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Abstract: Smoke detectors are the most widely used fire detectors due to their high sensitivity.
However, they have persistently faced issues with false alarms, known as nuisance alarms, as they
cannot distinguish smoke particles, and their responsiveness varies depending on the particle size
and concentration. Although technologies for distinguishing smoke particles have shown promising
results, the hardware limitations of smoke detectors necessitate an intelligent approach to analyze
scattering signals of various wavelengths and their temporal changes. In this paper, we propose a
pipeline that can distinguish smoke particles based on scattering signals of various wavelengths as
input. In the data extraction phase, we propose methods for extracting datasets from time series
data. We propose a method that combines traditional approaches, early detection methods, and a
Dynamic Time Warping technique that utilizes only the shape of the signal without preprocessing.
In the learning model and classification phase, we present a method to select and compare various
architectures and hyperparameters to create a model that achieves the best classification performance
for time series data. We create datasets for six different targets in our presented sensor and smoke
particle test environment and train classification models. Through performance comparisons, we
identify architecture and parameter combinations that achieve up to 98.7% accuracy. Ablation studies
under various conditions demonstrate the validity of the chosen architecture and the potential of
other models.

Keywords: time series classification; optical scattering signals; nuisance alarm

1. Introduction

Fire detectors are the most commonly used automated fire detection devices in ev-
eryday life. In particular, smoke detectors have a simple structure, where infrared light
is scattered when smoke particles enter the detector, and this scattered light is detected
by a photodiode, generating signals to trigger alarms in various forms. Due to their high
sensitivity, straightforward operating principles, and cost effectiveness, optical devices
have become popular detectors [1]. However, due to their high sensitivity, they suffer from
frequent errors, as they may not distinguish smoke particles, and their responsiveness
varies depending on the particle size and concentration. To address this issue, UL (Under-
writers Laboratories) has introduced UL-268 standards for all fire detectors and defined
false alarms referred to as nuisance alarms [2].

Numerous studies on aerosol particles have been conducted using optical systems,
especially on four major issues: particle distribution, multiple wavelengths, polarization
and scattering angles.

A correlation method of selecting an optimal set of wavelengths and scattering angles
was presented in [3], in which Q. Zhang et al., extracted an indicator for discrimination
between fire and non-fire aerosols using scattering matrix analysis in polarized light scat-
tering [4]. T. Deng et al., designed a sensor to measure surface area concentration with dual
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wavelength sources [5]. Methods for the testing of optical smoke detectors in dusty envi-
ronments was presented in [6]. Recently, there has been research conducted on reducing
false alarms by utilizing the scattering characteristics of various wavelengths. K. Li et al. [7]
conducted research to reduce false alarms by measuring the scattering coefficient and
extinction coefficient through multiple photodiodes, and W. Wegrzyriski et al., measured
characteristics using densitometers of various wavelengths [8].

Precise system configurations and substantial data can lead to the creation of so-
phisticated detectors. However, considering the market for fire detectors, we should be
able to successfully distinguish using only the simple scattering technology of LEDs and
photodiodes. The limitations of hardware and the need for sensitive fire detection also
call for efficient anomaly detection techniques. In this paper, we contribute to creating
effective datasets that respond to continuous smoke particle data. Additionally, to the best
of our knowledge, there has been no experimental study on the time series classification of
scattering data from smoke particles; hence, our results can contribute to this issue.

This paper is composed of five sections. In Section 2, we calculate the scattering
efficiency of smoke particles for various wavelengths and discuss techniques related to the
multiple wavelengths we focus on. Section 3 proposes methods for efficiently extracting
datasets from continuous scattering signals caused by smoke particles. Section 4 introduces
the device designed for data collection and experiments, as well as introducing the experi-
mental equipment, defines the learning models, and discusses the compared performance
results. Section 5 presents the results of the performance comparisons and analyses for
various hyperparameters. The entire paper concludes in Section 6.

2. Backgrounds

In an aerosol environment, optical absorption and scattering by particles can be
analyzed based on various parameters. Specifically, according to Mie scattering theory,
scattering efficiency is primarily influenced by particle size, light source intensity, light
source wavelength, refractive index, and scattering angle [9]. To investigate the correla-
tion between particle size and optical scattering intensity at different wavelengths, we
performed MATLAB simulations for Mie scattering and absorption as outlined in [10].
In this paper, we focused on four specific wavelengths of interest (460 nm, 533 nm, 664 nm,
and 947 nm), and scattering efficiency was computed based on a Lognormal distribution
for particle size, following the research of [5]. Note that we specified a refractive index of
m = 1.55 + 0.02i, and the particle size range was defined as 0.1 µm to 5 µm.

Figure 1 shows the results of the total scattering efficiency as a function of particle size
for each wavelength. The X-axis represents the particle size, while the Y-axis represents the
scattering efficiency Qsca. Non-fire sources (such as water vapor and dust) typically contain
particles larger than 1 µm, whereas smoke particles generated from actual fires are known
to be smaller, typically below 1 µm [11]. According to the simulations, ideally, smoke
particles generated from actual fires exhibit higher total scattering efficiency at shorter
wavelength ranges, while those from non-fire sources exhibit irregular scattering efficiency
across all wavelength ranges.
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Figure 1. Total scattering efficiency based on particle size.
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Focusing on the correlation between different wavelengths, it is possible to develop
technologies for detecting non-fire sources or distinguishing smoke particles using light
sources at various wavelengths. In [12], research focused on extracting characteristic values
through the statistical analysis of correlations among multiple wavelengths, while [13]
explored the discrimination of smoke particles using signals from multiple wavelengths.
In the realm of products, both TI’s TPS8802 [14] and Analog Devices’ ADPD188BI [15] intro-
duce modules that are based on the scattering efficiency between dual wavelengths, aiming
not only for fire detection but also for distinguishing non-fire sources. However, unlike the
ideal simulations that satisfy the scattering condition above, in the real environment, due to
various variables, smoke particles do not guarantee consistent scattering. The distribution
of smoke particles is strongly related to time, influenced by the diffusion speed, which
varies due to spatial characteristics and fluid dynamics. Depending on the smoke material
defined in the UL268 document [2], each has its own diffusion speed and concentration
as detected by optical detectors. Additionally, in [12], the research aimed to extract an
effective range due to the instability of smoke particles in time. Furthermore, as presented
in Analog Devices’ research [16], it was demonstrated that classification is possible based
on the difference in diffusion speeds between fire smoke and cooking smoke. Intuitively,
to address nuisance alarms and further classify smoke particles, the simultaneous analysis
of wavelength-related features and time series data features is necessary.

3. Methodology

In this paper, we focus on the analysis of scattering signals generated by multi-
wavelength light sources to classify between fire smoke and non-fire sources. Figure 2
illustrates a simple overview of our pipeline. The pipeline consists primarily of two key
components: the ‘data extraction phase’, which involves the detection of anomalous seg-
ments and the extraction of indices for inputs for the classification model, and the ‘learning
model and classification phase’, used for generating the classification model and applying
it to classify different types of smoke particles. Between each of these phases, there are
additional steps involving signal preprocessing and tuning the hyperparameters for the
training model, and further details will be addressed in the following sections.

Scattering

efficiency

Time

Multiple

wavelength
Dataset Time Series

Classification

Dataset Extraction
Learning Model 

and Classification

Figure 2. A simple overview of our pipeline.

Features of time series data for smoke particles generated by fires or non-fire sources
are illustrated in Figure 3. Note that Figure 3 is an example of the smoke particle signals
collected through the device and experimental environment discussed in Section 4. These
signals demonstrate a roughly linear progression over time, displaying either an increase
or a decrease from their initial states. Subsequently, it can be observed that they reach a
saturation point at a constant level and exhibit fluctuations. Note that this pattern is not
limited to the experiments conducted in this paper but is observed in studies involving
scattering signal collection through optical detectors, including similar fire tests [12,17].
Based on these shapes of signals, we extract data using three methods. Each method is
applicable to every signal and allows for the extraction of indices corresponding to valid
segments from the signal as output.
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(a) Time series data from fire sources (Filter paper)
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(b) Time series data from non-fire sources (Hamburger patty)
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Figure 3. The time series data for smoke particles generated by (a) fires (filter paper) and (b) non-fire
sources (cooking hamburger patty).

3.1. Dataset Extraction

3.1.1. Threshold Detection

Generally, smoke detectors have been studied by calculating smoke concentrations
within the detectors and setting thresholds to trigger alarms [18]. Intuitively, when a
fire occurs, scattering caused by smoke particles entering the detector results in signal
variations according to the internal design. As shown in Figure 3, the signal can increase or
decrease depending on the reflection angle and chamber design, allowing for the empirical
definition of upper and lower threshold values. In this paper, upper and lower threshold
values equivalent to three times the standard deviation of signals in the idle state were
set, and indices beyond this range were extracted. Note that these values were empirically
determined to detect changes in multivariate data.

3.1.2. Two-Sided Cumulative Sum

The CUSUM (cumulative sum) algorithm is a statistical technique designed to monitor
sequential data and detect significant shifts or changes in those data over time. Its primary
purpose is to identify deviations from a predefined baseline or expected behavior. This
method is valuable in various applications, including quality control, process monitoring,
and anomaly detection. It can be used for data extraction when the goal is to pinpoint
the exact time or location of a change in the data. When this cumulative sum exceeds a
user-defined upper or lower threshold, it detects the existence of a change point in the
time series. In this paper, we introduce a two-sided CUSUM algorithm designed for the
signal patterns illustrated in Figure 3. Furthermore, we extend this algorithm to handle
multivariate data with multiple wavelengths.

Initially, we define two cumulative sums, denoted as Si
k[n] and Sd

k [n], along with two
corresponding decision functions Gi

k[n] and Gd
k [n] for both the upper and lower bounds,

respectively. Note that k represents one of the multiple wavelengths K. We can express the
instantaneous log-likelihood ratios si

k[n] and sd
k [n] as follows:

si
k[n] =

|δk|
σ̂2

k

(
xk[n]− µ̂0,k −

|δk|
2

)
, (1)

sd
k [n] =

|δk|
σ̂2

k

(
xk[n]− µ̂0,k +

|δk|
2

)
, (2)

where |δ| denotes the absolute value of the change, x[n] denotes the value of N wavelengths
at the current state n, and µ and σ denote the initial mean and variance values for each
wavelength [19]. Subsequently, for each sample, we iteratively compute Sik[n], Sdk[n],
Gik[n], and Gdk[n] as follows:

Si
k[n] = Si

k[n − 1] + si
k[n], Sd

k [n] = Sd
k [n − 1] + sd

k [n], (3)
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Gi
k[n] = max{Gi

k[n − 1] + si
k[n], 0}, Gd

k [n] = max{Gd
k [n − 1] + sd

k [n], 0}. (4)

If Gi
k[n] > h is satisfied for the predefined threshold h, we set the change point nc

within the sample range of 2t as follows:

nc = min
{
∀k ∈ K :n−t≤n<n+t Si

k[n]
}

. (5)

Similarly, if Gd
k [n] > h is satisfied, we set the change point nc within the sample range

of 2t as follows:
nc = min

{
∀k ∈ K :n−t≤n<n+t Sd

k [n]
}

. (6)

If neither of the above two conditions is satisfied, the sample n is incremented to
n + 1, and the process is repeated until the first instance of nc detection, at which point it is
extracted as an index.

3.1.3. Dynamic Time Warping with Reference Sequences

The DTW (Dynamic Time Warping) algorithm has been studied as a method for
measuring the similarity between two time series data sequences. One of the notable
strengths of the DTW algorithm is its capability to analyze aligned signals and measure
time distortions between two time series data sequences, even when their overall lengths
and magnitudes vary, achieved by locally stretching or compressing them. Considering
that we can roughly estimate the shape of the signals as shown in Figure 3, in this paper, we
define the expected reference signal as a state space model and adjust DTW to determine
the dataset to be extracted.

Initially, as the state space model, it is defined as

s̃k = cAkx0, (7)

where A is the state transition matrix, c is the output vector, x0 is the state vector [20] and
the k represents the sample index. We can split this model into three phases, and it also be
expressed as:

s̃k =


cAt1−k

p1 xp1, for k ≤ t1

cAk−t1
p2 xp2, for t1 < k ≤ t2

cAt2−t1
p2 xp2, for t2 < k ≤ t3.

(8)

Assume that there is a one channel of scattering signals, vector c is a 1 × N matrix,
vector A is an N × N matrix, and vector x is an N × 1 matrix. Also, the parameters for the
state space model can be set as:

c =
(
1 0

)
, A−1

p1 = Ap2 =

(
1 g
0 1

)
, (9)

where g denotes the gradient for the state transition matrix. In the idle state, we set
xp1 = [0, 0]⊺ except for the small change, but in the upper and lower states we set xp2 as
xp2+ = [0, 1]⊺ and xp2− = [0,−1]⊺, respectively.

Figure 4 illustrates the state space model for N = 2 and depicts the transitions for
Phase 1, Phase 2, and Phase 3 with xp2+ and xp2−. Note that the gradient g can be defined
as the ratio of the maximum value of the signal within the range up to k to the difference
(t2 − t1), which represents the interval of Phase 2.
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(a) The state space model of order N = 2
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(b) The set of DTW warping paths
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Figure 4. (a) The state space model of order N = 2 with three phases and (b) The set of DTW
warping paths.

Subsequently, the DTW algorithm allows us to calculate the warping path between a
reference sequence Q = (q1, q2, . . . , qt3) and a scattered signal S = (s1, s2, . . . , sN). These
two discrete time series data are aligned to form a t3 × N matrix. The (i, j) element of this
matrix represents the Euclidean distance d(qi, sj) = (qi − sj)2 between two points qi and
sj, and we can search for the set W that satisfies three conditions, the boundary condition,
continuity, and monotonicity [21]:

W = w1, w2, . . . , wK , max(t3, N) ≤ K < t3 + N − 1. (10)

Our goal is to find the optimal path that minimizes the warping cost, and we define
the cumulative distance up to the current cell γ as follows [22]:

γ(i, j) = d(qi, sj) + min{γ(i − 1, j − 1), γ(i − 1, j), γ(i, j − 1)}. (11)

Finally, we can compute the cumulative distances, denoted as γ+, between the state
space models s̃ with xp2+ and the scattered signal S. Similarly, we can calculate γ− for the
cumulative distances between s̃ with xp2+ and S. By selecting the reference sequence with
the smaller warping distance, we can extract the set of optimal warping path elements.
In this paper, we describe the phases for the dataset as Phase 2, which features periods of
increasing or decreasing signal magnitude, and Phase 3, where the magnitude is maintained
at a constant level. Due to the varying waveform of the signal depending on each source,
we crop and extract the data to the length of the dataset based on the transition point
between Phase 2 and Phase 3.

3.2. Learning Model and Classification

Considerable research has been conducted on learning models for the classification
of time series data. The time series data in this paper are characterized by patterns that
increase or decrease due to the smoke particles. To compare the performance of learning
models for this type of data, three representative architecture categories were selected.
Recurrent neural networks, typically used for voice and sentence processing, have already
shown effective results for time series data. To compare the number of parameters and
computational efficiency, we selected the LSTM (Long Short-Term Memory) [23] and
GRU (Gated Recurrent Unit) [24], which can be trained using time series data as input.
Among the methods for extracting features from time series data, the mWDN (multilevel
Wavelet Decomposition Network), which employs a structure utilizing multi-stage discrete
wavelet decomposition and LSTM [25], can also be trained using time series data as
input. Secondly, we included the Transformer architecture, which has shown significant
performance in various fields [26]. Through the Transformer, the influence of inductive bias
can be observed, and it uses tokens of time series data applied with multi-head attention as
input. Lastly, the Rocket-based [27] MiniRocket [28], which has achieved state-of-the-art
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performance on the UCR univariate time series classification datasets, was also included in
the performance comparison. Minirocket generates a wide range of features for time series
data as input, allowing for arbitrary lengths, expansion, padding, weights, and biases.

For the selected architectures, we can train the models using the data collected in
this paper and choose the model that achieves the highest classification accuracy for the
pipeline. For all models, we use the CrossEntropyLossFlat as the loss function, which
applies a flattened loss function to the inputs and targets. The selected model, which
includes the architecture and parameters that satisfy the optimal performance, can be
extracted for extension into a real-time classifier through the same pipeline.

4. Results

From fire and non-fire sources, scattering signals were collected using the following
device in Figure 5. We developed a device to enable data acquisition for scattering at
approximately 460 nm, 533 nm, 664 nm, and 947 nm wavelengths by selecting the analog
front end of the MAXIM Integrated Optical Sensor Module (San Jose, CA, USA) [29].
The device was designed with a chamber to allow the flow of smoke as shown in Figure 5.
Note that the chamber in this paper is not designed solely to observe scattering as in [15],
but rather it is a simple design intended to centralize the flow of smoke. The intensity
of the LEDs was set based on the efficiency of the photodiodes in ambient conditions at
the respective wavelengths to ensure the reproducibility of every device. Ultimately, this
structured device was developed to operate at a 50 Hz sampling rate for data across the
four wavelengths.

Sensor board

Chamber

Smoke detector

Figure 5. Design of a smoke detector for measuring scattering signals at multiple wavelengths.

4.1. Design of the Sensing Device and the Experimental Equipment

Figure 6 illustrates the structure and photographs of the experimental setup used for
generating smoke particles. The experimental equipment includes a square duct with a
cross-sectional area of 0.09 m² (0.3 m × 0.3 m) made of carbon steel. Materials for fire
experiments were placed in a burner for combustion, and a fan was installed at the end
of the smoke path to create a uniform flow. The generated particles first entered the duct
and then the test section. In the test section, a total of 10 sensor devices were installed
perpendicular to the direction of particle flow, according to the design mentioned above.
A total of six types of fire sources and non-fire sources were selected for the smoke particle
generation experiment. As shown in Table 1, the fire sources included paper, kerosene,
and polyethylene, while the non-fire sources were dust, vapor, and hamburger patties.
The experiments were conducted 20 times for each fire and non-fire source, and identical
samples of the same quantity were used for each smoke particle generation experiment
as much as possible. Tests #01 to #20 used filter paper from ADVANTEC (Tokyo, Japan).
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Tests #21 to #40 generated smoke using a wick with the liquid fuel kerosene. Tests #41
to #60 utilized polymer pellets of polyethylene. For Tests #61 to #80, dust of xxµm size
was dispersed through a blower. Tests #81 to #100 generated smoke particles by cooking
hamburger patties on a heated pan, and Tests #101 to #120 produced vapor using an
ultrasonic humidifier. For a more detailed description of the experimental environment,
refer to [30].

Burner

Suction flow

Test

section

Inverter Sensing 

Device

Figure 6. The structure and photographs of experimental equipment for generating smoke particles.

Table 1. Smoke particle generation experiments: fire and non-fire sources.

Label Source

Test #01∼Test #20 Filter paper
Test #21∼Test #40 Kerosene
Test #41∼Test #60 Polyethylene
Test #61∼Test #80 Dust

Test #81∼Test #100 Hamburger patty
Test #101∼Test #120 Vapor

4.2. Dataset and Learning Models

In Section 3, we addressed methods for extracting datasets from time series data.
Specifically, we identified three methods that enable us to extract indices representing the
starting point of a dataset. The first method, based on a threshold, sets the threshold at
±std ∗ 3 of the idle state for each wavelength and selects the smallest index that exceeds
this threshold. The second method, based on CUSUM, selects the smallest index detected
by the algorithm for each wavelength. Lastly, the DTW-based method chooses indices
corresponding to Phases 2 and 3 as defined in the reference sequence. From these indices,
we use continuous data of various lengths following each index as our dataset. For perfor-
mance comparison according to the length of the time series dataset in this paper, we utilize
datasets of 500 samples, 1500 samples, and 3000 samples in length. Recall that, with a 50 Hz
sampling rate, these correspond to periods of 10 s, 30 s, and 60 s, respectively.

The dataset is divided into training, testing, and validation sets as follows. According
to Table 1, a total of 1200 sequence data are generated from 10 sensors, with 200 sequences
per source. While it is possible to separate these into training and testing sets using
a random train–test split function, the sensor data from a single test are not entirely
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independent, as they coexist within the same chamber. To reduce the issue of leakage
appearing due to non-independence when randomly splitting the train and test sets, we
allocated the datasets as follows: 17 out of 20 trials (1020 sets) were used for the training
set, 1 trial (60 sets) for the testing set, and 2 trials (120 sets) for the validation set.

The dataset includes eight multivariate features, each of which represents a different
aspect of the scattering signal analysis. These features are derived from the scattering
signals obtained at various wavelengths and are processed to capture distinct characteristics
related to smoke particle detection. Features of the dataset can be expressed as given in
Table 2.

Table 2. Features of the dataset.

Feature 1 The difference between the ADC values and the mean of the initial idle ADC values at 947 nm wavelength

Feature 2 The difference between the ADC values and the mean of the initial idle ADC values at 664 nm wavelength

Feature 3 The difference between the ADC values and the mean of the initial idle ADC values at 533 nm wavelength

Feature 4 The difference between the ADC values and the mean of the initial idle ADC values at 460 nm wavelength

Feature 5 The ratio of the ADC values to the mean of the initial idle ADC values at 947 nm wavelength

Feature 6 The ratio of the ADC values to the mean of the initial idle ADC values at 664 nm wavelength

Feature 7 The ratio of the ADC values to the mean of the initial idle ADC values at 533 nm wavelength

Feature 8 The ratio of the ADC values to the mean of the initial idle ADC values at 460 nm wavelength

Each of these features is obtained by processing the scattering signals, subtracting the
idle state signal, and dividing by the mean of the idle state signal. This transformation
allows us to capture both the absolute and relative differences in magnitude between the
sensor’s idle state and the scattered signal from smoke particles. The resulting dataset is
organized into two-dimensional tensors with a shape of (8, length), where length represents
the number of data points in the dataset.

For training with varying parameters, the LSTM and GRU models were expanded by
adjusting the hyperparameters, such as the number of layers, hidden size, and bidirectional
settings. mWDN utilized the results of a 4-level decomposition. Training and evaluation
were carried out using the open-source deep learning package “tsai” with modifications,
and default values were used for unspecified specific parameters [31]. Table 3 represents
the architecture combinations compared in this paper. Training was conducted in an
NVIDIA A6000 environment with a batch size of 16, and early stopping was applied with a
maximum of 200 epochs.

Table 3. The combinations of model architectures.

Methodology
Threshold-based method (Threshold)
Multivariate CUSUM-based method (mCUSUM)
DTW-based method with reference sequences (DTWr)

Length 500 / 1500 / 3000

Models

TransformerModel {}
mWDN {’levels’: 4}
MiniRocket {}

GRU {’n_layers’: 1/5/10, ’bidirectional’: True/False,
’hidden_size’: 10/100}

LSTM {’n_layers’: 1/5/10, ’bidirectional’: True/False,
’hidden_size’: 10/100}

4.3. Performance Comparison

Figure 7 is a boxplot of the entire accuracy results, plotted according to the dataset
generation method and length. Table 4 presents the top five models ranked by the highest
accuracy and F1 score to compare classification performance according to the dataset
extraction methods and length. It also includes additional details regarding performance
differences due to hyperparameters or the number of parameters, as well as additional
ablation study results.
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First, by considering the dataset extraction methods in Figure 7, along the rows of the
table, we can compare the overall performance. In almost all length cases, DTWr achieved
superior accuracy and F1 scores. Even when comparing the top five models, the overall
performance improvement was evident in the order of DTWr, mCUSUM, and Threshold.
This addressed that DTWr efficiently selected features for time series data. Unlike the other
two methods that select the starting point of signal changes, DTWr implied effective dataset
extraction through phase division using the reference sequence.

Next, we compared the overall performance of the dataset based on its length in
Figure 7, along the columns of the table. We found that as the dataset length increases,
which is equivalent to taking a longer time,the classification performance improves. Partic-
ularly noteworthy is the significant improvement in the classification performance as the
dataset length increases for Threshold and mCUSUM. While the performance improvement
for DTWr may not be as pronounced, an overall improvement can be observed in the top
five performance results. Intuitively, this indicates that as time progresses in the case of
scattering signals from smoke particles, the concentration of smoke particles increases,
leading to improved classification performance when using longer time data as the dataset.
This is also related to trade-offs in real-world applications, considering a sampling rate
of 50 Hz, where obtaining classification results requires 10 s, 30 s, and 60 s, respectively,
for each length. (Note that the classification execution time for each model is not consid-
ered.) Depending on the domain, collecting data over a long time can become a bottleneck
for applications.

Threshold mCUSUM DTWr
Method

0.6

0.7

0.8

0.9

Ac
cu
ra
cy

Length
500
1500
3000

Figure 7. Classification performance comparison by dataset generation method and length.

Lastly, we compared the overall performance based on the learning models. Table 4
shows that the top-performing model is MiniRocket, achieving a very high classification
accuracy of 0.9875 at a length of 1500. MiniRocket generates a wide range of features
through arbitrary length, expansion, padding, weights, and biases, and captures patterns at
various frequencies and scales through kernel expansion for classification [28]. We found
that in datasets of shorter length, higher performance is achieved through kernel expansion,
and as the length of the dataset increases, there is an improvement in the performance of
the wavelet-based mWDN, which utilizes both time- and frequency-domain information,
as well as the RNN-based models that leverage long sequences. However, considering
the overall performance results, it appears that MiniRocket is the most suitable for the
characteristics of the scattering signals.
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Table 4. Top five classification performance comparison by dataset generation method and length.

Length No.

Method

Threshold mCUSUM DTWr

Arch.
Hyperparams. Accuracy F1 Score Arch.

Hyperparams. Accuracy F1 Score Arch.
Hyperparams. Accuracy F1 Score

500

1 MiniRocket
{} 0.7583 0.7576 MiniRocket

{} 0.9167 0.9164 MiniRocket
{} 0.9833 0.9833

2

GRU
{’n_layers’: 5,
’bidirectional’: True,
’hidden_size’: 100}

0.7125 0.7120 TransformerModel
{} 0.8000 0.8014

GRU
{’n_layers’: 5,
’bidirectional’: True,
’hidden_size’: 100}

0.9450 0.9495

3

GRU
{’n_layers’: 10,
’bidirectional’: True,
’hidden_size’: 100}

0.7042 0.7043

GRU
{’n_layers’: 1,
’bidirectional’: True,
’hidden_size’: 10}

0.7958 0.7910

LSTM
{’n_layers’: 5,
’bidirectional’: False,
’hidden_size’: 100}

0.9458 0.9451

4

GRU
{’n_layers’: 10,
’bidirectional’: False,
’hidden_size’: 100}

0.7041 0.7042

GRU
{’n_layers’: 5,
’bidirectional’: True,
’hidden_size’: 10}

0.7792 0.7778

LSTM
{’n_layers’: 5,
’bidirectional’: True,
’hidden_size’: 100}

0.9417 0.9410

5

GRU
{’n_layers’: 5,
’bidirectional’: False,
’hidden_size’: 100}

0.6958 0.6965

GRU
{’n_layers’: 10,
’bidirectional’: True,
’hidden_size’: 100}

0.7750 0.7703

GRU
{’n_layers’: 1,
’bidirectional’: True,
’hidden_size’: 100}

0.9417 0.9409

1500

1 MiniRocket
{} 0.8458 0.8455 MiniRocket

{} 0.9208 0.9201 MiniRocket
{} 0.9875 0.9875

2

GRU
{’n_layers’: 1,
’bidirectional’: False,
’hidden_size’: 100}

0.7625 0.7629

LSTM
{’n_layers’: 5,
’bidirectional’: True,
’hidden_size’: 10}

0.8750 0.8715

LSTM
{’n_layers’: 1,
’bidirectional’: False,
’hidden_size’: 100}

0.9500 0.9492

3 TransformerModel
{} 0.7500 0.7464

LSTM
{’n_layers’: 1,
’bidirectional’: True,
’hidden_size’: 100}

0.8708 0.8656 mWDN
{’levels’: 4} 0.9458 0.9450

4

GRU
{’n_layers’: 1,
’bidirectional’: True,
’hidden_size’: 100}

0.7458 0.7461

GRU
{’n_layers’: 1,
’bidirectional’: True,
’hidden_size’: 100}

0.8625 0.8582

LSTM
{’n_layers’: 1,
’bidirectional’: True,
’hidden_size’: 10}

0.9417 0.9410

5

GRU
{’n_layers’: 10,
’bidirectional’: True,
’hidden_size’: 100}

0.7417 0.7427 TransformerModel
{} 0.8542 0.8532

GRU
{’n_layers’: 1,
’bidirectional’: True,
’hidden_size’: 100}

0.9417 0.9410

3000

1 MiniRocket
{} 0.9125 0.9090

GRU
{’n_layers’: 1,
’bidirectional’: True,
’hidden_size’: 100}

0.9458 0.9455

GRU
{’n_layers’: 5,
’bidirectional’: False,
’hidden_size’: 100}

0.9792 0.9791

2

GRU
{’n_layers’: 10,
’bidirectional’: False,
’hidden_size’: 100}

0.8542 0.8531 MiniRocket
{} 0.9375 0.9334

LSTM
{’n_layers’: 1,
’bidirectional’: True,
’hidden_size’: 100}

0.9717 0.9791

3

GRU
{’n_layers’: 5,
’bidirectional’: False,
’hidden_size’: 100}

0.9500 0.8489 mWDN
{’levels’: 4} 0.9333 0.9330

LSTM
{’n_layers’: 5,
’bidirectional’: True,
’hidden_size’: 100}

0.9792 0.9790

4

LSTM
{’n_layers’: 1,
’bidirectional’: False,
’hidden_size’: 100}

0.8250 0.8229

GRU
{’n_layers’: 10,
’bidirectional’: False,
’hidden_size’: 100}

0.9250 0.9239

GRU
{’n_layers’: 1,
’bidirectional’: True,
’hidden_size’: 100}

0.9792 0.9790

5

GRU
{’n_layers’: 1,
’bidirectional’: False,
’hidden_size’: 100}

0.8250 0.8225

GRU
{’n_layers’: 1,
’bidirectional’: False,
’hidden_size’: 100}

0.9250 0.9239

LSTM
{’n_layers’: 5,
’bidirectional’: False,
’hidden_size’: 100}

0.9750 0.9750

All results can be stored with the model that satisfies the optimal performance,
and through the connection with sensors, outcomes can be derived using this model.
Returning to the pipeline in Figure 2, we can either develop a standalone device with GPU
acceleration capable of running the classifier using the generated trained model, or create a
real-time classifier by establishing a communication interface with a server that performs
classification. Particularly, in the case of MiniRocket, which is deemed most suitable, it
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is available for operation on edge neural network accelerators, such as Edge TPU and
NVIDIA Jetson series, provided via tsai and implemented in PyTorch v0.3.8 [31].

5. Ablation Study

In Figure 8, we present the results of our ablation study. First, Figure 8a illustrates the
performance comparison according to the length of the dataset for each model, with the
dataset extraction method fixed to the DTWr proposed in this paper. For MiniRocket,
there is no significant change in accuracy with respect to the dataset length, whereas other
models achieved higher accuracy as the data length increased. Additionally, we found that
the Transformer performed lower than RNN-based models such as LSTM and GRU. RNNs
are designed to process sequential information, and the dataset generated in this paper
is strongly related to time series data. This indicates that RNN-based models are more
fitted to scattered data than Transformers, which have a relatively weak inductive bias [32].
Next, Figure 8b fixes the data length at 1500 and shows the performance comparison
according to the number of parameters of the training model, categorized by the dataset
extraction method. The order of the performance was addressed as DTWr, mCUSUM,
and Threshold, discussed in Section 4. Both LSTM and GRU have an increasing number of
parameters with settings related to the number of recurrent layers, the dimensions of the
hidden state, and the use of bidirectional hyperparameters. As shown in Figure 8b, there
is a slight tendency for performance to increase with the number of parameters, but this
is not distinctly evident for all three methods. Note that the choice of bi-LSTM also did
not result in significant performance differences. This suggests that a higher-complexity
model does not guarantee performance improvement and that it can vary depending on
the model design.
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Figure 8. Performance comparison results for ablation study: (a) accuracy with fixed method and
varying length, and (b) accuracy with fixed length and varying the number of parameters.

6. Conclusions

We present a classification method for time series scattered signals of smoke particles
aimed at mitigating nuisance or false alarms. The optical scattering characteristics of
aerosol smoke particles are analyzed, and a methodology for extracting datasets from
time series data is proposed. Various learning models for time series data are selected,
and their performance is compared based on a variety of hyperparameters, dataset lengths,
and dataset generation methods. We find that the DTW method, used in conjunction
with reference signals defined through the state space model, generally shows higher
performance. An ablation study is conducted to compare the performance results while
varying different variables.

From a practical perspective, there are still limitations. In certain scenarios, such
as rapidly spreading fires, there may not be enough time to collect data of the length
discussed in this paper. Performance-wise, the DTW-based method, although effective in
data extraction, necessitates analyzing either the entire dataset or a sufficiently large subset,
which can be a drawback. In the case of CUSUM, while early detection is feasible, setting
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the initial parameters can be challenging, varying with environmental conditions. This
highlights the need for technology adept at detecting variations specific to different stages
of fire combustion. Following this, we hope that our approach will lead to the application
of time series classification in the stages of fire combustion.
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