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Abstract: We hereby present VolcFire, a new cellular automaton model for fire propagation aimed at
the creation of fire hazard maps for fires of volcanic origin. The new model relies on satellite-derived
input data for the topography, land-use, fuel, and humidity information, and produces probabilistic
maps of fire propagation simulating fire spread. The model contains several simplifications compared
to the current state-of-the-art, limiting its usability to plan fire-fighting interventions during an
event in favour of a reduced computational load. The accuracy and reliability of the model are also
discussed by presenting its ability to reproduce two recent fires on Stromboli island, with good spatial
fit (Brier score of 0.146 ± 0.002 for the 3 July 2019 volcanic fire, and of 0.073 ± 0.001 for the 25 May
2022 anthropogenic fire) and less than 1.5% variation across multiple simulations for the same event.

Keywords: cellular automata; 3 July 2019 eruption; NDVI; NDMI; probabilistic modelling

1. Introduction

Strong volcanic activity may lead to the fall of incandescent pyroclastic material that
can start fires on the volcano flanks. Fires are hazardous by nature, but in volcanology they
belong to the so-called secondary hazards, mainly related to the destruction of vegetation
that may promote the formation of floods in case of rain [1].

In recent years, Stromboli volcano (Figure 1) has seen a growing number of fires,
caused both by anthropogenic [2] and volcanic activity [3,4]. While anthropogenic fires
develop faster and hotter [5], volcano-induced fires can increase fatalities due to both the
great distance at which they can be ignited [3,4] and the destruction of vegetation along the
flank of the volcano, which can strongly increase the possibility of floods, as occurred on
Stromboli Island after the fire triggered by the 3 July 2019 eruption [1].

Fire-spread models have been investigated since the late 1960s [6–9]. These models
have proven to be fundamental for the analysis and management of fires in both forested
and wildland–urban interface areas [10–14]. Over the last decades, several models have
been developed, distinguished by their complexity, computational costs, and types of input
parameters. According to [15], fire-spreading models can be classified by the approach
used for propagation, and the balance they strike between completeness of the physics
and computational load. Common propagation approaches include cellular automata,
envelope models, semi-empirical models, and physical models. The more comprehensive
full-physics-based models [16,17] are also computationally expensive (e.g., with represen-
tation of vegetation on the mesoscale as a porous medium and/or using balancing of the
energy/heat equation), while others prefer a simplified physical model to achieve faster
computations, for example solving 2D reaction/diffusion equations [15,18], or using even
less physics, such as in estimate-based models using graphs [19], cellular automata [20–23]
or envelope-based approaches [24].
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Figure 1. Stromboli island, showing the two main villages of Stromboli and Ginostra. In the inset,
Southern Italy with the location of Stromboli island.

Among the numerical models for simulating the propagation of wildfires, ignition
mechanisms that utilise various input parameters are taken into consideration, including
different types of trees, canopies, and the influence of wind [25], moisture content, radiant
capacity [26], and/or topography [27]. The integration of these models into GIS environ-
ments allows for both soil classification (zoning for susceptibility, hazard, and exposure
estimation), considering the presence of vegetation and/or infrastructures [10,22], and the
possibility of mapping burnt areas using satellite data [28].

Models that use cellular automata [29] and/or machine learning [22,23] have also
gained popularity in recent years, with the aim of building an effective landscape network
or simulating the spread of fires based on meteorological factors.

To the authors’ knowledge, there is no fire propagation model designed for the assess-
ment of volcanic-induced fire hazards. The aim of our work is to fill this gap, presenting a
new probabilistic cellular automaton fire-propagation model, called VolcFire, specifically
aimed at the creation of hazard maps for fires of volcanic origin. The model takes as input
parameters the digital surface model, the wind direction and intensity, the vegetation,
the land use, and the ignition cells and returns hazard scenarios estimated from multiple
probabilistic runs (Figure 2). Several assumptions and simplifications have been made to
reduce the computational load, while maintaining sufficient accuracy in the fire propaga-
tion, since our primary goal is the use of VolcFire to produce hazard maps rather than the
simulation of individual scenarios.

The fire-propagation law used in VolcFire has been validated against two test cases,
the 3 July 2019 volcanic fire and the 25 May 2022 anthropogenic fire on Stromboli island,
with good fits between the simulated and actual burnt areas, excluding firefighting inter-
ventions, both by the local inhabitants and from civil protection services.
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Figure 2. Graphical representation of the input parameters and output of the VolcFire model.

2. Materials and Methods

Fire-spreading cellular automata (CA) models [9,20,25,30] are based on a square
lattice (representing the burnable area) on which each node (cell) can be in one of several
states. Common choices include three-state CA models, with normal/unburnt, burning,
and completely burnt cell states [15], and five-state CA models (unburnt, ignited, fully
developed, extinguishing, and completely burnt) [21]. This kind of simulation is usually
controlled by the rate of fire spread (ROS) [31], and a probabilistic or stochastic law that
determines the cell state at each step, based on the neighbour cell condition [15].

For Volcfire, we have opted for a three-state model, augmented by a fourth (invariant)
unburnable state for cells covering the sea and the Sciara del Fuoco. The input data,
initialisation of the CA, spreading model, final output, and validation method are described
in the following subsections.

2.1. Input Data

The input data of VolcFire are the topography, land use, vegetation load and humidity,
wind direction and intensity, and the initial ignition cell(s).

The topographic information is provided through a Digital Surface Model (DSM),
which is a raster grid of the Earth’s surface height, including natural and human-made
structures. The information about the elevation or height of each cell is used in the VolcFire
spreading model to compute the slope between adjacent cells. For this work, we used a
DSM of Stromboli island with a spatial resolution of 10 m, derived from Pléiades satellite
data using the MicMac code [32].

Stromboli’s land use has been mapped using Skysat satellites, which is a constella-
tion of 21 commercial on-demand satellites performing acquisitions at submetric spatial
resolution. Thanks to a procedure based on the “Random Forest” supervised learning
algorithm implemented using the Google Earth Engine platform, we identified five classes:
sea, bare soil (i.e., the Sciara del Fuoco), vegetated areas, burned or parched areas, and
human infrastructures.

The vegetation load and humidity are derived from Sentinel-2 imagery, using the
Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Moisture
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Index (NDMI), respectively. NDVI quantifies the health and density of vegetation, and is
computed as

NDVI =
B8 − B4
B8 + B4

, (1)

while NDMI detects its moisture levels and is computed as

NDMI =
B8 − B11
B8 + B11

. (2)

In the above formulas, B4, B8, and B11 are the Sentinel-2 bands whose properties are
summarised in Table 1. Due to the difference in resolution, B11 is interpolated to a 10 m
resolution by constant interpolation.

Table 1. Main properties of the Sentinel-2 bands used by the VolcFire model.

Central
Band Resolution Wavelength Description

B4 10 m 665 nm Red
B8 10 m 842 nm Visible and near infrared (VNIR)
B11 20 m 1620 nm Short-wave infrared (SWIR)
B12 20 m 2190 nm Short-wave infrared 2 (SWIR2)

Information about the wind direction and strength is assumed to be constant during
each simulation, and given as input by the user. In the test cases presented here, this
information was taken from data provided by the media and found on [33].

Finally, the ignition cell(s) indicate the cells from which the fire starts and spreads.
These are also given as input by the user, in latitude/longitude for each ignition cell.

2.2. CA Initialisation

The model implementation starts by importing the DSM and land-use map as raster
grid data. These define the computational region and cell resolution for the automaton.
Sentinel-2 data, specified as a command-line parameter, are then loaded with GDAL, which
is a translator library for raster and vector geospatial data formats [34]. The satellite imagery
is cropped to the computational region, and the NDVI and NDMI indices are computed for
each cell, clipping to 0 for invalid data and negative values, since we are only interested in
the cells where these indices are positive.

Each cell of the CA is then initialised to either the unburnt or unburnable state,
based on a combination of the topographic information, land use, NDVI, and NDMI, as
detailed below.

Topographic information is used to distinguish land and sea cells, with sea cells set to
unburnable, while land use is used as a first step to recognise the bare soil cells, especially
those belonging to Stromboli’s Sciara del Fuoco, which are also set to unburnable.

According to [35], humidity should be lower than 83% to allow fire to develop. During
the validation of our model, we found that an NDMI threshold of 0.4 (corresponding to the
lower bound of high canopy cover with no water stress, according to EOS [36]) represents
a good approximation of this criterion: therefore, all cells with a NDMI value higher than
0.4 are also marked unburnable. We remark that this criterion is seasonal, in contrast to the
filtering based on land use.

We also consider a lower boundary of 0.33 on NDVI, on the assumption that lower
values represent areas with not enough fuel. Cells with NDVI lower than 0.33 are therefore
also unburnable for the model. In the test cases discussed in this paper, there is a sizeable
overlap in the filtering performed by the land-use map and the NDVI threshold. In fact,
with a clear sky, the bare soil filtered from the land use constitutes a strict subset of the cells
filtered by low NDVI: the land use is still necessary because it is not affected by clouds,
which may otherwise influence the NDVI thresholding.
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All other cells start in the unburnt state, except for the starting ignition cell(s) that are
set to the burning state. After this initialisation, the fire-spreading iteration is started.

2.3. VolcFire Spreading Model

At each iteration, the automaton computes the state change for each cell:

• unburnable or burnt cells remain in the same state;
• burning cells become burnt;
• burnable cells compute an ignition probability based on their properties and the

neighboring cells’ states, and randomly change to the burning state if their ignition
probability is not null, as detailed below.

The automaton supports both Von Neumann and Moore [37] neighborhoods, whose
structures are shown in Figure 3.

Figure 3. Diagram of the cellular automaton neighborhoods supported by our models: (a) Moore;
(b) Von Neumann.

In our experiments, the full Moore neighborhood gives the best results, provided that
the diagonal neighbors are handled appropriately.

The ignition probability of each burnable cell is estimated as:

p = pm(1 − (1 − pb)
aw ·ah) (3)

where pb is the base ignition probability, pm is the moisture contribution, and aw and ah are
factors depending on wind and slope, respectively.

In the VolcFire model, pb is equal to the NDVI value and pm is derived from the NDMI
value as follows:

pm = 1 −
√

NDMI. (4)

The slope factor ah is computed from the slope between each cell and its neighbor as
follows:

S =
∆h

δd · ρ
(5)

where ∆h is the DSM height difference, ρ the DSM resolution, and δd is a neighbor correction
factor, equal to 1 for neighbors along a principal axis (Von Neumann neighbors) and

√
2

for diagonal neighbors. The slope is clipped to the [−0.6, 0.6] range and normalised to the
[−1, 1] range to obtain the normalised slope

Sn =
max(−0.6, min(S, 0.6))

0.6
(6)
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before computation of the slope coefficient:

ah = 1 + s5(|Sn|)
σ · (σ + 3)

4
(7)

where σ = sgn(Sn) is the sign function applied to Sn and s5(x) is the 5th order smooth-step
function

s5(x) = 6x5 − 15x4 + 10x3. (8)

A plot of the slope coefficient over the entire slope range is shown in Figure 4.

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

Slope

a
h

Figure 4. Plot of the slope factor ah for a slope between −1.0 (−100%) and 1.0 (100%), illustrating the
factor strength leveling out after 0.6 (60%).

The wind factor aw is the same as the one used in PROPAGATOR [29].
If the resulting ignition probability is non-zero, a random number pe is generated and

the cell changes to the burning state if pe < p. If the cell does not change state, the next
neighbor is checked.

Fuel is taken into account by considering an initial value corresponding to the NDVI
value, with a loss of 0.6 per iteration in which the cell is in the burning state. A cell is
marked as burnt when the fuel drops to 0 or below.

Our model does not track time information, so the ROS is not taken into account.
The automaton iterations are purely indicative of causality, and do not provide time-span
information such as minimum travel time.

2.4. Run Termination and Aggregate Probability

A single run of the model repeats the fire-spreading iterations described in Section 2.3
until no more burning cells are present in the automaton. Optionally, a maximum number
of iterations can be set as a proxy in individual scenarios where it is known that there has
been human intervention to cut fire propagation.

Due to the probabilistic nature of the model, multiple runs can provide different results.
An aggregate probability of invasion can be computed by running the model multiple times
and estimating the combustion probability for each cell as the ratio between the number of
runs in which it is burnt to the total number of runs.
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The code, the overall structure of which is shown in Figure 5, is designed to produce
directly the aggregate probability of invasion, running the model multiple times for a single
simulation. By default, each simulation aggregates the result of 100 runs.

Aggregate probability computation

Input data
processing

Cellular automaton
initialisation

NO

YES

enough
runs?

Aggregate
output

Begin run

Reset initial state VolcFire Spreading Model

 NO 

End run

Begin iteration

For each cell
compute

state change

For each cell
update

cell state

End iteration

 YES 
has

burnable
cells?

Figure 5. Flowchart of the VolcFire model.

2.5. Model Validation

Since the model is probabilistic, the quality of the results of a simulation can be
quantified by computing the Brier score [38]

BS =
1
N

N

∑
c=1

( fc − oc)
2 (9)

where N is the number of burnable cells, fc is the probability computed by VolcFire for
each burnable cell to burn, oc is 0 for cells that were not reached by the fire in the real event,
and 1 for the cells that were burnt by the real fire.

To determine the burned area, we use the difference Normalised Burn Ratio index
(dNBR) [39]. This is obtained as the difference between the Normalised Burn Ratio (NBR)
computed before and after the fire. The NBR is computed as

NBR =
B8 − B12
B8 + B12

(10)
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where B12 is the Sentinel-2 band whose properties are summarised in Table 1, and the
dNBR is

dNBR = NBRpre − NBRpost. (11)

A cell is marked as burnt in the fire if dNBR is larger than 0.1
The reliability of the model was assessed by computing the Brier score of multiple

simulations for each test case, and assessing its stability.

3. Results

To validate our model, we tested it using two fires that occurred on Stromboli island:
one on 3 July 2019, caused by a paroxysmal eruption, and another on 25 May 2022, of an-
thropogenic origin. In both cases, fire-fighters and the local inhabitants intervened to stop
the fire spreading. Since our model is not able to represent this aspect, we have set an upper
limit of 400 iterations to artificially stop fire spreading in the model. This has proven to be
significant in the 3 July 2019 test case, and less so in the 25 May 2022 case.

The Brier score stability for each test case was assessed by running 11 simulations per
test case. The reported Brier score in each case represents the average and range of the
scores across the 11 simulations.

3.1. Fire of 3 July 2019

On 3 July 2019, a paroxysmal eruption led to the fall of incandescent material on
the southwest of the island, north of Ginostra village. This ignited a fire and caused one
death [3,4]. According to media and satellite data, this fire propagated both west and east,
reaching the shoreline on both sides, and it was stopped mainly by firefighter intervention
(air-tankers) to the east and north-east of the Sciara del Fuoco.

For this fire, we considered an ignition point at 15.20328 E and 38.79035 N with a wind
strength and direction equal to 13 km/h and 115 degrees, respectively, according to the
information offered by the media and the wind map available at [33]. The NDVI and NDMI
derived from the Sentinel-2 image acquired on 2 July 2019 are shown in Figure 6. An upper
limit of 400 iterations was imposed, as a proxy for the firefighting interventions.

Figure 6. Maps of the NDVI (a) and NDMI (b) derived from the Sentinel-2 image acquired on 2 July
2019 and used as input of the VolcFire model.

The results of a 100-run simulation offer a fire hazard map that follows overall the same
area as the real fire, with the exception of the Ginostra area, where the inhabitants stopped the
fire themselves. In the VolcFire model, the fire continues to propagate east, reaching the Forgia
Vecchia area, and west, reaching the coastline at Punta Chiappe (Figure 7). After 400 steps,
simulations cover an area that closely matches the burnt area (calculated using the Sentinel-
2 images acquired on 2 and 7 July 2019), with a Brier score of 0.146 ± 0.002. Without
the 400-iteration limit, the fire propagates further north, reaching the town of Stromboli,
highlighting the usefulness of the iteration limit as a proxy for firefighting interventions.
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Figure 7. (a) Map of the dNBR obtained using the NBR indexes from the Sentinel-2 images acquired on
2 and 7 July 2019; (b) cumulative probability of combustion given by 100-run numerical simulations.
The black contour represents the burnt area derived from the dNBR thresholding.

3.2. Fire of 25 May 2022

On 25 May 2022, an anthropogenic fire started about 500 m southwest from the
C.O.A. (Advanced Operations Centre of Stromboli), southwest of the town of Stromboli,
propagating all over the northeastern area of the island.

For this fire, we considered an ignition point at 15.23252 E and 38.80019 N with a wind
strength of 12 km/h and a direction of 315 degrees, again according to the information
offered by the media and the wind map at [33]. The NDVI and NDMI derived from the
Sentinel-2 image acquired on 22 May 2022 are shown in Figure 8.

Figure 8. Maps of the NDVI (a) and NDMI (b) derived from the Sentinel-2 image acquired on 22 May
2022 and used as input of the VolcFire model.

Simulations had average of 233 iterations per run (the upper limit of 400 iterations
was never reached), and the Brier score of our simulated propagation area is 0.073 ± 0.001,
compared to the burnt area obtained by dNBR thresholding from the Sentinel-2 images of
22 May and 1 June 2022 (Figure 9).

The Brier score is low even though the spread estimated by our model includes an
area with low probability of invasion that was not burnt in the actual fire, as it is located
beyond the point where firefighting intervention prevented further spreading.
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Figure 9. (a) Map of the dNBR obtained using the NBR indexes from the Sentinel-2 images acquired
on 22 May and 1 June 2022; (b) cumulative probability of combustion given by 100-run numerical
simulations. The black contour represents the burnt area derived from the dNBR thresholding.
The acronym C.O.A. stands for Centro Operativo Avanzato.

4. Discussion

In this paper, we have introduced VolcFire, a probabilistic cellular automata model for
the evaluation of the probability of burning by volcano-induced fires. Since the aim of the
model is the production of full-scale hazard maps, the evolution of the cellular automaton
sacrifices physical accuracy in favour of simplicity and computational speed. Examples
of these simplifications compared to other models include missing contributions from
vegetation type, which is often used to fine-tune the ignition probability (compare [10,29]),
the lack of timing information related to the ROS of the fire (compare [5,26,29,31,40]), and a
choice to assume that wind information is constant in time and space during a simulation
(compare [29]).

The model can still be applied to individual scenarios, a feature that has been used
to validate the fire propagation mechanism in the two test cases presented. However, it is
important to remark that the results obtained from the VolcFire simulations do not provide
sufficient information to plan scenario-specific interventions, for which timing information
is essential.

VolcFire has been validated against two real-world scenarios: the fire that occurred on
3 July 2019, caused by a paroxysmal eruption of Stromboli, and the anthropogenic fire that
occurred on 25 May 2022. In both cases, the results show that the model is able to estimate
the burnt areas with high accuracy, as indicated by the low Brier score, reproducing the
overall real burn pattern obtained from the dNBR maps. Due to the inability to model
scenario-specific firefighting interventions, we had to use an upper limit to the iterations
in the simulations as a proxy. This still gives sufficiently accurate results, but it negatively
affects the Brier score in the 3 July 2019 test case, which is around twice the score for the
25 May 2022 test case. The reliability of the model has been assessed by running multiple
simulations and evaluating the changes in the Brier score, which varies by less than 1.5%
across 11 simulations for each test case.

A more detailed comparison of the model results with the actual spread allows us to
derive additional information about the events. Specifically, in the simulation of the 3 July
2019 case, removing the upper limit of 400 iterations from the model results in the simulated
fire consistently spreading through the entire island. The number of iterations used as a
limit corresponds approximately to the number of steps needed for the simulated fire to
reach the section of the island where firefighting intervention took place. This suggests
that firefighting played a significant role in effectively curtailing the fire spreading. For the
25 May 2022 event, our simulations indicate on the other hand that the fire would have
had a high probability of stopping before crossing over to the Forgia Vecchia area and
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progressing to the southern side of the island; the model still estimated a 1 in 10 probability
of further spreading, once again justifying the air-tanker intervention.

A point of note concerns the classification of roads as fire barriers. The model runs at
a relatively low spatial resolution of 10 m, which is insufficient to resolve the narrow roads
on Stromboli island. Although the roads themselves could be accounted for from the higher
resolution land-use map information, we have ultimately decided not to take them into
account even as lower-dimensional fire barriers, since the surveyed road width is never
larger than 2 m, and roads are surrounded by abundant, highly flammable vegetation,
questioning their actual effectiveness as fire barriers.

Indeed, the volcano-flank vegetation mainly consists of Arundo donax, which belongs to
the top 100 most invasive alien species [41], with the peculiarity of its fast growth (5 cm per
day) and low water content. This type of vegetation, in a high humidity environment like
that of Stromboli island, creates the perfect condition for fire ignition and propagation, and
explains the wide spreading all over the island in the absence of firefighting intervention.

The results obtained with the current model are encouraging and highlight the oppor-
tunity to produce an island-wide fire hazard map, which may be used to plan preventive
interventions to reduce the associated risk [42]. The model proposed in this work has been
designed with this specific intent, although it may not currently provide information to
assist near-real-time firefighting efforts.

5. Conclusions and Future Works

The presented probabilistic cellular automaton model for fire propagation demon-
strates promising capabilities in simulating the spreading of volcanic-induced fires, as
evidenced by its application to previous scenarios on Stromboli island. The model sacrifices
complexity and physical detail in favour of higher computational efficiency and simplicity
of input, as it is being developed with the primary goal of generating island-wide fire
hazard maps. Some of the input data needed by the model is long-term (the topography
and land-use map), while others are seasonal (the wind direction and intensity, and the
vegetation load and moisture content; the latter can be derived automatically from satellite
imagery from which the model computes the NDVI and NDMI indices during initialisation).

The model currently employs the NDVI and NDMI indices directly as model data,
with empirically-determined thresholds to identify unburnable cells and cells that can burn
for more than one iteration. The values of these thresholds currently used in the model
have been tuned for Stromboli, and may need to be calibrated to allow the model to be
used accurately on other volcanoes.

A detailed sensitivity analysis of the model to these parameters is needed to estimate
their relative importance on the model output, and to determine their optimal value. As
part of this process, the model will also be tested on a broader range of volcanic-fire events
and conditions (e.g., the Cumbre Vieja eruption of 2021 [43]) to determine in what measure
these values are location-dependent.

Taking into account the simplifications adopted for the model, the authors are also
exploring the possibility to adapt the evolution function into a single-run probability
propagation. This would allow the computation of the probability of combustion for each
cell at each iteration without resorting to multiple runs of the automaton, and would
make it easier to incorporate probabilistic information about the initial ignition points,
allowing the volcano-related fire hazard map for the entire island to be computed in a
single automaton run, given information about the probability of impact from incandescent
pyroclasts over the source areas.



Fire 2024, 7, 70 12 of 14

Author Contributions: Conceptualisation, R.G. and G.B.; methodology, R.G. and G.B.; software, R.G.
and G.B.; validation, R.G., G.B., G.G. and A.C.; resources, R.G., G.G., F.Z. and D.A.; writing—original
draft preparation, all authors; writing—review and editing, all authors; project administration, G.B.;
funding acquisition, G.B. and G.G. All authors have read and agreed to the published version of
the manuscript.

Funding: INGV-DPC Agreement All. B, 2022-2024-“Sistema Unico Stromboli”, OB.FU. 1138.010-CUP:
D53C22002760001.

Data Availability Statement: Sentinel-2 images are courtesy of the Copernicus Open Access Hub
(https://scihub.copernicus.eu).

Acknowledgments: This research has been conducted within the INGV-DPC Agreement All. B,
2022-2024-“Sistema Unico Stromboli”, Task 4.2: Risk analysis from fires of volcanic origin in Stromboli.
The authors thank the CIMA foundation team that developed the PROPAGATOR software for the
information about the wind equation. We thank the editor and the three anonymous reviewers
for their comments which helped us improve the manuscript. This work was supported by the
INGV project Pianeta Dinamico (CUP D53J19000170001) funded by MIUR (“Fondo finalizzato al
rilancio degli investimenti delle amministrazioni centrali dello Stato e allo sviluppo del Paese,” legge
145/2018), Tema VT SAFARI (PI Gaetana Ganci), and “HARVEST- Integrating tHermal cAmeRa data
and SPH modeling to quantify Volcanic dEposits at STromboli” (Bando di Ricerca Libera 2021 of
INGV, PI Giuseppe Bilotta).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:
CA Cellular Automaton
dNDBR difference of Normalized Difference Burn Ratio
DSM Digital Surface Model
GIS Geographic Information System
NDBR Normalized Difference Burn Ratio
NDMI Normalized Difference Moisture Index
NDVI Normalized Difference Vegetation Index
ROS Rate of Spread

References
1. Areu-Rangel, O.S.; Bonasia, R.; Di Traglia, F.; Del Soldato, M.; Casagli, N. Flood susceptibility and sediment transport analysis of

stromboli Island after the 3 July 2019 paroxysmal explosion. Sustainability 2020, 12, 3268. [CrossRef]
2. Turchi, A.; Di Traglia, F.; Luti, T.; Olori, D.; Zetti, I.; Fanti, R. Environmental aftermath of the 2019 Stromboli eruption. Remote

Sens. 2020, 12, 994. [CrossRef]
3. Andronico, D.; Del Bello, E.; D’Oriano, C.; Landi, P.; Pardini, F.; Scarlato, P.; de’Michieli Vitturi, M.; Taddeucci, J.; Cristaldi, A.;

Ciancitto, F.; et al. Uncovering the eruptive patterns of the 2019 double paroxysm eruption crisis of Stromboli volcano. Nat.
Commun. 2021, 12, 4213. [CrossRef] [PubMed]

4. Giordano, G.; De Astis, G. The summer 2019 basaltic Vulcanian eruptions (paroxysms) of Stromboli. Bull. Volcanol. 2021, 83, 1–27.
[CrossRef]

5. Hantson, S.; Andela, N.; Goulden, M.L.; Randerson, J.T. Human-ignited fires result in more extreme fire behavior and ecosystem
impacts. Nat. Commun. 2022, 13, 2717. [CrossRef]

6. Anderson, H. Fire spread and flame shape. Fire Technol. 1968, 4, 51–58. [CrossRef]
7. Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Intermountain Forest & Range Experiment

Station, Forest Service, US Department of Agriculture: Ogden, UT, USA, 1972; Volume 115.
8. Albini, F.A. Computer-Based Models of Wildland Fire Behavior: A User’s Manual; USDA Forest Service Intermountain Forest and

Range Experiment Station: Ogden, UT, USA, 1976.
9. Albinet, G.; Searby, G.; Stauffer, D. Fire propagation in a 2-D random medium. J. Phys. 1986, 47, 1–7. [CrossRef]
10. Baranovskiy, N.V.; Ignateva, A.V. Mathematical Modeling of Human Activity on Forested Areas from Point Objects of Railway

Infrastructure in a Two-Dimensional Statement. Int. J. Eng. Appl. 2022, 10, 15–28. [CrossRef]
11. Kumar, M.; Li, S.; Nguyen, P.; Banerjee, T. Examining the existing definitions of wildland-urban interface for California. Ecosphere

2022, 13, e4306. [CrossRef]
12. Masoudvaziri, N.; Bardales, F.S.; Keskin, O.K.; Sarreshtehdari, A.; Sun, K.; Elhami-Khorasani, N. Streamlined wildland-urban

interface fire tracing (SWUIFT): Modeling wildfire spread in communities. Environ. Model. Softw. 2021, 143, 105097. [CrossRef]

https://scihub.copernicus.eu
http://doi.org/10.3390/su12083268
http://dx.doi.org/10.3390/rs12060994
http://dx.doi.org/10.1038/s41467-021-24420-1
http://www.ncbi.nlm.nih.gov/pubmed/34244521
http://dx.doi.org/10.1007/s00445-020-01423-2
http://dx.doi.org/10.1038/s41467-022-30030-2
http://dx.doi.org/10.1007/BF02588606
http://dx.doi.org/10.1051/jphys:019860047010100
http://dx.doi.org/10.15866/irea.v10i1.21196
http://dx.doi.org/10.1002/ecs2.4306
http://dx.doi.org/10.1016/j.envsoft.2021.105097


Fire 2024, 7, 70 13 of 14

13. Carlson, A.R.; Helmers, D.P.; Hawbaker, T.J.; Mockrin, M.H.; Radeloff, V.C. The wildland–urban interface in the United States
based on 125 million building locations. Ecol. Appl. 2022, 32, e2597. [CrossRef]

14. Schug, F.; Bar-Massada, A.; Carlson, A.R.; Cox, H.; Hawbaker, T.J.; Helmers, D.; Hostert, P.; Kaim, D.; Kasraee, N.K.; Martinuzzi,
S.; et al. The global wildland–urban interface. Nature 2023, 621, 94–99. [CrossRef]

15. Margerit, J.; Séro-Guillaume, O. Modelling forest fires. Part II: Reduction to two-dimensional models and simulation of
propagation. Int. J. Heat Mass Transf. 2002, 45, 1723–1737. [CrossRef]

16. Bhattacharya, A.; Calmidi, V.; Mahajan, R. Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf. 2002,
45, 1017–1031. [CrossRef]

17. Séro-Guillaume, O.; Margerit, J. Modelling forest fires. Part I: A complete set of equations derived by extended irreversible
thermodynamics. Int. J. Heat Mass Transf. 2002, 45, 1705–1722. [CrossRef]

18. Mangiameli, M.; Mussumeci, G.; Cappello, A. Forest Fire Spreading Using Free and Open-Source GIS Technologies. Geomatics
2021, 1, 50–64. [CrossRef]

19. Perestrelo, S.; Grácio, M.C.; Ribeiro, N.A.; Lopes, L.M. Modelling Forest Fires Using Complex Networks. Math. Comput. Appl.
2021, 26, 68. [CrossRef]

20. Duarte, J. Fire spreading in natural fuels: A computational aspect. In Annual Reviews of Computational Physics; World Scientific:
Singapore, 1997; Volume V, pp. 1–23. [CrossRef]

21. Sun, L.; Xu, C.; He, Y.; Zhao, Y.; Xu, Y.; Rui, X.; Xu, H. Adaptive Forest fire spread simulation algorithm based on cellular
automata. Forests 2021, 12, 1431. [CrossRef]

22. Trucchia, A.; Meschi, G.; Fiorucci, P.; Gollini, A.; Negro, D. Defining wildfire susceptibility maps in Italy for understanding
seasonal wildfire regimes at the national level. Fire 2022, 5, 30. [CrossRef]

23. Xu, Y.; Li, D.; Ma, H.; Lin, R.; Zhang, F. Modeling Forest Fire Spread Using Machine Learning-Based Cellular Automata in a GIS
Environment. Forests 2022, 13, 1974. [CrossRef]

24. Richards, G.D.; Bryce, R.W. A computer algorithm for simulating the spread of wildland fire perimeters for heterogeneous fuel
and meteorological conditions. Int. J. Wildland Fire 1995, 5, 73–79. [CrossRef]

25. Von Niessen, W.; Blumen, A. Dynamic simulation of forest fires. Can. J. For. Res. 1988, 18, 805–812. [CrossRef]
26. Ferragut, L.; Asensio, M.; Monedero, S. Modelling radiation and moisture content in fire spread. Commun. Numer. Methods Eng.

2007, 23, 819–833. [CrossRef]
27. Bürger, R.; Gavilán, E.; Inzunza, D.; Mulet, P.; Villada, L.M. Exploring a convection–diffusion–reaction model of the propagation

of forest fires: Computation of risk maps for heterogeneous environments. Mathematics 2020, 8, 1674. [CrossRef]
28. Pulvirenti, L.; Squicciarino, G.; Fiori, E.; Fiorucci, P.; Ferraris, L.; Negro, D.; Gollini, A.; Severino, M.; Puca, S. An automatic

processing chain for near real-time mapping of burned forest areas using sentinel-2 data. Remote Sens. 2020, 12, 674. [CrossRef]
29. Trucchia, A.; D’Andrea, M.; Baghino, F.; Fiorucci, P.; Ferraris, L.; Negro, D.; Gollini, A.; Severino, M. PROPAGATOR: An

operational cellular-automata based wildfire simulator. Fire 2020, 3, 26. [CrossRef]
30. Mossner, W.; Drossel, B.; Schwabl, F. Computer simulations of the forest-fire model. Phys. Stat. Mech. Its Appl. 1992, 190, 205–211.

[CrossRef]
31. Li, X.; Zhang, M.; Zhang, S.; Liu, J.; Sun, S.; Hu, T.; Sun, L. Simulating forest fire spread with cellular automation driven by a

LSTM based speed model. Fire 2022, 5, 13. [CrossRef]
32. Calvari, S.; Di Traglia, F.; Ganci, G.; Giudicepietro, F.; Macedonio, G.; Cappello, A.; Nolesini, T.; Pecora, E.; Bilotta, G.; Centorrino,

V.; et al. Overflows and pyroclastic density currents in March-April 2020 at Stromboli volcano detected by remote sensing and
seismic monitoring data. Remote Sens. 2020, 12, 3010. [CrossRef]

33. Beccario, C. Earth. Available online: https://earth.nullschool.net/ (accessed on 22 January 2024).
34. GDAL/OGR Contributors. GDAL/OGR Geospatial Data Abstraction Software Library. Available online: https://gdal.org

(accessed on 22 January 2024).
35. Collin, A.; Bernardin, D.; Sero-Guillaume, O. A physical-based cellular automaton model for forest-fire propagation. Combust.

Sci. Technol. 2011, 183, 347–369. [CrossRef]
36. EOS Data Analytics. NDMI (Normalized Difference Moisture Index). Available online: https://eos.com/make-an-analysis/

ndmi/ (accessed on 22 January 2024).
37. Toffoli, T.; Margolus, N. Cellular Automata Machines: A New Environment for Modeling; The MIT Press: Cambridge, MA, USA, 1987.

[CrossRef]
38. Benedetti, R. Scoring rules for forecast verification. Mon. Weather. Rev. 2010, 138, 203–211. [CrossRef]
39. Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126.

[CrossRef]
40. Maffei, C.; Menenti, M. Predicting forest fires burned area and rate of spread from pre-fire multispectral satellite measurements.

ISPRS J. Photogramm. Remote. Sens. 2019, 158, 263–278. [CrossRef]
41. Lowe, S.; Browne, M.; Boudjelas, S.; De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive

Species Database; Invasive Species Specialist Group: Auckland, New Zealand, 2000; Volume 12.

http://dx.doi.org/10.1002/eap.2597
http://dx.doi.org/10.1038/s41586-023-06320-0
http://dx.doi.org/10.1016/S0017-9310(01)00249-6
http://dx.doi.org/10.1016/S0017-9310(01)00220-4
http://dx.doi.org/10.1016/S0017-9310(01)00248-4
http://dx.doi.org/10.3390/geomatics1010005
http://dx.doi.org/10.3390/mca26040068
http://dx.doi.org/10.1142/9789812819444_0001
http://dx.doi.org/10.3390/f12111431
http://dx.doi.org/10.3390/fire5010030
http://dx.doi.org/10.3390/f13121974
http://dx.doi.org/10.1071/WF9950073
http://dx.doi.org/10.1139/x88-123
http://dx.doi.org/10.1002/cnm.927
http://dx.doi.org/10.3390/math8101674
http://dx.doi.org/10.3390/rs12040674
http://dx.doi.org/10.3390/fire3030026
http://dx.doi.org/10.1016/0378-4371(92)90032-L
http://dx.doi.org/10.3390/fire5010013
http://dx.doi.org/10.3390/rs12183010
https://earth.nullschool.net/
https://gdal.org
http://dx.doi.org/10.1080/00102202.2010.508476
https://eos.com/make-an-analysis/ndmi/
https://eos.com/make-an-analysis/ndmi/
http://dx.doi.org/10.7551/mitpress/1763.001.0001
http://dx.doi.org/10.1175/2009MWR2945.1
http://dx.doi.org/10.1071/WF07049
http://dx.doi.org/10.1016/j.isprsjprs.2019.10.013


Fire 2024, 7, 70 14 of 14

42. Bilotta, G.; Cappello, A.; Ganci, G. Formal Matters on the Topic of Risk Mitigation: A Mathematical Perspective. Appl. Sci. 2022,
13, 265. [CrossRef]

43. Day, J.M.D.; Geiger, H.; Troll, V.R.; Perez-Torrado, F.J.; Aulinas, M.; Gisbert, G.; Carracedo, J.C. Bouncing Spallation Bombs
During the 2021 La Palma Eruption, Canary Islands, Spain. Earth Sci. Syst. Soc. 2022, 2, 10063. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/app13010265
http://dx.doi.org/10.3389/esss.2022.10063

	Introduction
	Materials and Methods
	Input Data
	CA Initialisation
	VolcFire Spreading Model
	Run Termination and Aggregate Probability
	Model Validation

	Results
	Fire of 3 July 2019
	Fire of 25 May 2022

	Discussion
	Conclusions and Future Works
	References

