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Abstract: This study estimates the radiative forcing by biomass burning and dust aerosols over
the Indian subcontinent, with emphasis on the Indo-Gangetic Plains (IGP) during the period from
January 2021 to April 2021, based on multiple satellite and reanalysis datasets. In this respect, we used
retrievals from the Moderate Resolution Spectroradiometer (MODIS) and the Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observation (CALIPSO) system, as well as reanalysis data from the
Goddard Earth Observing System, version 5 (GEOS-5), the Modern-Era Retrospective analysis for
Research and Applications, version 2 (MERRA-2), the Copernicus Atmosphere Monitoring Service
(CAMS), and ERA-Interim. According to the MERRA-2 and the CAMS, the highest black carbon (BC)
concentrations in January 2021 were 7–8 µg m−3, which were significantly lower than measurements
performed in main cities along the IGP, such as Patiala, Delhi, and Kanpur. The meteorological data
analysis accompanied by the CALIPSO lidar measurements showed that the vertical distribution of
total attenuated backscatter (TAB) could reach altitudes of up to ~4–5 km and could be transported
over the central Himalayan region. The spatial-averaged daily aerosol radiative forcing (ARF) values
over the Indian subcontinent from January 2021 to April 2021 were found to range from −51.40 to
−6.08 W m−2 (mean of −22.02 ± 9.19 W m−2), while on a monthly basis, the ARF values varied
widely, from −146.24 to −1.63 W m−2 (mean of −45.56 ± 22.85 W m−2) over different parts of the
study region. Furthermore, the spatial-averaged daily BC radiative forcing ranged from −2.23 to
−0.35 (−1.01 ± 0.40 W m−2), while it varied from −15.29 to −0.31 W m−2 (−2.46 ± 2.32 W m−2) over
different regions of southern Asia, indicating a rather small contribution to the total aerosol radiative
effect and a large presence of highly scattering aerosols. Our findings highlight the importance of
growing biomass burning, in light of recent climate change and the rapid decline in air quality over
North India and the Indian Ocean.
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1. Introduction

Biomass burning (BB) is one of the primary sources of the emission of carbonaceous
aerosols (organic carbon [OC] and black carbon [BC]), air pollutants, and trace and green-
house gases (carbon dioxide [CO2], methane [CH4], carbon monoxide [CO], etc.) into the
Earth’s atmosphere. BB adversely impacts air quality, visibility, and the climate system [1–8].
Furthermore, aerosols emitted by biomass burning/forest fires may affect urban fog and
haze conditions [9,10], as well as human health and mortality rates [11]. Potential toxic
emissions, including carcinogenic polyaromatic hydrocarbons (e.g., benzo[a]pyrene, BaP),
can cause severe pulmonary disorders such as asthma, obstructive pulmonary diseases,
and other severe health situations [11–13]. Carbonaceous aerosols constitute a large fraction
(~40–70%) of atmospheric aerosols in urban and rural environments [14], especially in
South Asian countries, where open BB activity contributes ~65% to primary OC and ~40%
to elemental carbon (EC), since the primary sources of OC are combustion processes [14–16].
In 2005 in India, Venkataraman et al. [17] estimated that biofuel combustion and open BB
were the largest sources of OC (87%) and BC (75%) aerosols.

Moreover, due to progressive urbanization, industrialization, commercialization, large
population density, and extensive land use changes, the southern and eastern Asian re-
gions and, in particular, the northern part of India have faced great challenges with
air pollution problems, experiencing a complex mixture of different aerosols [7,18,19].
The regions witness considerable amounts of biomass/wood burning throughout winter
(December–February) [20] and heavy dust storms from West Asia and the Thar Desert
during spring [21]. Based on high-temporal resolution measurements that were made in
Delhi from June 2019 to July 2019, Shukla et al. [22] reported organics (28%), BC (17%),
SO4

2− (10%), Cl− (5%), NH4+ (3.5%), and NO3− (2.5%) as the dominant aerosol chemi-
cal components. On the other hand, using columnar measurements of aerosols, another
study identified urban-industrial (UI) sources, BB aerosols, and dust (DU) as the domi-
nant sources in specific sites in the Indo-Gangetic Plains (IGP), including Karachi, Lahore,
Jaipur, and Kanpur [23], while atmospheric mixing processes classified the aerosol types
as polluted dust (PD) aerosols, polluted continental (PC) aerosols, black carbon-enriched
(BCE) aerosols, and organic carbon-enriched (OCE) aerosols. That study also showed that
absorbing aerosols were considered to be the most dominant [23]. The BCE and OCE
aerosols were more frequent in the post-monsoon and winter seasons, whereas the PD
aerosol was mostly present during the pre-monsoon and monsoon seasons.

According to the Intergovernmental Panel on Climate Change (IPCC), the radiative
forcing from biomass aerosol is negative over most of the globe. Since the 1990s, aerosol
research has been focused on the Indian subcontinent and its nearby seas, which have
tropical and subtropical climates. These studies have revealed a significant negative surface
aerosol radiative forcing (ARF) and high atmospheric heating, in comparison to top-of-the-
atmosphere (TOA) forcing [16].

Water-soluble aerosols, as well as BB and dust aerosols, have the potential to act as
cloud-condensation nuclei (CCNs) over northern India, thereby impacting the microphysi-
cal properties of clouds, atmospheric brown clouds, and the regional climate [16,24–26].
During recent decades, a significant increase in aerosol loading (fine anthropogenic aerosols)
was observed in India, mainly in the northern region, which was attributed to rapid socio-
economic development, urbanization, industrialization, open wildfire/biomass burning,
biofuel consumption for heating and cooking, and energy demands [3,15,27–33], while the
dust activity during the pre-monsoon season (March–May) was reduced [34–36].

Therefore, it is necessary to understand the aerosol radiative effects that are due to the
combined contribution of dust and biomass burning, originating in many parts of the IGP,
and their climate implications during winter and the pre-monsoon season, which may have
a high effect on the onset, duration, and intensity of monsoons over the Indian subcontinent.
In this study, multiple satellites and ground-based measurements were employed with the
aim of assessing surface radiative forcing. The results may be utilized in climate models for
future climate change projections over the region.
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The impact of BB aerosols (as a major consideration) and dust (as a secondary consid-
eration) on radiation over the Indian subcontinent from January 2021 to April 2021 was
estimated. This period was selected due to large fire counts from agricultural burning and
forest fires in northern India, the concurrent presence of pre-monsoon dust from the Thar
Desert, and the clear dominance of carbonaceous aerosols (OC, BC) from fossil-fuel combus-
tion and biofuel burning during winter. In Section 2, we discuss retrievals from different
databases and the methodologies that were used for their analyses. Section 3 discusses the
main results of our research. Section 4 provides the main findings of our research.

2. Datasets and Methodology
2.1. Datasets
2.1.1. Satellite Remote Sensing Data

The MODerate Resolution Imaging Spectroradiometer (MODIS) is one of the primary
instruments onboard the Terra and Aqua polar-orbit satellites. In this study, Terra and Aqua
MODIS combined dark target and deep blue AOD at 550 nm retrievals (collection 6.1; level
3 (1◦ × 1◦)) were used over the Indian subcontinent during the period of January–April
2021. In addition to MODIS AOD, the MODIS and VIIRS fire counts and fire radiative
power data were also used [37–39]. More details on the fire data sources can be found in
previous work [40].

For the same studied period, the Cloud-Aerosol LiDAR and Infrared Pathfinder Satel-
lite Observation (CALIPSO) level 1 attenuated backscatter profiles and the level 2 vertical
feature mask (VFM) products, derived from the backscatter CALIPSO measurements, were
studied. The latest version 4.21 of the standard VFM product, which provides the vertical
profile information of aerosol subtypes, along with the location of each aerosol layer, was
used [41,42]. The CALIPSO LiDAR profiles have a vertical and horizontal resolution of
30 and 333 m, respectively, and up to 8.2 km of atmospheric altitude [42]. The VFM ad-
ditionally provides seven different aerosol subtypes in the troposphere, namely (i) dust,
(ii) polluted dust, (iii) clean continental, (iv) polluted continental/smoke, (v) elevated
smoke, (vi) clean marine, and (vii) dusty marine [41,43].

2.1.2. Reanalysis Data

The Modern-Era Retrospective Analysis for Research and Applications, Version 2
(MERRA-2) reanalysis datasets were complementarily used to investigate the contribution
of dust, as well as other aerosol types like those from forest fires/biomass burning, in more
detail over the Indian subcontinent. MERRA-2 is a NASA atmospheric reanalysis for the
satellite era, which was produced with the Goddard Earth Observing System version 5
(GOES-5) model, along with the Atmospheric Data Assimilation System version 5.12.4. It
provides three-dimensional data with a spatial resolution of 0.5◦ × 0.625◦ and consists of
72 hybrid-eta layers from surface to 0.01 hPa. MERRA-2 provides 3 h global data of different
aerosol species such as sulfate, BC, OC, dust, and sea salt, and more technical details can be
found in several studies [27,44–48]. The near-surface particulate matter with aerodynamic
diameter < 2.5 µm (PM2.5) was calculated over India from different aerosol species using
Equation (1) [47,49–52]. At the same time, MERRA-2 provided the mass concentrations of
various components, and hence, Equations (1) and (2) describe the processing chain of the
PM2.5 mass concentrations and vertical distributions calculation.

PM2.5 = 1.375 × SO4 + 1.6 × OC + BC + Dust2.5 + SS2.5 (1)

where the SO4, OC, BC, Dust2.5, and SS2.5 are the surface mass concentrations of sulfate,
organic carbon, black carbon, dust and sea salt at a diameter of less than 2.5 µm, respectively,
as obtained from the MERRA-2 dataset. In the present analysis, the conversion factors
of 1.375 for SO4 [53] and 1.6 for OC [54] were used in order to reconstruct the mass
concentrations of (NH4)2SO4 (inorganic ions) and organic matter (OM), respectively. More
technical details regarding the conversion factors are provided in the Appendix. Apart from
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PM2.5 surface concentrations, MERRA-2 reanalysis also provides the vertical distribution
of PM2.5 mass, which facilitated the sea salt and dust mass concentrations separation over
five bins as per the size of the aerosol. The vertical distribution of PM2.5 is estimated using
Equation (2), as follows [46,55,56].

PM2.5 = [1.375 × SO4 + 1.6 × (OCPHILIC + OCPHOBIC) + (BCPHILIC + BCPHOBIC) + Dust1+
Dust2 × 0.38 + SS1 + SS2 + SS3 × 0.83]× AIRDENS

(2)

where PHILIC and PHOBIC represent hydrophilic and hydrophobic components of organic
and black carbon, respectively, while the subscripts for dust and sea salt aerosols represent
the corresponding size bins [46]. The aerosol species vertical-profile information was
provided via a mass mixing ratio, which, multiplied by air density (AIRDENS), results in
the PM2.5 concentration. To investigate the atmospheric dynamics during the study period,
the horizontal wind data from the MERRA-2 reanalysis were used.

2.1.3. CAMS Data

The Copernicus Atmosphere Monitoring Service (CAMS) is implemented by the Eu-
ropean Center for Medium-Range Weather Forecasts (ECMWF) under the Copernicus
program, which provides modeled aerosol and air quality information related to air pol-
lution and health, solar energy, and greenhouse gases, along with climate forcing over
the globe. The CAMS AOD re-analysis uses five different aerosol species, such as sea
salt, dust, organic matter, black carbon, and sulfate, while further details can be found
in several studies [57,58]. The spatial resolution of CAMS reanalysis data is 0.4◦ × 0.4◦

(spatial resolution of CAMS forecasts), and the temporal resolution is 3 h [40,59].

2.2. Methodology

To simulate the gridded global horizontal irradiance (GHI) under the aerosol-laden
atmosphere over India, the libRadtran RTM [60,61] was used. GHI is the total amount
of radiation reaching a horizontal surface and is strongly attenuated by BB and dust
aerosols [28,39,40]. In this study, a rapid mode of RTM simulations based on the pre-
calculated lookup tables developed by Kosmopoulos et al. [62] was used, similarly to
several studies [40,63–65]. In order to run the radiative transfer model (RTM) simulations
on an hourly basis for the assessment of the radiative forcing by aerosols over the Indian
subcontinent during January–April 2021, the 3 h values of CAMS were kept constant within
the 3 h time interval. The main input parameters for the RTM simulations were as follows:
AOD550, solar zenith angle (SZA), single scattering albedo, total columnar ozone (TOC),
Ångström exponent (AE), and columnar water vapor (WV), which were obtained from
MERRA-2 and CAMS datasets. The SZA was taken from an in-house astronomical model,
while a constant value of AE = 1.4 and TOC = 350 DU were used [63–65]. The output
of RTM is the GHI that can be applied for the surface radiative forcing estimation via
Equations (3) and (4).

Aerosol Radiative ForcingSurface = GHIAerosol − GHINo Aerosols (3)

BC Radiative ForcingSurface = GHIBC − GHINo BC (4)

3. Results and Discussion
3.1. Fire Counts

The spatial distribution of all thermal anomalies (i.e., fire counts in red dots) over
the northern Indian subcontinent detected by Terra and Aqua MODIS from January to
April 2021 is presented in Figure 1a. The details of fire activity (forest wildfires and
agricultural burning) were already presented and discussed in a previous study [40], and
hence, a brief description is given here. The northern part of India usually experiences
many forest fires/agricultural burning events during March–June, as well as during the
October–November months [2,3,20,34,40]. The color bar shows the day when the fire was
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detected during January to April 2021, with a total of 51,024 fire counts detected over the
region, the majority of which occurred in the Indo-Gangetic Himalayan region and central
India in April (days 90–120). The India State of Forest Report (ISFR, 2021) shows that
the number of forest fires in Uttarakhand State during November 2020–June 2021 were
28.3 times higher than in the same period of the previous year (i.e., November 2019–June
2020), indicating that pre-monsoon of 2021 was an abnormally high fire-affected period for
the Himalayan region. Furthermore, based on ISFR, the total number of 345,989 fire counts
recorded over the Indian subcontinent from November 2020 to June 2021 was ~2.7 times
more than the respective fire counts of the previous year (November 2019 to June 2020). In
addition, the time-series analysis of MODIS and S-NPP VIIRS fire counts and fire radiative
power are plotted in Figure 1b and 1c, respectively. Both MODIS and VIIRS fire counts, as
well as fire radiative power, increased gradually from mid-February and peaked in April.
The fire radiative power also exhibits a variation similar to that of fire counts, with a strong
correlation between them (R2 = 0.90). Khanal et al. [46] reported a slightly higher correlation
(R2 = 0.96) between fire counts and fire radiative power from 15 October–15 November 2020.
The current analysis showed a significant effect of fire events (i.e., forest or agricultural
fires) over northern India and the Himalayan foothills during mid-March–April 2021 [7,66],
which significantly affect aerosol loading over the region, the formation of atmospheric
brown clouds, and haze conditions and significantly attenuated levels of GHI [67–69].
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3.2. Spatial-Temporal Variation in Carbonaceous Aerosols and Dust

The monthly variation in BC mass concentration (µg m−3) from MERRA-2 reanalysis
over the Indian subcontinent is shown in Figure 2. The BC mass concentrations maximize
during January, especially over the central and eastern parts of the IGP due to burning
of fossil fuels in traffic and industrial sectors, as well as extensive biomass burning for
domestic heating [70–72]. In January, a significant BC outflow is also observed over the
northern part of the Bay of Bengal due to carbonaceous-pollution outflows [73–76], as
well as over central India. In the following months, the spatial distribution of the BC
mass is similar but with progressively decreasing values due to higher dilution within
a deeper mixing layer in spring and the absence of combustion processes for heating
purposes [27,77,78] (Figure 2). The highest BC concentrations in January (7–8 µg m−3)
according to MERRA-2 (CAMS) are much lower than measurements at major urban centers
in the IGP, like Patiala [79], Delhi and Kanpur [80]. Apart from the high emission rates, the
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enhanced winter BC concentrations over the Gangetic-Himalayan region are favored by
several other factors such as the lower mixing-layer height, limited dispersion of pollutants
due to calm winds, and temperature inversions [81]. BC concentrations are also high along
the Indus Valley in Pakistan, as well as in Bangladesh due to high emission rates from the
sectors of traffic, industry, biomass burning and the IGP pollution outflows [77]. Rising
temperatures and increasing wind speed subsequently cause a reduction in pollutants,
especially after February, so that the regional BC loading is consequently reduced due to
dispersion. However, the extensive agricultural burning along with forest fires in Myanmar
and northern Thailand during March–April are also responsible for the formation of
the well-known “Asian Brown Cloud”, a cloud consisting of large amounts of aerosols
produced from burning of biomass and fuels [18,28], and it contributes to the increase in
BC concentrations in these regions.
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Figure A1 (Appendix A) shows the monthly mean variation in BC extinction optical
depth at 550 nm over the Indian subcontinent. The BC extinction coefficient is a measure
of the solar radiation attenuated due to BC in the atmospheric column and plays a major
role in the BC radiative forcing. The spatial and temporal distribution of the BC extinction
optical depth is similar to that of BC mass concentration, since BC is mostly confined
in the lower boundary layer over the IGP [82]. Furthermore, Ramachandran et al. [83]
showed that BC clearly dominates the aerosol absorption over the IGP and the Himalayan
region, thus constituting an important climatic factor. The BC concentration and extinction
AOD are mostly due to anthropogenic activities over the IGP, the rest of India, and the
northern part of the Indus basin (around Lahore) (Figure A2), while the increased levels
over northern Indochina in March–April are attributed to agricultural BB-emitted BC
(Figure A3). This is also supported by the surface OC spatial distribution over the region
(Figure 3), with maximum OC concentrations over northern Myanmar in March due to BB
combustion emissions. Although OC has many sources, natural and anthropogenic, it can
be also considered as a byproduct of secondary organic aerosol (SOA) formation [84–86],
the major source of which in south and southeast Asia is mostly BB [28,87], contributing
significantly to radiative forcing through the brown carbon absorption in the UV and
near-vis spectrum [88–93]. In January, domestic heating is at its maximum, including
coal consumption and open BB, which has contributed more to OC mass concentration,
while the low temperatures favor the condensation of volatile organic compounds (VOCs),
thus increasing the OC levels [94,95]. On the other hand, the spatial distribution of sulfur
dioxide (SO2) revealed hotspot areas over the major urban agglomerations in India and
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along the densely populated and highly polluted IGP (Figure 4). Increased SO2 levels are
also shown over certain locations due to emissions from coal-fired power plants [96]. The
highest SO2 concentrations in January may be attributed to a shallower mixing layer and
lower dispersion of pollutants, while sulfate aerosols, as an oxidation product of precursor
SO2, may contribute significantly to total AOD and radiative forcing during wintertime,
as it is considered the main scattering aerosol type over the IGP [97]. Similar results for
higher NO2, SO2, and PM2.5 concentrations in January were also reported by Bilal et al. [59]
in Pakistan.
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Apart from BB, desert dust is another major source of air pollution in south Asia
during the spring (i.e., pre-monsoon) period. The dust mass concentration from MERRA-2
retrievals shows maxima over the desert areas of Taklimakan, as expected (however, this
is out of our area of interest), over the Thar Desert and surrounding areas in NW India
and along the IGP in March and April (Figure 5), when dust activity starts increasing [98].
Although dust contributes substantially to aerosol loading and types over the IGP during
pre-monsoon, it also presents high inter-annual variability with intense dust storms in
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certain cases [21,99,100]. However, during wintertime, dust contribution is limited around
the Thar Desert [36,101].

Fire 2023, 6, x FOR PEER REVIEW 8 of 23 
 

 

2 retrievals shows maxima over the desert areas of Taklimakan, as expected (however, this is 
out of our area of interest), over the Thar Desert and surrounding areas in NW India and along 
the IGP in March and April (Figure 5), when dust activity starts increasing [98]. Although dust 
contributes substantially to aerosol loading and types over the IGP during pre-monsoon, it 
also presents high inter-annual variability with intense dust storms in certain cases [21,99,100]. 
However, during wintertime, dust contribution is limited around the Thar Desert [36,101]. 

 
Figure 5. Spatial distribution of the monthly mean surface dust concentration over the Indian sub-
continent from January to April 2021 (a–d), obtained from MERRA-2 reanalysis. 

3.3. Surface Distribution of PM2.5 

Figure 6 shows the monthly variation in the surface-level mass concentration of PM2.5 in 
the study period, along with the superimposed wind speed and direction at 500 hPa (wind 
vectors). The spatial distribution of the estimated PM2.5 concentrations shows an increase 
along the central-eastern IGP during January as the main axis of the pollution outflow 
[67,75,76,82], supported by the dominant northwestern flow. The enhanced PM2.5 concentra-
tions, which were mainly composed of carbonaceous aerosols during wintertime, progres-
sively decreased along the central-eastern IGP from February to April, while a slight increase 
in PM2.5 levels was detected over the Thar Desert in the west. Over the Himalayan range and 
Tibetan Plateau, the estimated PM2.5 levels were minimum, while maximum values due to 
dust effect were noticed over the Taklimakan Desert. In general, the current PM2.5 estimations, 
based on MERRA-2 datasets and the approximation in Equation (1), were lower than the 
measured PM2.5 concentrations over urban and rural areas in IGP, while such an underestima-
tion was also observed over other urban environments [47,51]. 
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3.3. Surface Distribution of PM2.5

Figure 6 shows the monthly variation in the surface-level mass concentration of PM2.5
in the study period, along with the superimposed wind speed and direction at 500 hPa
(wind vectors). The spatial distribution of the estimated PM2.5 concentrations shows an
increase along the central-eastern IGP during January as the main axis of the pollution
outflow [67,75,76,82], supported by the dominant northwestern flow. The enhanced PM2.5
concentrations, which were mainly composed of carbonaceous aerosols during wintertime,
progressively decreased along the central-eastern IGP from February to April, while a slight
increase in PM2.5 levels was detected over the Thar Desert in the west. Over the Himalayan
range and Tibetan Plateau, the estimated PM2.5 levels were minimum, while maximum
values due to dust effect were noticed over the Taklimakan Desert. In general, the current
PM2.5 estimations, based on MERRA-2 datasets and the approximation in Equation (1),
were lower than the measured PM2.5 concentrations over urban and rural areas in IGP,
while such an underestimation was also observed over other urban environments [47,51].
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3.4. Vertical Distribution of PM2.5

In addition to the spatial variation in the surface PM2.5 mass concentration, the vertical
distribution of PM2.5 was analyzed, using the monthly averaged MERRA-2 data from
January to April 2021. For this, a cross-section of the IGP and Central Gangetic Himalayan
region over northern India was examined, passing through a high-altitude remote location
at Nainital, at a constant longitude of 79.5◦ E, from 20◦ N to 40◦ N, as shown in Figure 7.
The PM2.5 concentrations are shown by the color-filled contours and further, the horizontal
wind barbs are also plotted (Figure 7). The gray-shaded region shows the surface elevation.
The PM2.5 concentration accumulated at lower altitudes close to the Himalayan foothills,
as the MERRA-2 reanalysis data were well-aligned with the hybrid sigma levels. The high
PM2.5 levels over the IGP region in January, mostly confined below 900 hPa, were gradually
decreasing in the following months, while increased PM2.5 due to dust is shown over the
Tibetan Plateau in April. The vertical distribution of PM2.5 over the IGP is well-aligned
with the average monthly boundary layer heights. Srivastava et al. [102] showed that the
boundary layer heights over the IGP gradually increase from around 400 m in January
to around 1500 m in April. The shallower boundary layer in January implies that PM2.5
is concentrated close to the source regions and near the surface. With the increase in
boundary layer height in spring, aerosols disperse to higher altitudes and can uplift up
to the Himalayan range [66], leading to lower concentrations near the surface. Figure A4
shows the cross-section of PM2.5 and horizontal wind through Nainital, along a constant
latitude of 29.4◦ N between 70◦ E and 90◦ E.
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The vertical distribution of air pollution was also investigated with the CALIPSO
LiDAR observations, which provide the vertical distribution of total attenuated backscatter
(TAB) during the CALIPSO nighttime overpass on 5 April 2021 (Figure 8). The high
LiDAR backscatter values at an altitude of 4–5 km clearly indicate a thick layer of aerosols
over the central Himalayan region, as well as over the IGP (Figure 8a). The CALIPSO
measurements also show that the polluted dust along with polluted continental/smoke
and dust aerosols constitute the major aerosol types over the Central Himalayan and
IGP region (Figure 8b). These results are quite like those from previous studies, which
showed that dust, polluted dust, and polluted continental smoke lie between 2–5 km
altitude [21,34,84,103]. Figures 5A and 6A are like Figure 8, but they show the vertical
distribution of TAB and aerosol types for 25 and 26 April 2021.
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3.5. Surface Radiative Forcing

The daily variations in surface radiative forcing (RF) for total aerosols and BC over
a high-altitude remote site (Nainital) in the central Himalayan region, from January to
April 2021, are illustrated in Figure 9, showing appreciable variations in month-to-month
patterns. The values of aerosol RF levels decreased slightly from January and fluctuated
gently from February to April, while the BC RF remained mostly steady throughout the
study period, with some significant gaps (negative RF corresponding to enhanced BC
absorption) in certain periods during the middle of January, middle of February, by the
end of March and during the beginning of April (Figure 9). The changes in the RF of BC
are mainly influenced by local emissions and are considerably lower (−1.01 ± 0.40 W m−2)
than the radiative effect of total aerosols. Since the primary source of energy production
and consumption in India is coal, the high rates of usage of coal are primarily responsible
for the high BC emissions, along with the stable atmospheric conditions in winter. Figure 10
shows the diurnal variation in surface aerosol radiative forcing for January (Figure 10a),
February (Figure 10b), March (Figure 10c) and April (Figure 10d) of the year 2021. The
average surface aerosol radiative forcing is about −45.56 ± 22.85 W m−2. Although the
corresponding dataset is limited from 06:00 to 20:00 local time (daylight), an appreciable
diurnal variation can be observed during all months of the period under consideration.
In a general atmospheric context, the scattering aerosols comprise the bulk of the total
aerosol load, which causes an increase in scattering of solar radiation, and thereby, a
noticeable negative trend of surface aerosol radiative forcing during the day of all months
(see Figure 10). Furthermore, since the entire region is being engulfed by strong biomass
burning (and domestic heating) during the year, a considerable positive appreciation
of surface ARF can be observed, especially during episodic days. So, on certain days
characterized as aerosol episodes, the ARF values can be significantly lower at specific time
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intervals, even reaching −100 W m−2 or even less, due to highly increased aerosol loading.
It is speculated that the aerosol episodes, which contribute to the large negative surface
ARF values, are mostly composed of scattering aerosol types, as these days and hours are
not coincident with BC RF episodes (Figure 11). Conversely, on other days, the surface
ARF values could be significantly higher (less negative), indicating less aerosol impact. It
should be noted that the much lower ARF values close to sunrise and sunset hours are due
to astronomical effects (very high SZA values) that increase the uncertainty in RF estimates
and do not represent lower AODs.
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Figure 11 illustrates the diurnal variation in BC radiative forcing on a monthly basis
from January to April 2021. As previously explained, domestic heating in conjunction with
BB exacerbates the radiative potential during January, while on specific days in March and
April, characterized by more negative BC RF values, the enhanced BC levels were mostly
attributed to wheat residue burning in NW India and to Himalayan forest. Although
several similar episodes occurred throughout the study period, the most intense events
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took place in January and on certain days in April, characterized by more negative hourly
BC RF values of −5 to −7 W m−2 (Figure 11). The daily mean surface radiative forcing by
BC during January–April 2021 was found to range from −2.23 to −0.35 W m−2 (mean of
−1.01 ± 0.40 W m−2).
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Figure 12 shows the monthly mean radiative forcing by aerosols over the Indian
subcontinent. In January, significantly larger negative values of aerosol forcing compared
to the other months are observed, primarily due to enhanced aerosol loading in this month,
especially over the central and eastern parts of the IGP, reaching even −150 W m−2, as well
as over the northern Bay of Bengal and eastern Arabian Sea, due to south Asian continental
pollution outflows [29]. In February, the ARF values are less negative over the IGP and
central India due to lower aerosol loading, while in March and April, large negative ARF
values of the order of −90 to −100 W m−2 are observed over the northern part of the
southeast Asian region, due to extensive agricultural fires [7]. At the same time, the ARF
values over the Thar Desert are less negative, while rather negligible radiative forcing
is observed over the Tibetan Plateau (Figure 12). On the other hand, the increased dust
presence over the Arabian Sea in April enhances the aerosol impact on solar radiation, thus
leading to more negative ARF values compared to winter months.
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Apart from the increased aerosol emissions over north India during wintertime, the
lower temperatures facilitate less convection and confinement of aerosols close to the
surface, thus contributing to the formation of a dense aerosol layer, which highly attenuates
the GHI levels [23,39,81]. Consequently, increasing temperatures in spring lead to higher
aerosol convection within the boundary layer, thus reducing the ARF, apart from cases
with significant amounts of elevated dust that significantly scatter the solar radiation and
enhance the radiative impact.

Figure 13 shows the monthly averaged spatial distribution of the BC-related radiative
forcing over the Indian subcontinent from January to April 2021. The monthly mean
BC RF ranged from −15.29 W m−2 (over the eastern IGP in January) to −0.31 W m−2

(over areas relatively free from BC aerosols), exhibiting a spatial-averaged mean value
of −2.46 ± 2.32 W m−2. The strongest surface BC forcing is detected over central-eastern
India and throughout the IGP region during January, while in February, the spatial pattern
remains rather similar, but with lower (less negative) BC RF values over IGP, the Thar
Desert and central India. In March and April, the most intense radiative impact of BC is
shifted toward the east, along the eastern Indian coast, the northern Bay of Bengal, and the
southeast Asian region due to increased BB emissions in Myanmar and Thailand [28]. Over
these areas, BC RF is about 13–18% of the total ARF, while over the eastern IGP in winter,
this fraction is slightly lower (9–14%).
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The presented results revealed a large radiative effect of aerosols and BC over the
south Asian region that is a major regulatory factor for the regional climate, monsoon
circulation, atmospheric dynamics, and thermodynamics, as well as for the cryosphere,
biosphere, and the Himalayan ecosystems [98,103,104].

4. Summary and Conclusions

The current work studied the surface aerosol radiative forcing (ARF) using satellite-
based and reanalysis data, along with radiative transfer model simulations over the Indian
subcontinent, from January to April 2021, when BB and dust aerosols dominate. The fast
mode of RTM simulations based on previously derived lookup tables was employed in this
work in order to facilitate the process of such high computationally demanding approaches
(i.e., >5 million simulations in total). AOD550, solar zenith angle (SZA), single scattering
albedo, total columnar ozone (TOC), Ångström exponent, and columnar water vapor were
the primary input parameters for the RTM simulations so as to realistically represent the
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atmospheric conditions and the subsequent effect on solar radiation levels during the
studied period.

The results showed a large spatio-temporal variability in the aerosol loading, as well
as in the dominant aerosol types over the Indian subcontinent, which highly affected the
aerosol properties and radiative effects. During wintertime, the northern part of India (IGP)
exhibited much larger aerosol loading, mainly consisting of BC and organic aerosols from
fossil fuel and biofuel combustion. As the spring progressed, the dust became dominant
over the NW part of India, as well as over the arid regions of southwest Asia, while over
southeast Asia, extensive agricultural burning highly increased the carbonaceous aerosol
concentrations. In addition, Himalayan forest fires and burning of wheat residue over the
IGP also contributed to the springtime aerosol burden. The regional meteorological and
boundary-layer dynamics also played an important role in the accumulation or dispersion
of aerosols and pollutants, as well as in their vertical profiles, which were also examined
via combined CALIPSO and MERRA-2 datasets.

The spatial distribution of the monthly mean ARF values over the Indian subcon-
tinent showed notable spatial heterogeneities, with more negative ARF values (surface
cooling) along the central-eastern IGP during January, due to high carbonaceous aerosol
loading. Furthermore, more negative ARF values were detected over southeast Asia dur-
ing March and April (agricultural burning), as well as over the Thar Desert due to dust
effect. The ARF values ranged widely from −146.24 to −1.63 W m−2, with a mean of
−45.56 ± 22.85 W m−2, over different parts of the study region. On the other hand, the
spatial-averaged ARF values ranged from −51.40 to −6.08 W m−2 from January to April
2021. In addition, the mean BC radiative forcing ranged from −2.23 to −0.35 (mean of
−1.01 ± 0.40 W m−2), averaged over the spatial domain. The spatial variation in the BC
radiative forcing over the Indian subcontinent presented values from −15.29 W m−2 over
the central-eastern IGP in January to −0.31 W m−2 over regions with the lowest BC concen-
trations, while the mean BC radiative forcing over the studied domain was estimated to be
−2.46 ± 2.32 W m−2.
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Appendix A

Regarding conversion factors in Equation (1), since MERRA-2 gives the mass of the
sulfate ion, it is multiplied by a factor of 1.375 to obtain the mass of the sulfate aerosol,
which is assumed to be ammonium sulfate. Particulate organic matter (POM) is estimated
from the modeled OC multiplied by a factor (molecular weight per carbon weight ratio)

https://earthdata.nasa.gov/firms
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that considers contributions from other elements associated with the organic matter, like
oxygen, nitrogen, etc. This factor varies spatially and temporally, with values between
1.2 and 2.6 [105]. A constant value of 1.6 is applied in our calculations, similarly to other
studies [54]. About the conversion factors in Equation (2). For dust and sea salt, which are
resolved into five size bins in the model, only particles smaller than 2.5 µm in diameter
were considered in the PM2.5 calculations. The following table [55] shows that the size bins
do not have a cut-off at a diameter of 2.5 µm. Therefore, the contribution from the second
dust size bin is multiplied by 0.38, and the contribution from the third sea-salt size bin is
multiplied by 0.83 to obtain the contribution from particle sizes up to 2.5 µm only.

Table A1. Diameter ranges (µm) of dust and sea salt bins used in MERRA-2 [55].

Size Bin 1 2 3 4 5

MERRA-2 dust 0.2–2.0 2.0–3.6 3.6–6.0 6.0–12.0 12.0–20.0

MERRA-2 sea salt 0.06–0.2 0.2–1.0 1.0–3.0 3.0–10.0 10.0–20.0
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