous images from each experiment were captured by an infra-red camera,
specifically the FLIR T1020. Although the optical axis of the camera was almost perpendicu-
lar to the fuel bed, an algorithm was applied to correct the images in a selected set of frames
from each test. The experimental program consisted of several tests with varying slope
angles, all yielding very similar results. As the purpose of the present work is to validate a
fire perimeter evolution prediction model, one test with a slope of 30◦ and another with a
slope of 40◦ were considered. Frames from the tests with a slope of 30◦ and 40◦ are shown
in Figures 8 and 9, respectively.
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3.2. Numerical Model

To implement the model, it was assumed that at a given starting time, denoted as t0,
the fire perimeter is represented by a circle of radius Ro. The circle was divided into n = 4k
elements so that the four reference elements, centred at points Q1 to Q4 as defined above,
are included in the simulation, as their ROS is assumed to be known.

To facilitate the geometrical representation and the description of the calculation
process, 32 elements of the fire perimeter (k = 8) were initially considered, but the imple-
mentation method can be used with any other numbers of elements. This initial perimeter
is shown in Figure 10. The reference elements in this case are E1, E9, E17, and E25. They
are divided into two elements each. For example, E1, is divided into E1A (Q1, P1) and E1B
(P36, Q1), and so they must be treated separately as they are under different fire spread
conditions, as described below.

The calculation process will be presented. This process aims to estimate the coordinates
of each FLE after its displacement in a given time step. The calculation is based on the
proposed partition of the fireline into 32 FLEs.

To evaluate the individual displacement of each FLE in each time step ∆t, the upslope
(head fire) and the downslope (backfire) propagation Sections 1 and 2, in sectors 1 and
2, were calculated separately as they are governed by different physical conditions. Each
section will be divided into two subsections that are calculated sequentially to define the
adjustment criteria of the model parameters. As the fireline in Section 1 propagates in the
same direction as the head fire, the letter “H” will be assigned to the parameters associated
with this section of the fireline. Conversely, the letter “B” will be assigned to the parameters
associated with the backfire.

The simulation progresses step-by-step from the initial time (t = 0 s) until the final
time (tfin). The fixed value of ko was sued in Equation (29) for the entire calculation, and a
constant value of time step ∆t was assumed.
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It is important to note that the present model relies on a set of empirical parameters
Ko, Aw, ke, and m1, whose values are not precisely known in each case. Consequently,
they have to be adjusted in order to obtain the best agreement between observations and
model predictions.

Initially, the values of AwH, keH, and m1 for each time step were fixed and then adjusted,
as explained below.
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3.2.1. Calculation of Section 1

Section 1 of the fire perimeter is divided into two subsections: S1.1, consisting of FLEs
E1, E2, E3, E4, and E5; and subsection S1.2, consisting of E6, E7, E8, and E9a, which represents
the upper part of element E9.

Subsection S1.1

Subsection S1.1 commences with element E1a, wherein its displacement and extension
are calculated. It is assumed that this element does not rotate. Its point Q1(0, yQ1) moves
along the OY axis at the distance given by R1.∆t.

As defined above, the extension coefficient of this fireline element is ko/t, with a
predefined value of ko. Therefore, the extension of this fireline element will be:

ds1a = s1a.
ko

t
.∆t. (34)

Therefore, its length at time t′ = t + ∆t will be:

s′1a = s1a + ds1a. (35)
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The extremities of E′
1a are points Q′

1 (0, yQ1 + R1.∆t) and P′
1(s′1a, yQ1 + R1.∆t).

Proceeding to element E2, its rotation dβ2 was determined using Equation (33) and
β′

2 was calculated as:
β′

2 = β2 + ω(β2).∆t. (36)

To estimate the extension of E2, the components of a2, b2, c2, and d2, according to
Equations (26) and (27), need to be calculated along with the known position of this
element in the previous time step. By calculating the respective extension coefficient ε2, the
s′2 length of the FLE at time t + ∆t can be estimated. Subsequently, the coordinates of the
other extremity of E′

2, point P′
2(x′2, y′2) that are given, can be obtained:

x′2 = s′1a + s′2.cosβ′
2, (37)

y′2 = y′1a − s′2.sinβ′
2. (38)

Similar calculations are performed for FLEs E3, E4, and E5. FLE E′
5 is limited by points

P′
4 and P′

5d, which are important to adjust the model parameters. This point is designated
as P′

5d because it derives from a calculation that starts from the top of the fireline and
progresses downward, with decreasing values of θ.

Subsection S1.2

To conclude Section 1 of the fireline, the displacement of its subsection S1.2, composed
of FLEs, E6, E7, E8, and E9a is calculated. It commences with FLE E9a and progresses
upwards with increasing θ until FLE E6.

FLE E9a displaces parallel to itself with a ROS R3, making the coordinates of point
Q′

2 (xQ2o + R3.∆t, 0). The extension coefficient ε9a is determined according to the model
using Equations (19) and (28), and the coordinates of point P′

8 are given by (xQ2o + R3.∆t,
s′9a). For element E8, as with all others except for E1a, the extension coefficient is calculated
according to the proposed model to determine the coordinates of P′

7 and subsequent points
up to point P′

5u, calculated proceeding upwards from the OX axis.
It is worth noting that points P′

5u and P′
5d will coincide in this initial calculation

step. By adjusting the values of Aw, Ke, and m1, these points can be aligned to the required
precision. In this study, an Excel sheet was used to make the calculations and a plot of the
fireline was inspected visually to check the alignment of the two points. Typically, this was
achieved by adjusting the first two parameters, and it was observed that the model was not
sensitive to small variations of m1.

An automatic method to determine the location of the points P5u and P5d or P12u
and P12d was implemented. We imposed the condition that the distance between P5u and
P5d or P12u and P12d is less than 0.5 cm, and with this the parameters were automatically
estimated, fulfilling this condition. The final values of the model parameters for this time
step are those used in the adjustment process.

3.2.2. Calculation of Section 2

Similar to Section 1, Section 2 was divided into two subsections, and the displacement
of the respective fireline elements were calculated sequentially. For subsection S2.1, com-
posed of FLEs E17a, E16, E15, and E14, the calculation proceeds from bottom to top, while for
subsection S2.2, composed of FLEs E13, E12, E11, E10, and E9b, the calculation proceeds from
top to bottom.

Initial values of the model parameters AwB, kEB, and m2 are set for each time step and
adjusted in the same manner as Section 1.

In this section, the control points P′
12d and P′

12u are used to verify the accuracy of
the model’s closure. The final values of the model parameters are determined based on
achieving satisfactory adjustment.

When both sections are calculated for the first step, the process continues to the next
time step and repeats until reaching the tfin, marking the end of the calculation process.
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4. Results
4.1. Experimental Results
4.1.1. Rate of Spread Results

Based on the IR images of the tests such as those shown in Figures 8 and 9, the ROS
values for the head fire R1, the backfire R2, and the flanks R3 were estimated for each
experiment. For the 30◦ slope experiment, a time step of 20 s was used between successive
frames. For the 40◦ slope tests, a time step of 15 s was used. The corresponding results
are shown in Figure 11a,b, respectively, for α = 30◦ and α = 40◦. Assuming the existence of
symmetry, the flank ROS values R3l and R3r were averaged as R3.
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Figure 11. Experimental results of instantaneous values of ROS of head fire, R1; backfire R2; and flank
fire, R3. (a) Results for slope of 30◦; (b) results for slope of 40◦.

As can be seen in these figures, the ROS is not constant during the tests. According to
the concept of oscillatory fire spread proposed in [34], variations in the ROS can be observed
throughout the entire duration of the tests. In both cases, the amplitude of oscillations of
the ROS of the back and the flank fires is not large, but that is not the case for the head
fire R1. For α = 30◦, the value of R1 increases in an oscillating process reaching around
1.5 cm/s (R’ = 3.54) after 350 s, then decreases to 0.52 cm/s (R′ = 1.24) and initiates a second
acceleration cycle. For α = 40◦, the value of R1 increases steadily with oscillations, reaching
a maximum value of 2.34 cm/s (R′ = 5.80) after 290 s. It is possible that a deceleration
would follow if the length of the table was larger in order to capture a second cycle of the
fire oscillation. The results obtained with repetitions of these tests yield similar behaviour
as what was already observed in [16].

These experiments demonstrate that it is incorrect to assume that the ROS values
are constant during the propagation of single point ignitions, even with permanent and
uniform boundary conditions, as assumed in [13]. In the absence of an accurate model to
capture these oscillations and the fire growth, this work will utilise the results obtained in
the experiments to model the evolution of the fire perimeter using the concepts of fireline
rotation and extension.

4.1.2. Fireline Rotation Results

The movement of FLE along predefined directions was analysed in the tests conducted
on slopes of 30◦ and 40◦ for both the upslope and the downslope sections of the fire.
Consistent with the oscillatory character of the fire spread [16], oscillations were observed
in the evolution of the inclination angle β of the FLE over time, resulting in a large scatter
in the data, consistent with observations from previous studies [28,32,34].

The results obtained are shown in Figure 12a,b, for 30◦ and 40◦ slope, representing the
upslope and downslope sections of the fireline, respectively.
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Figure 12. Comparison between experimental results of fireline rotation law for slope angles of
30◦ and 40◦. (a) Upslope or head fire section of the fireline, (b) downslope or backfire section of
the fireline.

The values of Aw used to calculate the curves of the model in Figure 12 were equal to
1.5 and 2.5 for the 30◦ and 40◦ cases in the upslope fire, respectively, and equal to 0.4 and
0.8 for the cases in the downslope fire.

As can be seen in this figure, negative values for ω were measured in various cases,
especially for the downslope section of the fire. At present, there is no explanation for this,
as it corresponds to a negative effect of the induced local convection. More detailed studies
are required to analyse the physical meaning of this result and to verify if it corresponds to
the overall fluctuations of the fire spread that have been described in [33] (and that were
also observed here).

As shown below, in the application of the model, negative values of Aw were used to
adjust the shape of the fireline in some time steps.

4.2. Numerical Results

Using the numerical model described above, we were able to predict the evolution of
the point ignition fire, employing the results of the tests to provide the values of R1, R2, and
R3 at each time step. This enabled us to replicate the observed transformation of the fire
perimeter from the initial circular shape to the elongated form observed in the experiments.

Computation commenced at a time to = 0 in each case when the fire had formed a
circle of Ro = 12.98 cm for α =30◦ and of Ro =6.04 cm for α = 40◦. The time step used in the
calculations matched the intervals mentioned above. The values of ko were set as 0.60 for
α = 30◦ and as 0.45 for α = 40◦. The values of the model parameters Aw, kE, m1, and m2 were
adjusted during the calculation to follow the evolving of the instantaneous value of R1 to
ensure a precise representation of the figure, represented by the adjustment of points P’5u
and P’5d or P’12u and P’12d as described above.

The results of the model predictions are shown in Figures 13 and 14 for α = 30◦ and
α = 40◦, respectively. The isochrones with time steps of 40 s and 30 s are shown in these
figures to make the diagrams clearer. These model predictions were calculated assuming
the existence of symmetry and are superimposed with the experimental isochrones.

As can be seen, a good overall adjustment between the model’s predictions and the
observed fire perimeter was obtained in both scenarios, indicating that the semi-empirical
model of fireline rotation and extension provides an adequate prediction of the evolution of
the point ignition fire from its initially circular shape to a sort of ellipse with more straight
linear shape flanks, as observed in the laboratory experiments and many full-scale fires.
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Figure 13. Comparison between fireline contours at 40 s interval obtained from experimental test
(continuous line) and with present simulation model (dotted line), for a slope angle of 30◦. Dimensions
indicated are in cm. Time of each isochrone is specified in legend.
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Figure 14. Comparison between fireline contours at 30 s intervals obtained from the experimental
test (continuous line) and with present simulation model (dotted line), for a slope angle of 40◦. Time
of each isochrone is specified in legend.
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5. Discussion

The use of the experimental instantaneous values of the reference ROS R1, R2, and R3
is justified by the objective of the present model, which aims to predict the evolution of the
overall shape of the fireline using the proposed concepts of rotation and extension, rather
than to solely predict their respective ROS values. The experiments conducted reveal that
the values of Ri vary over time in a manner that is not accounted for by current models.
For example, [13] predicts a constant value for the ROS in this scenario. Even a monotonic
variation of R with time would not provide an accurate estimation of the model parameters
in the prediction of the two studied cases.

In this study, only a visual adjustment of the fireline sections was conducted to achieve
a continuous and closed fireline. This was achieved by modifying the values of Aw and ke
over two or three adjustment steps. It was observed that the model exhibits low sensitivity
to changes in the value of m1, so this parameter was not modified in most cases. The
adjustment was performed only to ensure closure of the fireline without regard to its
actual shape and conformity with experimental results or the instantaneous values of the
relevant ROS.

The necessity for a more refined adjustment process of the parameters is arguable,
considering that the shape of the firelines are never regular lines, and perfectly symmetrical
firelines are only found in mathematical models. The images shown in Figures 8 and 9,
derived from tests conducted under highly controlled laboratory conditions with regular
and uniform fuel beds, show that the contour of the burned area is not a regular line but
rather a zigzag shape, as advocated in [30]. This irregularity arises from local small-scale
convective processes that are not accounted for in the present model.

Using physical considerations, it may be possible to derive relationships among the
various parameters for each case. For example, it can be expected that both Aw and kE
must depend on the relevant ROS value or its variation (increase or decrease). To assess
this hypothesis, the temporal evolution of each pair of parameters Aw-R and kE-R for both
configurations was analysed in the following figures, separately for the head fire and
backfire sections. In the case of the head fire section, the value of R1 serves as the prevailing
or reference ROS value for that section, while for the backfire, R2 is used.

As shown in Figure 15a,c for the head fire section, the value of Aw closely follows
the variations of R2 at the beginning, but after some time, it decreases to very low values.
This result indicates that after a certain threshold, the crossflow velocity uy decreases at the
fireline elements, leading to very low values of Aw.

For the backward section of the fire, Figure 15b,d show that the variations of Aw closely
follow those of R in both cases. This result confirms the indication that for low values of
R, there is possibly a linear relationship between Aw and R. As can be seen in Figure 15,
the values of Aw that were used in the simulation of the two cases are in the range of those
measured independently for these experimental conditions.
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Figure 15. Temporal evolution of relevant ROS and of Aw parameter: (a) α = 30◦ Section 1; (b) α = 30◦

Section 2; (c) α = 40◦ Section 1; and (d) α = 40◦ Section 2.

In Figure 16, the temporal variation of the correction coefficient kE is shown for the
four cases, along with the relevant ROS as shown in Figure 15. Its value is always in
the same order of magnitude, ranging between 0.2 and 2.4. In the case of the head fire
section (Figure 16a,c), the value of kE appears to increase with R1 for the two slope angles.
Conversely, for the backward section of the fire (Figure 16b,d), there is not a clear tendency
of variation of kE with R2.
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Figure 16. Temporal evolution of relevant ROS and of kE parameter: (a) α = 30◦ Section 1; (b) α = 30◦

Section 2; (c) α = 40◦ Section 1; and (d) α = 40◦ Section 2.

Figures 17 and 18 show the relationship between the four parameters considered with
their respective ROS values: AwH and kEH with R1, and AwB and kEB with R2. Within the
range of the present experiments, it becomes apparent that there is not a monotonous
growth of either parameter with R.
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Figure 17. Relationship between Aw and dominant ROS.
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Figure 18. Relationship between kE and dominant ROS.

For lower values of R, Aw increases to a value close to 1 ◦/s when the ROS value
is close to 1 cm/s for these fuel bed and test conditions. Subsequently, the value of Aw
decreases continuously. The scatter of the data prevents the proposal of a mathematical
model for this parameter. The corrective coefficient kE has a similar behaviour, increasing
for values of 0 < R < 1 cm/s. However, for larger values of R, it remains close to 1.4
without decreasing.

By applying an optimization algorithm to a large number of cases, it would become
possible to derive more precise dependence laws among these parameters and potentially
support the model’s generalization to other scenarios.

6. Conclusions

In this study, we present a mathematical model designed to predict the evolution
of the fire perimeter using the concepts of fireline rotation and extension. We validate
this model using data from two experimental fires involving point ignition on a slope
with uniform properties. Our approach employs a semi-empirical model to estimate the
rotational velocity of FLEs, which is based on the physical process of convective heat
transfer along the fire front. Additionally, we propose a semi-empirical formulation of the
fireline extension along the fire perimeter using a simple one parameter power law. The
model parameters can be obtained from experimental data. Despite the small database
explored, we observed that the model effectively predicts the evolution of the fire perimeter
in the studied cases.

The current results were obtained using a relatively straightforward numerical al-
gorithm, where model parameters were automatically adjusted. A Python program is
currently being developed to better calculate the rotation and extension of the fireline
elements. This program aims to systematically adjust the four model parameters and
employ quantitative and objective criteria to evaluate the fitness of the model.
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The program is intended to calculate the evolution of various fires, aiming to better
understand and describe the range of variation of the model parameters across a range of
conditions. Initially, experimental laboratory or field scale fires will be analysed, and will
subsequently be used on real scale fires to establish a library of boundary conditions and
corresponding model parameters. This will enable us to predict the evolution of fires under
general conditions.

In future work, the extension of the model to other situations, namely to field and
real scale fires, will be pursued. Machine learning methods will be employed to establish
relationships between the model parameters and the specific boundary conditions of each
fire. Emphasis will be put on analysing the rotation and extension of fireline elements
across a wide range of conditions, aiming to generalise the fire prediction model. This will
allow an alternative to the current formulation based on elliptical fire growth.
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Nomenclature

a1 Empirical parameter in Equations (28) and (30)
a3 Empirical parameter in Equations (29) and (30)
Aw Empirical coefficient
b1 Exponent in Equations (28) and (30)
b2 Exponent in Equations (29) and (30)
ds Fireline element extension during a time step
ds1a Fireline extension of element E1a
dst Fireline extension due to translation
dsω Fireline extension due to rotation
Ei Fireline element limited by points Pi and Pi+1
FLE Fireline element
K Number of fireline elements
kE FLE extension correction coefficient
ko Constant associated to extension of element E1a
m1 Empirical parameter of the model
P1 Point P1 in the fireline at time step t

https://doi.org/10.54499/LA/P/0079/2020
https://doi.org/10.54499/LA/P/0079/2020
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P1
′ Point P1 after displacement (translation and rotation) during time step t + ∆t

P1
′′ Point P1

′ after displacement (translation and rotation) during time step t + ∆t
P2 Point P2 in the fireline at time step t
P2

′ Point P2 after displacement (translation and rotation) during time step t + ∆t
P2

′′ Point P2 after displacement (translation and rotation) during time step t + ∆t
R Modulus of the ROS
R1 Head fire ROS
R2 Backfire ROS
R3 Lateral fire ROS
Ro Initial radius of the fire perimeter
Ro Basic rate of spread in no slope and no wind conditions
ROS Rate of spread
s Extension (length) of a fireline element at time step t
s′ Extension (length) of a fireline element at time step t + ∆t
s1a

′′ Extension (length) of the fireline element E1a at time step t + ∆t after translation
t Time
u Local flow velocity parallel to fuel bed
ux Local flow velocity component parallel to the fireline element
uy Local flow velocity component perpendicular to the fireline element
X Parameter associated to translation
xi Coordinate at y axis
xi
′ Coordinate at y axis at time step t + ∆t

Y Parameter associated to rotation
yi Coordinate at y axis
yi
′ Coordinate at y axis at time step t + ∆t

Greek letters
β Angle between the local rate of spread and OYo axis
∆t Time variation or time step
θ Angle from the origin of the cartesian plane
θi Radial coordinate associated to each point
εc Corrected fireline extension coefficient
εo Fireline extension coefficient as function of ko
ε Fireline extension coefficient
ω Rotational velocity
ξ Angular coordinate
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