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Abstract: Weather conditions at the time of wildfire front arrival strongly influence fire behavior and
effects, yet few methods exist for estimating weather conditions more spatio-temporally resolved than
coarse-grain (e.g., 4 km) daily averages. When a fire front advances rapidly and weather conditions
are heterogeneous over space and time, greater spatio-temporal precision is required to accurately
link fire weather to observed fire effects. To identify the influence of fire weather on fire effects
observed across a sample of existing forest inventory plots during a wind-driven megafire event in
the US Pacific Northwest, we explored and compared three methods for estimating time of fire arrival
and the wind speed at that arrival time for each plot location. Two methods were based on widely
used, remotely sensed active fire data products with dissimilar spatial and temporal resolutions. The
third and preferred method, Modeled-Weather Interpolated Perimeters (MoWIP), is a new approach
that leveraged fine-grained (1.3 km, hourly) wind speed and direction from modeled fire weather
to guide interpolation of aerial infrared-detected (IR) operational perimeters, subdividing the time
intervals defined by sequential IR perimeters into quartile intervals to enhance temporal resolution of
predicted fire arrival times. Our description of these fire arrival “time stamp” methods and discussion
of their utility and shortcomings should prove useful to fire scientists, ecologists, land managers, and
future analyses seeking to link estimated fire weather and observed fire effects.

Keywords: wind speed; fire behavior; fire effects; fire weather; fire detection; remote sensing; fire
perimeter; interpolation; GIS

1. Introduction

As megafires become the new normal and attract attention from researchers seeking to
(i) understand how managing forest vegetation might reduce fire size and/or severity, or (ii)
test and refine models that predict fire effects, linking meteorological data at a fine temporal
scale to locations with pre- and post-fire measurements on the ground is both essential
and challenging to accomplish with sufficient precision. Weather is widely understood to
be the strongest driver of how fire burns when vegetation fuels are not critically limited,
especially weather that is extreme (e.g., high winds and low humidity at the tails of their
distributions [1]). Burgeoning information on vegetation status obtained from both remote
sensing and from permanent plot monitoring systems, such as national forest inventories,
offer opportunities to assess fire effects (e.g., vegetation mortality; combustion and charring
of trees, plants, and soils) and the predictors of those effects. Although such data contain
information on the structure and composition of vegetation fuels and their topographic
context, predictors that may account for variation in fire severity and effects cannot be
definitively identified and quantified without accounting for weather at the time a location
burned, given the profound influence of wind and fuel moisture.

Retrospective analysis of fire effects does not comport with opportunities to establish
weather sampling devices at locations of interest, whether those be locations of forest inven-
tory plots or buildings and other infrastructure vulnerable to fire, even if the resources were
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available to support such instrumentation. Analysts must rely instead on existing networks
of weather stations and models that downscale high-frequency weather observations from a
limited number of distributed locations, such as stations in the Remote Automated Weather
Stations (RAWS) network and atmospheric models applied to meteorological data contem-
poraneous with the fire. Such models and interpolations can also account for topography,
to varying degrees, delivering an hourly to daily estimate for such fire-critical metrics as
wind speed and direction, relative humidity, temperature, precipitation, and cumulative
indices derived from temporal trajectories of these core metrics (e.g., fuel moisture deficits
and drought indices).

When studying the intersection of fire and vegetation, the weather information that
is often of greatest value is the subset that applies to when fire was actively burning at a
particular location. Given that (i) weather is always changing, sometimes with dramatic
transitions over time intervals on the order of an hour or two and (ii) the lack of precise
information about where active fire is occurring (in real-time too, not just retrospectively),
obtaining high accuracy, location-relevant fire weather remains an enormous challenge
to those who pursue retrospective analyses. Availability of weather data covering every
pixel of the landscape for every hour during a fire event is a necessary but not sufficient
condition for incorporating weather into the analysis—the time of burning at particular
locations is needed to exploit that data for the purposes just described.

Analysis of fire effects on vegetation is far from the only situation calling for precise
characterization of where fire arrived, and when. For example, those who craft sophisti-
cated models of wildfire smoke production and transport that couple numerical weather
prediction models with atmospheric chemistry seek understanding of relationships among
smoke production observed via terrestrial and airborne instrumentation that requires fire
arrival times and the biomass available to the fire [2,3]. Such analysis is critical for building
smoke prediction models that provide forecasts crucial for protecting human health from
the effects of wildfire smoke. For these analysts, it is also a question of time, and consider-
able effort has recently been invested to improve interpolation techniques and implement
machine learning to derive sub-daily arrival times for fire perimeters (e.g., [4,5]). Analysts
exploring the influence of weather and vegetation fuels on fire behavior also need to know
when fire arrives (e.g., [6,7]). Financial stakes in precise retrospective estimates of fire
arrival time are rising fast—a jury awarded USD 73 million from the local power company
to plaintiffs whose homes were burned at the time of Oregon’s 2020 Beachie Creek fire [8]
on the grounds that the fires that burned their homes originated from arcing from electrical
distribution system equipment that the company had neglected to deactivate, not from
embers transported from the Beachie Creek fire—a conclusion reached based on modeling
of fire arrival by expert witnesses [9].

For major fires over the past two decades in the U.S., National Infrared Operations
(NIROPS) has produced fire progression perimeter polygons representing fire extents at
variable intervals over the duration of a fire, derived via human interpretation of data from
infrared (IR) sensors aboard aircraft. These perimeters, publicly available from the National
Interagency Fire Center (NIFC) Operational Data Archive (https://data-nifc.opendata.
arcgis.com/datasets, accessed on 10 May 2022), achieve relatively high spatial resolution
(the underlying IR data are collected at 3 m scale) for the times of their collection. However,
the timing of perimeter collection on active fires is irregular, corresponding to availability
of aircraft and personnel resources and conditions that make safe overflights possible (e.g.,
a lack of high winds), and often occurs at time intervals (a day or longer)—too long to hope
for fire arrival time precision for any particular location better than a day or two (except
for locations that intersect an IR perimeter). Moreover, these data are typically collected
only on major fire incidents, which, while covering most of the burned area, address a
minority of the fire events. Notwithstanding these limitations, these perimeters are widely
considered as close to “truth” as is available and are relied upon to constrain, train, or serve
as reference data for fire progression perimeters derived from satellite-based active fire
data products (e.g., [4,5]).

https://data-nifc.opendata.arcgis.com/datasets
https://data-nifc.opendata.arcgis.com/datasets
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The approach to controlling for weather when analyzing fire effects in [10] is typical
of how this information is used: (i) assign a burn “day” (somewhat complicated by IR
perimeter intervals that can range from sub-day to multi-day and perimeters that rarely
occur only at midnight) to each field plot based on overlay of the progression perimeters
generated by NIROPS; (ii) extract from a weather station in the general vicinity, a vector
of daily weather attributes (typically using observations collected at 1400 h local time,
when weather is considered most likely to represent conditions most conducive to fire
propagation, or an average of the hourly data from RAWS), and assign those attributes to
all plots within the perimeter interval. Although fire arrival weather computed this way
may be representative and valid in some cases (e.g., if weather attributes remain largely
unchanged over the IR perimeter interval), any variation in weather over that interval
introduces imprecision that can compromise detection of significant non-weather predictors
of fire effects (e.g., vegetation).

Until very recently, the literature has provided essentially no guidance on determining
when the expanding perimeter of a fire arrived at any arbitrary location—i.e., the time
at which combustion of fuels began at that location. This is precisely the information
required for retrospective analysis of fire effects, forensic attribution of fire damages to
ignition sources, and definitive modeling of wildfire smoke production and propagation.
Available data that could help precisely identify a burn time tends to be opportunistic,
highly variable, and poorly documented. During a fire suppression incident, the incident
commander’s responsibility for the safety of firefighters requires maintaining a situational
awareness that demands attention to where fire is burning and prediction of where it will
burn next. The voluminous collection of structured and unstructured data and generation
of operations maps during a fire incident supports this need, not the interests of future
analysts to conduct retrospective analysis on fire effects. It is thus less than surprising that
much of this data are ad hoc, lightly documented at best, and only partially preserved and
that the IR perimeters produced by NIROPS mainly on large fires are the only consistently
available event-focused information that can address the timing of fire arrival.

The need for retrospective fire growth data is beginning to be recognized and ad-
dressed by analyses that rely on active fire sensors aboard satellite platforms such as
Geostationary Operational Environmental Satellite (GOES), Moderate Resolution Imaging
Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS), some-
times augmented with IR perimeters from NIROPS (e.g., [4,5,11]). A laudable motivation
for these efforts is building a nationally consistent, automated system for generating reli-
able fire arrival information that yields cumulative burned area over time for all incidents,
not just those covered by NIROPS, along with fire arrival times. Most of these studies
attempt some kind of validation via scoring systems, such as those based on fire arrival
time agreement and shape agreement developed by [12] to evaluate fire propagation simu-
lations. These efforts do not appear to have achieved sub-daily temporal precision on fire
arrival estimates required for the kinds of application described earlier. This is likely due
to potentially intractable limitations of the active fire data, including temporal infrequency
(twice daily for MODIS and VIIRS) and lack of synchronization with NIROPS IR perimeter
collection times that would enable more definitive validation but more fundamentally by
large pixels/distance separating detections (especially with the high temporal frequency
GOES data and its multi-kilometer pixel size, but also for the others). An indeterminate
proportion of pixel area must have sufficient combustion occurring to elevate the IR signal
above a “background” value for that pixel to be classified as actively burning, and that
calculus becomes even more problematic across heterogeneous topography and land cover.
Moreover, whatever threshold is selected, there will likely be unburned area within the
pixel for which fire arrival will certainly be later than the satellite-based active fire sensor
derived representation of fire arrival.

Obtaining the most representative time to link weather data to a location that burns
(so as to account for weather when evaluating the influence of non-weather predictors of
observed fire effects) is further complicated by the considerable variability in fire residence
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time, which may be conceived as dependent on weather and fuels, and ranging from less
than an hour to days, or longer (e.g., when below-ground combustion continues long
after the flames have subsided, sometimes for months). Still, fire behavior at the time of
arrival—particularly the intensity produced when flames are most active—is relevant for
explaining many fire effect responses such as tree mortality, tree bole and crown scorch,
and combustion and charring of soils. Successfully linking location appropriate weather
to fire arrival time (what we define as a “time stamp”) at a location has the potential to
explain many of the most important fire effects. Even with imprecision in fire arrival time
and therefore weather metrics linked to that time, it is helpful to identify a weather class,
for example, a wind speed range, so that analyses of drivers like vegetation structure can
consider and control for weather when exploring relationships between fire effects and
factors over which management practices may exert some control.

This paper presents and evaluates a protocol we developed to assign a temporally
resolved time stamp of fire front arrival to Forest Inventory and Analysis (FIA) plots
nested within a forested landscape extensively burned by a wind-driven megafire event,
referred to hereafter as the 2020 Labor Day Fires, in the US Pacific Northwest. This protocol
was developed specifically to link observed fire effects on FIA plots to fire weather in a
separate but related study [13]. We pursued three alternative approaches to identifying fire
arrival time at each FIA plot. Each alternative follows a different conceptual framework
and spatial representation: (i) VIIRS—remotely sensed “hot spot” points that appear and
then disappear (when cooled) but are only sampled at ~12 h intervals; (ii) GOES—coarse
(2 × 4 km) grid cells that take on a “fire present” status when an indeterminate proportion
of the cell is on fire, populated on a 5–15 min interval; and (iii) NIROPS-provided IR
perimeters—as a spreading front represented by perimeters collected at irregular intervals
(from hours to days, though usually at least once daily when fire behavior is most active),
primarily via interpretation of infrared overflights. Relying on IR perimeters as a close to
“ground truth” approximation of arrival time at the location of plots in the vicinity of these
perimeters, we evaluated differences among methods in (i) predicted fire arrival time and
(ii) predicted wind speed derived from those predicted arrival times at each FIA plot.

2. Materials and Methods

All data processing and analyses were performed using R Statistical Software ver.
4.2.2 [14] and ESRI ArcDesktop ver 10.8 [15]. Throughout this manuscript, R packages
are identified by quotation marks and cited. The ESRI GIS tools are written in uppercase
followed by the associated ArcMap toolboxes in brackets.

2.1. Data
2.1.1. Fire Progression—GIS Perimeter Layers Derived via Infrared Overflights

We accessed the NIROPS IR-perimeters for six contemporaneous fire events in the
western Oregon and Washington Cascades that comprise the 2020 Labor Day Fires from
the National Interagency Fire Center (NIFC) Operational Data Archive geodatabases (https:
//data-nifc.opendata.arcgis.com/datasets, accessed on 5 May 2022). Consistent with
reports by other researchers attempting to make use of NIROPS IR perimeters for post-
fire analysis (e.g., [4,5]), these data exhibit multiple anomalies, including redundancies
and inconsistencies that might be expected for data intended to support tactical scale
management of an ongoing wildfire, where timely delivery takes precedence over data
cleanliness. For example, there are 152 polygons of IR data for the Beachie Creek Fire,
each with multiple “time stamp” variables recorded (i.e., CreateDate, DateCurrent, and
PolygonDateTime) expressed in coordinated universal time (UTC). These variables often
prove to be inconsistent and require additional data exploration to identify a time of
collection in which one can have confidence. After reviewing the metadata, we found
the PolygonDateTime to be the most reliable, but for several perimeters, this field was
unpopulated. We chose not to rely solely upon CreateDate or DateCurrent in lieu of the null
PolygonDateTime values and instead used those fields in conjunction with fire data logs;

https://data-nifc.opendata.arcgis.com/datasets
https://data-nifc.opendata.arcgis.com/datasets
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reported changes in fire area growth; alignment with IR points, lines, and polygons detected
via overflights; and congruence with KMZ (Google Earth) files downloaded from the NIFC
Incident Specific Data website (https://ftp.wildfire.gov/public/incident_specific_data,
accessed on 15 June 2022). We applied a cleaning and reconciliation process to arrive at a
final set of what we refer to in this paper as “IR perimeters,” suitable for the interpolation
analysis that is the core of the approach we tested and recommend. Our selection process
began by removing (i) all redundant (or very similar) perimeters, (ii) perimeters with
missing time stamps that could not be reconciled with other information sources, and (iii)
perimeters that fell well outside our time of focus for each fire incident that comprised the
2020 Labor Day Fires (generally 7–15 September 2020).

For the purpose of comparing fire arrival time stamp assignment approaches in this
study, we assumed that the remediated IR perimeters represent true fire progression. Given
the absence of more precise data sources, we relied on this “ground truth” as the basis for
comparing predictions of all three methods.

2.1.2. Fire Detection—Satellite-Based Point and Raster Remote Sensing Datasets

Two remotely sensed, satellite-based active fire detection products were also used to
estimate time of fire arrival:

1. The VIIRS instrument exhibits a high spatial resolution of ~375 m but relatively coarse
temporal resolution consisting of single day and night overpasses approximately
every twelve hours (https://www.earthdata.nasa.gov/learn/find-data/near-real-
time/viirs, accessed on 30 May 2022). We processed raw VIIRS data, a shapefile
of fire detection points that includes a time stamp attribute, into a gridded 500 m
resolution raster surface representing the first day and time that fire was detected
within each pixel. Setting the raster resolution to 500 m ensured at least one VIIRS fire
detection point fell within each pixel boundary across the raster surface, preventing
cells from taking on null values. If more than one fire detection point fell within a
pixel boundary, we used the earliest time stamp value among the points to represent
the pixel value (i.e., via the minimum function).

2. The Advanced Baseline Imager (ABI) onboard the two Geostationary Operational Envi-
ronmental Satellite-R (GOES-R) uses active fire data from the 30 m multi-spectral Landsat
8 to produce imagery covering a 5000 km (east/west) by 3000 km (north/south) rectangle
over North and South America (https://www.goes-r.gov/products/overview.html,
accessed on 25 June 2022). The GOES datasets are in the NetCDF format commonly
used for climate data and other large multidimensional arrays and gridded datasets.
This format provides climate attribute values and associated metadata such as lat-
itude, longitude, and attribute labels and is transferable across different operating
systems and software platforms. Preprocessing in R was completed using the package
“ncdf4” [16]. The spatial and temporal resolution of data from GOES ranges from
0.5 to 4 km and from 5 to 15 min, respectively. The satellites are positioned over
the equator at 75.2◦ W (GOES-16) and 137.2◦ W (GOES-17). Although our analysis
centered on the 2020 megafires in western Oregon and southwest Washington (closer
to GOES-17) we relied on GOES-16, which is optimized for the eastern US, thereby
accepting decreased spatial resolution near the edge of the field of view (~4 km) owing
to concerns over the technical accuracy of GOES-17 [17].

2.1.3. Weather

Given the high variability in weather conditions observed across the fire event during
the majority of fire growth period (7–9 September) and the extent of FIA plots (~1 ha), it
was important to account for weather conditions using weather data with high spatial and
temporal resolutions. This led us to rely on output from a Weather Research and Forecasting
(WRF) model, as described by [18], to estimate hourly weather data at a 1.3 km gridded
spatial resolution. These data were used to characterize wind speed and other important
fire weather attributes (wind direction, temperature, and relative humidity). Wind speed

https://ftp.wildfire.gov/public/incident_specific_data
https://www.earthdata.nasa.gov/learn/find-data/near-real-time/viirs
https://www.earthdata.nasa.gov/learn/find-data/near-real-time/viirs
https://www.goes-r.gov/products/overview.html
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and direction were characterized at 10 m, and temperature and relative humidity, 2 m,
above ground level.

2.2. Interpolated Infrared Fire Perimeters Approach

Our interpolation approach, which we refer to as the Modeled-Weather Interpolated
Perimeters (MoWIP), starts with NIROPS IR perimeters, initially mapped to support fire
operations and subsequently refined to assure quality, and interpolates fire growth over
time based on modeled, gridded, hourly weather data from the WRF model. To assign
a time stamp to each plot, we processed each individual fire incident (out of six total)
as follows:

1. Starting from the innermost IR perimeter or fire origin “point” (which is often repre-
sented as a very small perimeter in the NIROPS data), we selected each IR perimeter
(after cleaning and removal of redundant representations) and the next larger IR
perimeter in which it is nested, noting their time stamps to calculate a time interval, t,
separating these two perimeters. We then divided t into four analysis periods, each of
length t/4. We determined that subdividing perimeter intervals into more than four
analysis periods might yield more accurate time stamps and sometimes also weather
estimates, depending on length of the perimeter collection interval and degree of
weather variability, but at greater analytic cost and with diminishing returns. Over
the first five days following the ignitions of these fires (~6–10 September), intervals
separating IR perimeters ranged from approximately 2 to 63 h; thus, the duration of
the analysis periods for which interpolated perimeters needed to be delineated to
translate those time increments into fire growth ranged from less than 1 to ~16 h.

2. To inform the placement of each interpolated perimeter, we developed gridded raster
surfaces containing the mean wind speed from the WRF model over each multi-hour
analysis period within the interval between IR perimeters. Mean wind speed was
calculated for each analysis period from the hourly WRF wind speed in that period
using the RASTER CALCULATOR [Spatial Analyst Tools/Map Algebra] tool. If the
total time interval between IR perimeters was not evenly divisible by 4, we assigned
the modulus to the last period (e.g., if 15 h, then periods 1–3 were 4 h each and period 4
was 3 h).

3. Wind direction rasters were (i) symbolized as vector fields (wind arrows) for visual-
ization at ~2.5 km scale (Figure 1), and (ii) converted to vector points to calculate a one
standard deviation ellipse covering 68% of these vectors for each analysis period with
the DIRECTIONAL DISTRIBUTION [Spatial Statistics/Measuring Geographic Distri-
butions] tool. The orientation of the ellipse (not displayed in Figure 1) depicts mean
wind direction for that period, providing a helpful visual reference that informed the
drafting of interpolated perimeters. All three guidance layers could be toggled on and
off, iterating forward and backward in time, during interpolation (Figure 1).

4. Fire spread regularity guides the mechanics of interpolation:

a. When fire spread was relatively homogeneous over the length of the previous IR
perimeter such that the shape was relatively regular (most common when wind
was low and spread was slow), we crafted preliminary interpolated perimeters
by resizing copies of a IR perimeter, stretching, and warping as needed to reflect
wind speed and direction.

b. When fire spread demonstrated asymmetry or irregularity, such that the perime-
ter shape was directionally heterogeneous (most common when wind was high
and spread was rapid or varied among regions of the perimeter), we manually
sketched interpolated perimeters, guided by the same information.

5. Interpolated perimeter graphic objects were converted to polygon shapefiles. When
nested IR perimeter pairs were separated by short time or short distance, we did
not attempt to interpolate between them, in part because in many cases there was
literally no space in which to insert a perimeter (nested perimeters with different time
stamps were spatially coincident, at least for some perimeter segments) or there was
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“negative space” (when a later time stamped perimeter was paradoxically inside of
an earlier time stamped perimeter, typically owing to errors in the IR perimeters that
present no obvious resolutions).

6. This process was repeated for each nested IR perimeter pair for which partitioning
was viable, resulting in 1–3 groups of interpolated perimeters per fire incident. This
provided an additional 3–9 interpolated perimeters for each fire incident, enabling
more temporally resolved weather assignment to each plot during the time when fire
spread was most active (Figure 1).
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Figure 1. Schematic illustrating delineation of interpolated perimeters that subdivide the growth of
the infrared (IR) perimeter P2.0 (at hour 16) from the fire ignition location P1.0 (at hour 0) for the
Beachie Creek fire. Panel (a) shows the nine interpolated perimeters (light grey lines) defining the end
of each of four analysis periods that divide the time between successive IR perimeters (blue outlines).
The fire growth defined by each IR perimeter after ignition (at hour 16, 20, and 63) was partitioned
into four analysis periods of approximately equal-duration calculated from the IR perimeter time
stamps. For example, the first IR perimeter at time stamp = 16 h was divided into four, 4 h analysis
periods. Each interpolated perimeter was positioned, scaled, stretched, and/or sketched to represent
the expansion of the fire from the previous interpolated (Px.25, Px.50, Px.75) or IR perimeter (Px.0)
during the associated analysis period. Panel (b) shows an example of the information used to guide
interpolation: 4 h mean modeled wind speed rasters like this one (shown as a color-ramped raster for
the analysis period labeled as P2.0—the outer perimeter of that analysis period) and associated mean
4 h wind direction (arrows pointing in the direction of wind flow) could be iteratively displayed
for the two, 4 h analysis periods defined by perimeters P1.5 (interpolated) and P2.0 (IR) to guide
interpolation of perimeter 1.75. Interpolation was also guided by the mean wind direction ellipse
(not shown). During the four hours separating perimeters P1.75 and P2.0, the leading edge of this fire
advanced over 18 km westward driven by winds up to 16 m/s (35 mph).

All perimeters, IR and interpolated, were integrated into a master shapefile and
assigned perimeter sequence numbers, most easily described via the example for the
Beachie Creek fire shown in Figure 1: the first IR perimeter, P1.0, is the ignition; the
second IR perimeter is P2.0; and the interpolated perimeters that divide the time interval
between P1.0 and P2.0 into four nearly equal periods are P1.25, P1.50 and P1.75. To each
analysis period (named for the outer bounding perimeter), we assigned a timestamp
midway between the timestamps of the outer and inner perimeters for that period so that
an approximate fire arrival time stamp for each plot could be assigned via overlay.
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The overlay was accomplished via geometric intersection of all perimeters in the mas-
ter shapefile and all plot locations via the INTERSECT [Proximity] tool, which appended
the plot relevant time stamp associated with the intersected perimeters to the output feature
class. We filtered the data table to the earliest timestamp associated with each plot and
used those time stamps to extract weather attributes for that plot from the WRF raster cell
coincident with that plot.

2.3. Data Quality Challenges for Implementing MoWIP
2.3.1. Date Systems

Integration and alignment of quite a few data sets, each with their own format (tabular,
raster, vector, and imagery) and from sources not entirely consistent in how they report data
collection time presented significant obstacles. Most remotely sensed products are recorded
in universal time (UT), a 24 h format that is the world’s standard time keeping scale
to facilitate synchronization (i.e., coordination) across agencies, therefore “Coordinated
Universal Time” or UTC with the Prime Meridian (0◦ longitude) that passes through the
Royal Observatory in Greenwich, London as the reference starting point. In the metadata,
UTC is sometimes referenced as International Time, Zulu Time (U.S. military), or Greenwich
Mean Time (GMT).

When data are reported in different systems accounting for time, they must be recon-
ciled to a common system before analysis. For example, we relied on multiple remotely
sensed data for which time was recorded in UTC and IR data collected from aircraft that,
in some cases, recorded time in Pacific Standard Time (PST), even though Pacific daylight
savings time (PDT) was used for local time when the fires occurred. We converted all
time variables (e.g., from remote sensing, weather models, and fire perimeters) into our
own system: decimal hours since midnight local (PDT) time 1 September 2020 (with the
midnight separating September from August as hour zero).

2.3.2. Positional Inconsistencies in Fire Perimeters over Time

It appears that each fire progression polygon is developed, either by observers during
fire overflights or interpretation of infrared imagery following an overflight, independently
from and without efforts to reconcile against previously generated progression polygons.
We reached this surmise thanks to anomalies like the one depicted in Figure 2, in which
polygons representing the fire’s progress at different points in time intersect. It is under-
standable that such reconciliation may not be required for progression perimeters to be
useful during fire management operations; however, this lack of reconciliation presents
problems when relying on progression perimeters as a reference for fire arrival to points on
the ground. Perimeters that regress rather than progress (over some portion) can, in some
cases, be a valid representation of what occurred (e.g., when a fire reburns and reactivates
portions of a spot fire already mapped). At other times, regression may result from inaccu-
rate mapping, for example, when an area thought to have burned on Day 1 is determined
on Day 2 not to have burned, yielding negative expansion (i.e., contraction) of a portion
of Day 2’s fire progression perimeter, relative to Day 1. These anomalies are especially
common when perimeters are developed for days on which fire spreads very slowly, if
at all, and may result from digitizing error, given that the purpose of their delineation
was to manage fire operations and safety, not to generate accurate fire arrival times for
retrospective analysis. Whatever their cause, such anomalies complicate the interpolation
task in the MoWIP approach, requiring close inspection and correction (via editing of
polygon vertices) prior to geoprocessing.
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Figure 2. Anomalies in infrared (IR) perimeter positioning, such as this one, pose challenges for
obtaining definitive time stamps. The dashed line was drawn to represent the Riverside Fire’s outer
boundary as of 8 September 2020 at 10 p.m. PDT; however, a portion of it crosses the 7 September 2020
at 7 a.m.AM PDT perimeter, leaving a space in which fire time of arrival is consequently ambiguous.
The “NEAR” geospatial operation applied to this plot (black circle) to find the closest fire perimeter
(13 m) would match it to 8 September when 7 September may well be a more accurate match. This
mismatch would lead to an incorrect time stamp for the plot and an inaccurate representation of the
weather at the time of fire arrival.

2.4. Time Stamp Adjustment and Assignment from Remotely Sensed Detection of
Thermal Anomalies

Given the coarse spatial resolution (~4 km) of the GOES active fire data, this product
may be systematically biased toward early fire detection. Only a portion of the 4 km GOES
cell needs to be actively burning to flag the entire cell as burning; if the fire front intersects
the east (upwind) edge of a pixel but the plot of interest is near the west edge of the pixel,
the actual time of fire arrival to the plot may be much later than indicated by the time coded
for the pixel. To reduce the magnitude of such discrepancies, we (i) interpolated GOES
time values to a higher spatial resolution using the EMPIRICAL BAYESIAN KRIGING
[Geostatistical Analyst] tool, (ii) converted the resulting geostatistical layer to a raster grid,
and (iii) geographically shifted it 2 km eastward (accounting for the movement of the
leading edge of the fires from east to west) to partially offset the early fire detection effect
embedded in the GOES data.

A SPATIAL JOIN [Analysis Tools with Match Option = Closest] of FIA plot locations
and the raster time stamp (in hours since September 1st) generated from the VIIRS- and
GOES-based methods was used to assign a fire detection time stamp to each plot.

2.5. Comparison of Method Outcomes for Reference Plots near IR Perimeters

To assess potential discrepancies among the three fire arrival time methods explored
in this study, we compared the MoWIP time stamping and weather assignment methods,
relative to the two remotely sensed, satellite-based active fire product approaches for plots
that were near an IR fire progression perimeter (not the interpolated ones). We assumed
that the IR perimeters, as problematic as their precision may be, are likely the closest
approximation to truth that is available—after all, the collection of these perimeters is
motivated by the need to map the fire front at specific times to support and ensure safety
for fire management operations. During the first three days of the 2020 Labor Day Fire
complex, when the rapid rate of spread enabled by high winds led to very large distances
between consecutive perimeters, we would expect that those perimeter time stamps would
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be close in time to the fire arrival at those nearby plots, to an extent that might not persist
as declining wind speeds slow fire spread. We expected MoWIP time assignments to be
close to, but not the same as, IR perimeter time stamps because those assigned times are
mid-way between the perimeter time stamp of that close-by IR perimeter and the time
stamp of the interpolated perimeter bounding the other end of the interval in which the
plot sits.

We used the NEAR [Analysis Tools/Proximity] tool to calculate the planar distance
between plots and IR perimeters (to identify the nearest one) after converting perimeter
polygons to lines. We included only plots that fell within 200 m of an IR perimeter that
was time stamped no later than the end of the third day of the fire, when winds had
largely subsided. We designated the plots that met the timing and distance criteria as a
reference dataset (n = 19). We calculated differences between the reference data time stamp
(derived from the nearby IR perimeter) and the estimated plot time stamp for each time
stamp estimation method (estimation method time stamp minus the nearest IR perimeter
time stamp). We also calculated differences in wind speeds implied by these time stamps
(between reference data and values estimated by each method) and explored patterns in
these differences.

We tested the trimmed-means of the differences in time stamp and wind speed for
each method as a robust estimate of central tendency with the R package “ggstatplot” [19].
The trimmed-mean provides a better estimate of where the bulk of the observations are
found when sampling asymmetric distributions, as these proved to be. We set the trim
function to 0.1 to remove 5% of the smallest and 5% of the highest values and then averaged
the remaining observations. The median with non-parametric approaches is an example
of an extreme trimmed mean. The standard error of the trimmed-mean is less influenced
by outliers and asymmetry so this method has more power than tests using a simple
mean. With the trimmed-means we visualized the distribution of the differences of the
fire arrival time stamps and wind speeds as box plots with kernel density curves with
default settings with the “tidyverse” R package suite [20]. Kernel density curves are a non-
parametric method of estimating the probability density function of a continuous variable.
The plots display a smoothed version of a histogram that provides better representation of
distribution shape because kernel density curves are not subject to influence by the number
of bins used in a histogram.

Finally, to illustrate the improved accuracy of wind speed at the estimated time of
fire arrival derived via sub-daily MoWIP vs. more widely used daily estimation methods,
we compared the distribution of proportional tree biomass survival responses observed
across forested FIA conditions (full or partial FIA plots; n = 215) burned by the 2020
Labor Day Fires, one-year post-fire, using thresholds of estimated mean wind speed (<2.25,
2.25–4.5, 4.5–9.0, and >9.0 m/s). The derivation of the post-fire tree survival response
data is described in detail by [2]. For the daily wind speed estimation method, we used
the VIIRS active fire product (described above) to assign the first day an FIA plot was
detected as within the fire. Mean daily wind speed was then extracted from the GRIDMET
meteorological dataset [21] as a gridded 4 km raster surface to each plot location via spatial
overlay. Informed by a large body of fire effects research, we expected that tree survival
responses would be monotonic in nature and decrease with increasing mean wind speed.
We hypothesized that poor estimation and assignment of mean wind speed at the time of
fire arrival would result in a non-monotonic relationship between wind speed thresholds
and tree survival and no statistical differences in tree survival across wind speed thresholds.
We tested for statistical differences in tree survival responses across wind speed thresholds
using a Kruskal–Wallis rank-sum test with a post hoc Dunn’s test with Holm correction for
multiple pairwise comparisons.
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3. Results
3.1. Time Stamps

The time stamps assigned were significantly different (p < 0.05) among methods for
19 reference plots located within 200 m of IR perimeters. The difference between trimmed
means was closest to zero for MoWIP (Figures 3 and 4). Consistent with our expectations, it
is no surprise that two-thirds of the MoWIP assigned time stamps were within four hours of
the IR perimeter time stamp and that the mean difference was less than a half-hour (x = 0.47,
s2 = 15.04), given the construction of this reference sample to include only plots within 200
m of an IR perimeter and the MOWIP time stamp depending so directly on IR perimeters.
For MoWIP, the differences are primarily determined using the length of the analysis period
with which a plot is associated and the fire spread rate during that period. The discrepancies
for GOES (x = −7.53, s2 = 159.49) and VIIRS-assigned time stamps (x = 31.37, s2 = 103.91)
are much greater, and with opposite signs. The GOES-assigned times for this reference
sample were, on average, almost 10 h premature (xTrimmed mean = −8.5), likely owing to the
first detection of fire at some location within a very large (4 km edge) pixel that may be
quite distant from the plot. This was despite the “centering” adjustments we made to the
GOES data, in an attempt to mitigate this expected issue. The few GOES-assigned times
that were very late (by as much as 30 h) could have been caused by plots at the leading
edge of a pixel where an approaching fire crept slowly onto the pixel, but only affected
a sufficient proportion of it to generate an active fire signal much later. VIIRS-assigned
times are in all cases tardy relative to the closest IR perimeter, with a mean lag of over
30 h. These very large time differentials may make it unlikely that weather assigned based
on GOES and VIIRS will reflect conditions when a plot burned, unless weather remains
homogeneous over time.

3.2. Wind Speed

We examined the extent to which differences in time stamp assignment between
methods (estimated minus IR) affected wind speed assignment for the 19 reference plots
located within 200 m of IR perimeters. The trimmed-means of the difference between wind
speed calculated for a method’s time stamp assignment and that calculated for the time
stamp of the nearest IR perimeter were similar across methods (Figures 5 and 6), with
a rank-based nonparametric comparison of median differences (χ2(2) = 1.27, p = 0.53),
indicating no statistically significant differences among wind speed prediction methods
for this small reference sample. However, the wind speed differences for MoWIP are
more tightly clustered around zero and with a more pronounced modal peak (x = −1.78,
s2 = 10.25); the two outliers, at points interior to the IR perimeter, have a substantial
influence on mean wind speed difference. A negative difference value and associated “in”
status (meaning that they burned before the fire reached the IR perimeter; see caption for
Figure 3) suggest that wind speed increased between the MoWIP-assigned time stamp
(which is midway between the time of the IR perimeter and the next smallest interpolated
perimeter) and the IR perimeter that the fire expanded to during this AP. Given a recent
analysis indicating that wind speeds exceeding 2.25 m/s can drive high tree mortality [2],
discrepancies on the order of even a couple of meters per second can make the difference
between capturing fire relevant weather attributes or failing to do so.
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Figure 5. Differences between estimated wind speeds derived via three methods for assigning fire
arrival time and wind speed of the nearest mapped IR perimeters in a reference dataset consisting
of 19 plots within 200 m of an IR perimeter. The large dot is the trimmed-mean of the time stamp
difference and the thick horizontal line is the median. The box in the center represents the interquartile
range and the thin vertical gray lines above and below the box represents the rest of the distribution.
The totality of the curved shape represents a kernel density estimation where wider sections represent
a higher probability of a given value and thinner sections represent a lower probability. Statistics
reported at top are a robust type (trimmed-means) heteroscedastic one-way ANOVA and p value.
Pairwise comparisons found no evidence of significant differences.

3.3. Tree Survival

To illustrate potential improvement toward explaining fire effect responses when
using sub-daily vs. daily estimation methods, we evaluated the relationship between
field-observed tree survival responses across a large sample of forested FIA conditions
(n = 215) burned by the 2020 Labor Day Fires, and mean wind speed at fire arrival estimates
as derived via MoWIP and an alternative daily estimation method (Figure 7). Under the
MoWIP method that utilizes sub-daily fire arrival times via interpolated IR perimeters
and high-resolution hourly modeled weather data (a), mean and median tree survival
decreases abruptly as wind speed increases. Statistical differences were detected between
mild (<2.25 m/s) and moderate to strong (2.25–4.5, 4.5–9.0, and >9.0 m/s) wind speed
thresholds as hypothesized, and following conventional understanding of fire weather and
fire effects. Alternatively, under the daily estimation method (b), no discernable relationship
exists between tree survival and thresholds of estimated wind speed at fire arrival, nor any
statistical differences, indicating that wind speed estimates are not sufficiently accurate to
account for the influence of weather on an important, observed fire effect (tree mortality).
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Figure 7. Distribution of tree biomass survival proportions, observed one-year post-fire, across burned
forested FIA conditions within the six Labor Day Fire perimeters. The x axis represents estimated mean
wind speed thresholds for (a) WRF (~1.3 km; hourly) and MOWIP (interpolated sub-daily) wind speed,
and (b) GRIDMET (~4 km; daily) and (VIIRS ~ 375 m; daily) wind speed. Sample size n indicates the
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number of FIA conditions for each wind speed group. The large dot is the estimated trimmed-mean
of survival proportions reported to the right. The thick horizontal line is the median. The box in
the center represents the interquartile range and the vertical thin gray lines above and below the
box represents the rest of the distribution. The totality of the curved shape represents a kernel
density estimation where wider sections represent a higher probability of a given value and thinner
sections represent a lower probability. Statistics reported at top of each panel are for the omnibus
Kruskal–Wallis rank-sum test with three degrees of freedom and p value. Significant pairwise
differences (a) for Dunn’s test with Holm adjustment are reported with brackets above each pair
(** p ≤ 0.01, *** p ≤ 0.001).

4. Discussion

To understand how pre-fire stand structure and composition influence fire outcomes
for soils and vegetation observed in the field post-fire, it is essential to account for site-
level weather conditions. For questions relating to fire intensity and duration, weather,
particularly wind, is often a driver at least as important as site conditions such as the fire
resistance properties of the species that grow there, ground and canopy fuel structures, and
loadings that reflect fire legacies and prior mitigation activities, if any [22].

The shapes of fire scars on the landscape reveal the complex interactions among wind
speed and direction, fuels, and topography that influence fire progression. Many small
fires burning under moderate weather conditions are round [23], constrained primarily
by levels and homogeneity of vegetation fuels [24]. In contrast, most large wind-driven
fires are elliptical as the head fire front spreads much faster than the flanking and backing
fire fronts, and unpredictable changes in wind direction and speed over varying terrain
produce irregular patterns of spread [25]. The 2020 Labor Day Fires spread rapidly from
east to west under strong, east winds that only gradually subsided over the first three
days of the fire [18], producing large, roughly elliptical fire scars and comparatively few,
officially mapped perimeters over the three-day period during which winds gradually
moderated from exceptionally extreme to calm. When the winds had fully subsided, fire
spread slowed, resulting in intervals between successive IR perimeters that were long in
time and short in distance. While this decreased the precision in time stamp assignment
and confidence that the weather assigned matched conditions when the plot began to burn,
the generally slow wind speeds at this stage of the fire meant that wind speed assignments
may not have been far off, and the number of plots burned during such periods of slow
expansion was proportionally small.

More problematic were the earlier periods when fire spread was accelerating or
decelerating. In the case of decelerating winds and slowing fire growth, assignment of wind
speed associated with a time stamp for the IR perimeter containing a plot that burned near
the beginning of the interval between IR perimeter collections, without subdividing that
space via interpolation, risks assigning an anomalously slow wind speed (corresponding
to the time stamp of an outer perimeter) to a plot that burned under strong winds. When
winds and fire are accelerating, biased estimates of time stamps with the opposite sign
would prevail. While in these fires, it was primarily wind speed that experienced high
variability while humidity remained persistently low, periods of transition in any aspect of
weather severity present challenges for obtaining weather attributes relevant to when a plot
burned. This is particularly true when relying on time stamping protocols involving low
temporal or spatial resolution, including GOES, VIIRS, or mapped IR perimeters without
interpolation. Fire growth periods during which there is little variability in weather
conditions reduce the need to derive high-precision fire arrival times.

Infrared perimeters are mapped when there is an identified need, when equipment
and personnel are available, and when conditions are safe for aircraft operations. This
introduces non-random elements into the perimeter collection timing that generate potential
biases for using IR perimeter time stamps to represent time of fire arrival for the plots
within an un-subdivided IR perimeter interval and complicate interpretation of the limited
validation attempted for plots situated near those perimeters. On some of these six fires, the
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first IR perimeters were collected more than one day after fires ignited or began to actively
grow, so the period of greatest fire growth was under sampled by perimeters. Moreover,
the times of day at which 26 perimeters were collected, across these fires, in the first 4 days
of fire growth, were biased towards periods of lower fire spread (62% were after 6 p.m. or
before 6 a.m. local time) and against times of day with greatest fire spread (only 12% were
mapped between noon and 6 p.m.). Although not particularly evident in these fires, diurnal
variation in weather is typical, with overnight reductions in weather severity, sometimes
beginning shortly after sundown, and later morning/early afternoon peaks in weather
severity, particularly winds. Thus, if IR perimeter time stamp collection, which tends to be
during the parts of the day with the least severe weather, is relied upon to select weather to
associate with when plots within a perimeter burned, these may understate the severity of
the weather that occurs at the plot when fire arrives.

Those who require knowledge of fire arrival time (finer than daily), such as when
needing to know the weather conditions when a particular location was encountered by fire,
currently have little recourse but to rely on IR perimeters, active fire (AF) sensor derived
products (like MODIS, VIIRS, and GOES) or some combination thereof (e.g., [4]) to arrive
at best estimates. All of these have limitations. Approaches based on AF sensors have been
evaluated against IR perimeters primarily in terms of cumulative or daily fire area and
sometimes based on distance between AF sensor modeled and IR perimeters, but those
metrics do not address the sub-daily accuracy requirement or even daily accuracy (e.g.,
the 61 percent accuracy reported by [5] does not suggest great prospects for obtaining
plot-relevant fire weather). Some of the limitations of the IR perimeters could be over-
come with a greater commitment to quality assurance and meta data accompanying this
amazing data resource. While recognizing that incident managers may be NIROPS’s key
constituency, greater dialog with the research community could highlight the recurring
issues encountered that hamper the use of these data for analysis absent a cleaning effort
that inevitably entails making best judgements and assumptions without the working
knowledge of the fire event timeline that is undoubtedly better known to those building
these interpreted perimeters. If NIROPS was staffed to upgrade the quality control in the
production of this perimeter data, the benefits to both fire operations users and analysts
requiring research-grade data to learn from fire outcomes (with metadata and documenta-
tion) could be substantial. Applying an interpolation like MoWIP to all NIROPS-covered
fires would require significant work to develop distributed weather fields at a temporal
resolution finer than daily (e.g., hourly), but if near-real-time automated workflows could
be developed to produce such fields, an incremental investment in an automated geo-
processing workflow that consistently implements MoWIP could pay huge dividends for
analysis both post-fire and during the fire event.

The availability of retrospective weather datasets exhibiting both high spatial and
temporal resolutions to support such efforts are limited, however. The opportunistically
available WRF model used in this study was highly parameterized to the Pacific Northwest
region, the 2020 Labor Day Fires event, and was reanalyzed from a 4 km to 1.3 km spatial
resolution [18]. Other widely available weather datasets with hourly resolutions exhibit
far coarser spatial resolutions, such as ERA5 (30 km; global coverage) and NAM (12 km;
North America coverage). While the coarse spatial resolution of these products may be
a less important factor over topographically homogenous landscapes (e.g., flat and/or
mildly sloping), their capacity to accurately estimate wind speeds within discrete locations
across mountain landscapes with rugged topography may be relatively limited, given the
complex interactions between coarse scale prevailing winds and fine scale topography that
can drive high variability in wind speed over space and time.

The MoWIP workflow starts with routinely collected infrequent fire perimeters and
modeled, finely resolved, gridded weather across the area of interest; exploits the weather
data to guide interpolation of fire perimeters to a temporal resolution adequate for obtaining
a time stamp for arrival of fire at each point of interest; and then links those times and
places to the weather data to obtain fire- and location-relevant fire weather that describes
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the conditions that occurred when each place burned. The most significant contribution of
the MoWIP protocol is the considerable enhancement in the timing precision of weather
assignment, relative to remotely sensed active fire products having relatively coarse spatial
and/or temporal resolution (e.g., VIIRS and GOES). This timing precision is most important
during wind-driven, rapid spread phases of fire growth and when weather and growth are
in transition. An analysis of field-observed fire effects on forested FIA plots, distributed
across the 2020 Labor Day Fires, indicated that wind speed derived from the MoWIP
protocol strongly explained differences in fire effects (tree survival and crown scorch) across
forested plots [13]. With regard to tree survival specifically, Figure 7 illustrates precisely
how daily fire weather and arrival estimation methods can fail to produce weather estimates
accurate enough to be useful in explaining fire effects during wind-driven fire events. While
the methods evaluation conducted in this study was limited by a small sample size (i.e.,
the 19 FIA plots within 200 m of a remediated IR perimeter), the results from [13] and
Figure 7 suggest that the MoWIP protocol can produce precise-enough estimates of fire
arrival time to allow analysts to control for weather conditions when investigating the
influence of forest structure on observed fire effects. While the MoWIP protocol appears to
be an improvement (i.e., increased spatiotemporal precision) on existing methods, further
work is needed to develop more easily reproduced, automatable, and validated approaches
that can utilize widely available, temporally resolved meteorological datasets and models.
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