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Abstract: Planning the analyses of the spatial distribution and driving factors of forest fires and
regionalizing fire risks is an important part of forest fire management. Based on the Landsat-8 active
fire dataset of the Liangshan Yi Autonomous Prefecture from 2014 to 2021, this paper proposes an
optimal parameter logistic regression (OPLR) model, conducts forest fire risk zoning research under
the optimal spatial analysis scale and model parameters, and establishes a forest fire risk prediction
model. The results showed that the spatial unit of the optimal spatial analysis scale in the study
area was 5 km and that the prediction accuracy of the OPLR was about 81%. The climate was the
main driving factor of forest fires, while temperature had the greatest influence on the probability
of forest fires. According to the forest fire prediction model, mapping the fire risk zoning, in which
the medium- and high-risk area was 6021.13 km2, accounted for 9.99% of the study area. The results
contribute to a better understanding of forest fire management based on the local environmental
characteristics of the Liangshan Yi Autonomous Prefecture and provide a reference for related forest
fire prevention and control management.

Keywords: forest fires; Landsat 8 active fires; forest fire factors; logistic regression; risk zoning

1. Introduction

As an important factor shaping forest ecosystems, forest fires play a vital role in forest
renewal, succession, and biodiversity [1]. Nevertheless, forest fires will inevitably destroy
the ecological services of forests, not only by causing natural disasters and threatening
human life and property safety [2], but also by facilitating secondary disasters [3,4] such as
soil erosion, debris flows and landslides [5,6]. Therefore, the occurrence patterns and spatial
structure laws of forest fires should be understood, and forest fires should be monitored and
forecasted accordingly [7]. The fire risk regionalization of forest fires is an effective technical
means of forest fire prevention and control [8,9]. Exploring the factors driving forest fires,
forest fire prediction, and fire risk zoning [2,9–12] can provide a scientific basis for planning
fire prevention, deploying firefighting forces, and guiding forest fire prevention work.

Various complex factors determine the occurrence of forest fire disasters, including
terrain, climate, vegetation, human activities, and so on [13,14]. The climate is an important
factor in forest fires, and global warming may further aggravate forest fires [15]. Therefore,
meteorological variables are widely considered in the study of forest fires [16]. Temperature,
precipitation, wind speed, and other factors may affect the formation and flammability
conditions of combustibles, thus resulting in fires with different probabilities [17]. Topo-
graphic factors also play an important role in forest fires. Altitude, slope direction, and
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slope can lead to the spatial differentiation of vegetation and also change the flammability
conditions of fuels by affecting the local meteorological environment [18,19]. The quantity
and structure of forest vegetation, as the most direct influencing factors of combustibles
and combustible conditions, have an important influence on the occurrence and spread
of forest fires [14,20]. Human variables are also significant driving factors of fires, and
their impact on fires is related to population density and human activity. In areas with a
high population density, human activities tend to be more frequent, leading to a higher
frequency of fires [21]. Indeed, human activities will not only change the frequency of fires,
either by extinguishing the fires or ignition points caused by human intervention, but also
change their intensity and distribution [21,22].

Due to the complexity of forest fire generation and its driving factors, numerous
scholars have attempted to use different research methods to explore forest fire prediction
models and regionalization, such as Bayesian networks for fire risk mapping [23], a weights-
of-evidence approach to modeling, and mapping the probability of fire occurrence [24].
Multiple overlapping solution methods to predict the growth of wildland fires [25], neural
networks, and machine learning have also been applied to study forest fires [10,26]. Logistic
regression models are among the most commonly used models in forest fire studies because
of their good explanatory and predictive accuracy, and examples of these include multiclass
logistic regression (RAFFIA) [27], binary logistic regression (BLR) [28], kernel logistic
regression [29], semi-parametric logistic (SPL) regression models [30], and geographically
weighted logistic models [31,32].

Logistic regression models have been widely used in forest research, but the con-
struction strategies of the model may vary, especially when exploring the importance of
variables. The presence or absence of a prior hypothesis will directly affect the selection of
model construction strategies [33]. Moreover, regression coefficients for ordered categorical
variables are easier to understand than one-unit changes for continuous variables [34].
Therefore, considering the degree of influence of an independent variable on the dependent
variable, the continuous independent variable will generally not be directly incorporated
into the model but will be transformed into ordered multiclassification variables and then
incorporated into the model. However, during the analysis process, continuous parameter
variables will mostly be processed based on professional experience [12,28,29,35], which is
highly subjective.

Forest fire studies have been conducted at different spatial scales [7] in global [15,22],
national [10,20], regional [1,36], or ecological zones [11,29] to assess fire indicators and a
series of explanatory factors. Relevant studies have shown that heterogeneity exists in
different spatial scales. The interaction and explanatory power of explanatory variables
also vary on different scales [32,37]. Therefore, carrying out research on forest fires in local
areas is both essential and of important strategic significance to understand the spatial
distribution of forest fires in different regional scale environments and to better analyze
and predict the laws of forest fire occurrence. The Liangshan Yi Autonomous Prefecture is
an area of frequent forest fires in China as a result of its special geographical environment,
climatic conditions, and rich forest resources. Forest fire prevention has always been
extremely severe, and several scholars have conducted research on this issue. Sun et al. [36]
used an adaptive forest fire spreading simulation algorithm to simulate and predict the
spread of forest fires in the Coronation County area of Liangshan. Tian et al. [13] used
multisource remote sensing imagery to monitor and quantify the dynamic spread of forest
fires in Muli County. Cheng et al. [38] used a MEC-based image recognition algorithm
for the monitoring and early warning of hill fires in Muli County. Li et al. [39] completed
a spatial and temporal dynamic assessment of leaf fuel loads (FFL). However, there are
still some questions about the fire in Liangshan Prefecture. What factors have affected the
occurrence of the fires? What is the probability of fires? These issues need to be further
explored. Even so, there are few studies on the drivers and spatial distribution of forest fires,
which leads to the fact that fires in this area have not been fully studied and the inability to
establish a scientific forest fire prevention and extinguishing system. Therefore, we hope
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to determine the driving factors of forest fires and their influence degree by exploring the
fires in this area and obtaining the forest fire risk zoning map according to the probability
of predicting the occurrence of forest fires to further study on the local area fires.

Although logistic regression models have been widely used to study forest fires, quan-
titative evaluations and modeling research on the variables involved in model construction
from a data-driven perspective are still lacking. Therefore, this paper proposes the optimal
parameter logistic regression (OPLR) model. Different from the regular binary logistic
regression, OPLR discretizes continuous variables from the data-driven perspective, avoids
subjectivity in professional experience processing, and better explores the factors driving
forest fires at the regional scale. A logistic regression model constructed by using the
optimal discretization parameters can effectively improve the performance of the model
and generate a more accurate forest fire danger zoning map. The results can provide a
scientific basis, support in decision making, and guidance for forest fire prevention and
control management for the local government of the Liangshan Yi Autonomous Prefecture.

2. Materials and Methods
2.1. Study Area

The Liangshan Yi Autonomous Prefecture (26◦03′~29◦18′ N, 100◦03′~103◦52′ E) is
located in the southwest of Sichuan Province, China, and on the northeast margin of
the southwest Hengduan Mountain Region between the Sichuan Basin and the central
Plateau of Yunnan Province; the total area is 60,423 km2 (Figure 1). The terrain is high
in the northwest and low in the southeast. Its landforms are complex and diverse; the
highest elevation point in the territory is the Chalangdorj Peak in Muli County, reaching an
altitude of 5958 m, while the lowest elevation point is at the bottom of Jinsha River Valley
in Danyandong, Leibo County, at only 325 m, with a maximum relative height difference
of 5653 m. The Liangshan Yi Autonomous Prefecture is characterized by a subtropical
monsoon climate with distinct dry and wet features, but the boundary between the four
seasons is not obvious. Due to its topographic differentiation and complex and diverse
landforms, the Liangshan Yi Autonomous Prefecture has obvious vertical characteristics
associated with a mountain climate. The annual average temperature is about 16–17 ◦C,
the precipitation is about 1003 mm, and the sunshine hours are as high as 1967.2 h. Among
them, in Huili, Huidong, Ningnan, Puge, and other dry and hot valley areas, the average
annual temperature is 20–27 ◦C, and the annual precipitation is only 600–800 mm. Coupled
with the influence of atmospheric circulation, it also has a complex and diverse climate. At
the same time, the Liangshan Yi Autonomous Prefecture has a vast territory and rich forest
resources, making it one of the three major forest regions in Sichuan Province. However,
Liangshan Prefecture belongs to a forest-fire-prone area and endures severe forest fires,
which have become especially commonplace in recent years. In March 2019, a forest
fire in Muli resulted in the deaths of 31 rescue workers and damaged a forest area of
43.90 hectares. In March 2020, a forest fire in Xichang resulted in the deaths of 19 people, a
damaged forest area of 791.6 hectares, and direct losses of up to CNY 97.32 million. Since
1951, the annual average surface temperature in China has shown a significant upward
trend with an average increase of 0.26 ◦C per decade. The number of precipitation days
has decreased, but the intensity of precipitation has increased significantly [40]. With the
continuous emergence of extreme weather, the prevention and control of forest fires is
becoming increasingly important.
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Figure 1. Landsat 8 active fires (2014–2021) in the Liangshan Yi Autonomous Prefecture.

2.2. Data Sources

The 2014–2021 Landsat 8 active fire datasets were from the Institute of Remote Sensing
and Digital Earth (RADI), Chinese Academy of Sciences (http://satsee.radi.ac.cn/, accessed
on 22 July 2023). Using Landsat 8 OLI sensor data with a spatial resolution of 30 m according
to the spectral characteristics of fire spots in near-infrared and shortwave infrared bands, the
improved Normalized Burning Ratio Short-wave (NBRS) results were used to adaptively
determine the threshold to extract suspected fire spots. Then, the peak relationship of fire
spots in short-wave infrared was used to eliminate false-positive points to obtain the final
fire spot product. The fire dataset contained the following attributes: id, latitude, longitude,
date, time, t1 (inversion temperature, unit: Kelvin), area, confidence, version, and imguri
(background image location, URL connection). The Landsat 8 fire dataset with confidence
greater than 50 fires in the study area was selected; to avoid creating control points that
were the same as or near the ignition point, a buffer zone of 500 m around the fire point
was placed as a barrier, excluding control points that fell into the buffer zone [41]. Finally, a
total of 1187 fire point data were selected.

The normalized difference vegetation index (NDVI), monthly temperature, and pre-
cipitation data from 2014–2021 were derived from National Tibetan Plateau Data Center
(http://data.tpdc.ac.cn/; accessed on 22 July 2023); and the monthly NDVI dataset was
based on the maximum-value composite method to obtain the maximum monthly NDVI.
The values were calculated as:

MNDVIi = Max(NDVI1, NDVI2) (1)

where NDVIi is the maximum value of NDVI in the first half of month i; i is the number
of months, i ∈ (1,12); and NDVI1 and NDVI2 are the NDVI values of the first and second
halves of the i month, respectively. Based on the monthly NDVI, the annual NDVI was
obtained with the maximum-value composite method.

The road data were vector road data acquired from OpenStreetMap (https://www.
openstreetmap.org/; accessed on 5 May 2022). The distance of each image element’s center
value from the nearest road was obtained using the distance analysis tool in ArcGIS v10.7
with an Euclidean distance calculation. In addition, the 2015 and 2019 population density
data, vegetation type data, and land use remote sensing monitoring data were gathered
from the data center of the Institute of Geographical Sciences and Resources, Chinese
Academy of Sciences (https://www.resdc.cn/; accessed on 22 July 2023). The monthly

http://satsee.radi.ac.cn/
http://data.tpdc.ac.cn/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://www.resdc.cn/
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wind and relative humidity data from 2014–2020 were obtained from the National Earth
System Science Data Center (http://www.geodata.cn/; accessed on 22 July 2023). All the
above data hade a uniform Albers Equal Area Conic projection and 500 × 500 m raster
pixels.

Sections 3.1 and 3.2 of this article are based on RStudio 4.2.1 for analysis and drawing,
Sections 3.3–3.5 are based on Statistical Product and Service Solutions (SPSS) 26 for analysis
and mapping, and Sections 2.1 and 3.6 use ArcGIS 10.7 software for drawing.

2.3. Optimal Parameter-Based Geographical Detector Model

A geographical detector model is an efficient tool for spatially stratified heterogeneity
analyses, and it mainly consists in dividing the study space into sub-regions according
to variables and comparing the spatial variance within each sub-region and between
different sub-regions to assess the influence of potential explanatory variables [42]. An
optimal parameter-based geographical detector (OPGD) model was established based on
the application and development of geographic detectors, and the OPGD model included
five components: a factor detector, parameter optimization, an interaction detector, a risk
detector, and an ecological detector [43].

The OPGD model’s parameter optimization included an optimization of the spatial
discretization and optimization of the spatial scale. The best combination of the discretiza-
tion method and the number of interruptions of each geographically continuous variable
was selected as the best discretization parameter as determined by the Q value calculated
using the factor detector. The discretization methods included a series of supervised and
unsupervised discretization methods, which could be set up with a discrete integer series
according to the actual requirements. The value of the variable Q was calculated as:

Qv = 1−
∑M

j=1 Nv,jσ
2
v,j

Nvσ2
v

(2)

where Nv and σ2
v are the number and population variance of observations within the whole

study area, and Nv,j and σ2
v,j are the number and population variance of observations within

the jth (j = 1, . . ., M) sub-region of variable v. A large Q value means a relatively high
importance of the explanatory variable due to a small variance within sub-regions and a
large variance between sub-regions.

Based on the evaluation of forest fire risks and the actual geographical environment of
the Liangshan Yi Autonomous Prefecture, we selected a total of 12 forest fire impact factors,
namely the elevation (EL), slope, aspect, vegetation cover type (Veg), NDVI, annual mean
temperature (Temp), precipitation (Prec), wind speed (Wind), relative humidity (Rhum),
land use type (LandUT), population density (Popd), and distance from road (DisFR); of
these, the Veg, aspect, and LandUT were discrete data, while the other continuous variables
were discretized using the OPGD model to identify the optimal parameters.

2.4. Logistic Forest Fire Regression Prediction Model

The scenarios used in the logistic model were mostly dependent variables of binary or
multiclassification, and the multiple independent variables affecting dependent variables
could consist of qualitative or quantitative data. Because the regression coefficient of
ordered categorical variables is easier to understand than the unit change of continuous
variables, and considering the influence of independent variables on dependent variables,
continuous independent variables are generally not directly incorporated into the model
but instead transformed into ordered multicategory variables and then incorporated into
the model.

In this study, the optimal combination of the discretization method and the number
of outages of each geographically continuous variable was selected as the optimal dis-
cretization parameter. The Q value calculated with the geographic factor detector was used
to determine the optimal parameter combination. A combination of a set of discretiza-

http://www.geodata.cn/
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tion methods and the number of interrupts was provided for each continuous variable to
calculate their respective Q values. The optional discretization method could be a list of
supervised and unsupervised discretization methods, and the optional breakpoint number
could be an integer sequence of observation and actual requirements.

Therefore, the optional combination could cover almost all available options. For con-
tinuous variables, the parameter combination with the highest Q value in all combinations
was selected for spatial discretization because from the perspective of spatial stratification
heterogeneity, this parameter combination represents the highest importance of the vari-
able. A logistic regression model constructed by using the discrete optimal parameters can
effectively avoid subjectivity in the process of processing data with professional experience.

The probability of forest fire occurrence was taken as the binary dependent variable of
the model, and 1 or 0 was used to indicate whether or not a forest fire occurred so that the
probability was between 0 and 1.

ln
(

P
1− P

)
= β0 + β1x1 + β2x2 + · · ·+ βixi (3)

where P is the probability of occurrence of a forest fire; x1, x2 · · · xi is the independent
variable; β1, β2 · · · βi is the regression coefficient of the independent variable; and i is the
number of independent variables.

2.5. Spearman Rank Correlation Coefficient

The Spearman rank correlation coefficient (rs) is a non-parametric or non-distributed
rank statistical measure for the intensity and direction of any monotonic correlation between
two rank variables or one rank variable and one measurement variable. In principle, the
Spearman correlation coefficient is only a special case of the Pearson coefficient. Before
the correlation coefficient is calculated, the sample is converted to rank [44]. However, it
does not need to make any assumptions about the frequency distribution and the linear
relationship between the two variables, nor does it need to be measured on the interval
scale. The simple expression of rs based on the difference between the two ranking variables
is as follows:

rs = 1−
6∑ d2

i
N(N2 − 1)

(4)

where di = X′i − Y′i is the difference between each pair of ranked variables, and N is the
total number of samples. It is a measure of a monotonic relationship that can be used
when the characteristics of a pair of variables (such as frequency distribution and/or linear
distribution) make Pearson’s rs misleading or unpopular. In addition to non-parametric
privileges, the main advantage of this measurement method is that it is more convenient to
use because it does not require the data to be sorted.

2.6. Multicollinearity Analysis

Multicollinearity refers to a significant correlation between two or more explanatory
variables, which has a serious influence on the quasi-certainty of the regression model. The
severity of collinearity is commonly measured using the variance inflation factor (VIF),
which is defined as:

VIFi =
1

1− R2
i

(5)

where R2
i denotes the R2 index when the ith explanatory variable is regressed on the

remaining independent variables. A larger VIF value indicates a stronger correlation
between the variable and the other independent variables.

2.7. Receiver Operator Characteristic (ROC) Curve Analysis

The receiver operator characteristic (ROC) curve was calculated according to the
predicted value as the possible judgment threshold, and the corresponding sensitivity and
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specificity were drawn with 1-specificity as the abscissa and sensitivity as the ordinate. The
area under the ROC curve (AUC) could be used to evaluate the accuracy of the model. Its
value ranged from 0 to 1. The larger the value was, the higher the fitting accuracy of the
model. The Youden index was calculated by subtracting 1 from the sum of the sensitivity
and specificity of the ROC curve, which was used to determine the best indicator threshold
in the upper left corner of the ROC curve to obtain the accuracy of the model prediction.

3. Results
3.1. Spatial Unit and Discretization of Optimal Parameters

The optimal spatial scale was based on the calculation of the 90% quantile of the Q
values of all explanatory variables on a spatial scale, comparing the overall Q trends on
different spatial scales, and selecting the spatial scale where the 90% quantile of Q values of
all explanatory variables reached the highest value as the optimal spatial scale. The dataset
in this study was processed into six different sizes of grid data. The results of the effect
comparison between these different sizes of data by the OPGD model showed that the Q
values of most variables increased from 0.5 km space units to 5 km space units. When the
space unit was 5 km, the 90% quantile of the Q value reached the highest value (Figure 2).
Therefore, a 5 km spatial grid was used as the best spatial unit for the analysis of factors
driving forest fires.
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Figure 2. Comparative results of Q values and 90% quantile effects of explanatory variables at
different spatial unit scales, including elevation (EL), slope, aspect, temperature (Temp), precipitation
(Prec), wind speed (Wind), relative humidity (Rhum), vegetation cover type (Veg), NDVI, land use
type (LandUT), population density (Popd), and distance from road (DisFR).

The OPGD model involved six discretization methods for continuous variables in the
spatial analysis: the equal break method, the natural break method, the quantile method,
the geometric break method, the standard deviation method, and the manual break method.
Several spatially continuous variables were considered in this study, and all were optimized
using the OPGD model for spatial discretization parameters (Figure 3). The results showed
that the optimal parameter combinations of discretization methods and the number of
interruptions differed for different explanatory variables. EL, Temp, and DisFR used the
quantile break with nine, eight, and nine intervals, respectively; slope and Prec used the
standard deviation method with eight intervals; Wind and Rhum used the equal break
with nine interruptions; NDVI used the natural break with nine intervals, and Popd used
the geometric break with nine intervals.
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ArcGIS v10.7 software based on the DEM, which was divided into nine categories. A to-
tal of 12 factors contributing to the occurrence of forest fires were classified, and the re-
sults of the reclassification of factors driving forest fires were obtained according to the 
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Figure 3. Results of the discretization process of explanatory variables: (a,b) elevation (EL); (c,d)
slope; (e,f) temperature (Temp); (g,h) precipitation (Prec); (i,j) wind speed (Wind); (k,l) relative
humidity (Rhum); (m,n) NDVI; (o,p) population density (Popd); (q,r) distance from road (DisFR).

In addition to the above-mentioned continuous spatial data optimized using OPGD
model parameters, the spatial distribution data of Veg were sorted into nine categories
according to the code table of source data Veg, while LandUT data were sorted into eight
categories according to the land use classification system of the Resource Environmental
Science Data Center. The aspect data were generated using the surface tool in ArcGIS
v10.7 software based on the DEM, which was divided into nine categories. A total of
12 factors contributing to the occurrence of forest fires were classified, and the results of the
reclassification of factors driving forest fires were obtained according to the classification
(Figure 4).
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3.2. Results of the Spearman Rank Correlation Coefficient

According to the results of the Spearman correlation analysis (Figure 5), the variables
of EL except aspect were extremely significant (P < 0.01), and the average correlation
coefficient was 0.289. To avoid the conflict variables with high correlation, which resulted
in overfitting of the future model, the EL variable was eliminated.
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3.3. Results of the Driving Factor Multicollinearity Diagnosis

VIF is an important index to measure multicollinearity. If the VIF value is greater than
10, there is a collinearity problem between independent variables [11,45]. The results of the
multicollinearity diagnostic test showed that the EL and Temp were relatively high: the VIF
value for each factor was 10.683 and 10.098, respectively. Therefore, it was necessary to deal
with the collinearity of the driving factors. After eliminating the EL factor, the collinearity
diagnosis results showed that the VIF values of all the remaining factors were less than 5
(Table 1) and that the average VIF value was 1.844. Consequently, the collinearity test was
passed.

Table 1. Multicollinearity diagnostic.

Type Factors Coding VIF

Topographic factors
Elevation EL *1

Aspect - 1.027
Slope - 1.487

Vegetation factors Vegetation cover type Veg 1.105
NDVI - 1.361

Meteorological
factors

Temperature Temp 2.159
Precipitation Prec 3.646
Wind speed Wind 1.460

Relative humidity Rhum 3.053

Human factors
Population density Popd 2.488

Land use type LandUT 1.087

Distance from road DisFR 1.408

*1 Null value after eliminating variables.

3.4. Construction and Evaluation of the OPLR Forest Fire Prediction Model

Based on the optimal spatial scale analysis unit determined by the OPGD model, a
total of 4748 data point sets were screened for participation in model building, and the
sample data included fire point data and non-fire point data with a ratio of about 1:3.
Moreover, to reduce the influence of data spatial autocorrelation on model accuracy, the
dataset was randomly divided into 70% model samples and 30% test samples, and the
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random division was repeated three times to reduce the influence of sample distribution.
The Wald forward principle was adopted for data sample model fitting. According to the
three sample data fitting results, significant variables were selected as the influence factors
of the whole sample fitting, including slope, Temp, Prec, Rhum, Veg, Popd, and LandUT
(Table 2).

Table 2. Fitting results of the whole sample model.

Model Variable Coefficient Standard Error Wald Test Degree of Freedom Significance Exp(β)

Rhum (X1) −0.462 0.038 147.829 1 0.000 0.630
Temp (X2) 0.292 0.027 113.877 1 0.000 1.339
Slope (X3) −0.171 0.023 57.404 1 0.000 0.843
Popd (X4) 0.206 0.043 22.729 1 0.000 1.229

LandUT (X5) −0.158 0.049 10.352 1 0.001 0.854
Veg (X6) −0.033 0.015 4.635 1 0.031 0.968
Prec (X7) −0.081 0.040 4.068 1 0.044 0.922
Constant −0.192 0.255 0.568 1 0.451 0.825

The results of the mixed test of the model coefficients showed that the significance
value was 0.05. The chi-square value obtained from the model calculation at 7 degrees of
freedom was 1349.23, much larger than the chi-square critical value of 14.067 for 7 degrees
of freedom in this confidence level group. Its corresponding significance value of 0.000 was
less than 0.05, so the model coefficients passed the test at a significance level of 0.05. In the
significance test, the significance values corresponding to each influence factor were less
than 0.05 at a significance level of 0.05 and therefore passed the Wald test.

The model fitting results showed that the slope, Temp, Rhum, and Popd had extremely
significant relationships with the probability of forest fire occurrence (P < 0.01), and the
Prec, Veg, and LandUT were also significant (P < 0.05). The Temp and Popd were positively
correlated with the probability of forest fire occurrence, and the Exp(β) values were all
greater than 1. Compared with other factors, Temp and Popd had a greater impact on
the probability of forest fire occurrence. The slope, Prec, Rhum, Veg, and LandUT were
negatively correlated with forest fire occurrence probability. According to the fitting results
in Table 3, the OPLR model was established as follows:

ln
(

P
1− P

)
= −0.462X1 + 0.292X2 − 0.171X3 + 0.206X4 − 0.158X5 − 0.033X6 − 0.081X7 − 0.192 (6)

Table 3. Evaluation of the forest fire prediction model.

Sample
Group Predicted AUC Youden

Index

Training Validation

Fire 0 1 Percentage
correct Fire 0 1 Percentage

correct

Sample 1 0 2285 208 91.65 0 986 82 92.32 0.831 0.527
1 440 397 47.43 1 186 164 46.86

Overall
percentage 80.54 81.1

Sample 2 0 2279 205 91.75 0 994 83 92.29 0.832 0.529
1 415 425 50.6 1 199 148 42.65

Overall
percentage 81.35 80.2

Sample 3 0 2277 205 91.74 0 1007 72 93.33 0.837 0.525
1 425 439 50.81 1 181 142 43.96

Overall
percentage 81.17 81.95

Whole
sample 0 3269 292 91.8 0.83 0.521

1 615 572 48.19
Overall

percentage 80.9
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3.5. ROC Curve Analysis

The fitting results of the ROC curves showed that the AUC values of Sample 1, Sample
2, Sample 3, and the whole sample dataset were 0.831, 0.832, 0.837, and 0.830, respectively;
the AUC values of the sample datasets were close to each other and were much higher than
0.5. The prediction accuracy of the test sample data of each sample group exceeded 80%,
and the average value was 80.99% (Figure 6 and Table 3), which showed that the OPLR
model fitted better and had a higher prediction accuracy.
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3.6. Classification of Forest Fire Probability Risk Level

The probability of forest fire occurrence in the dataset was calculated according to
the whole-sample OPLR model. The spatial distribution of the probability of forest fire
occurrence in the Liangshan Yi Autonomous Prefecture was obtained using the kriging
spatial interpolation method; an optimal threshold value of 0.521 was obtained by calcu-
lating the Youden index from the results of the whole-sample ROC curve. An area with a
probability of forest fire occurrence exceeding this value could be considered prone to forest
fires [35]. The fire risk was divided into five levels: Class I fire risk areas with basically no
fire occurrence (P ≤ 0.2), Class II fire risk areas with little fire occurrence (0.2 < P ≤ 0.4),
Class III fire risk areas with a possible fire occurrence (0.4 < P ≤ 0.521), Class IV fire-prone
areas (0.521 < P ≤ 0.6), and Class V extremely fire-prone areas (0.6 < P ≤ 0.831). On the
whole, the forest fire risk areas were divided into low-risk fire areas (Class I and II fire risk
areas), medium-risk fire areas (Class III fire risk areas), and high-risk fire areas (Class IV
and V fire risk areas). In addition, the forest fire probability risk zoning was conducted
according to the above division of fire risk levels (Figure 7).



Fire 2023, 6, 336 13 of 18

Fire 2023, 6, x FOR PEER REVIEW 13 of 19 
 

 

fire-prone areas (0.521 < P ≤ 0.6), and Class V extremely fire-prone areas (0.6 < P ≤ 0.831). 
On the whole, the forest fire risk areas were divided into low-risk fire areas (Class I and 
II fire risk areas), medium-risk fire areas (Class III fire risk areas), and high-risk fire areas 
(Class IV and V fire risk areas). In addition, the forest fire probability risk zoning was 
conducted according to the above division of fire risk levels (Figure 7). 

  

Figure 7. Spatial distribution of forest fire probability and risk level zoning: (a) forest fire probabil-
ity; (b) forest fire risk level. 

As shown by the forest fire probability risk level zoning, the medium- and high-risk 
fire risk areas in the Liangshan Yi Autonomous Prefecture were spatially clustered and 
mainly concentrated in the south, central, and midwest parts, among which Huili, 
Xichang, Yanyuan, and Huidong were high-risk forest fire-prone areas, mainly due to 
the Ⅳ and Ⅴ fire risk level areas; Ningnan, Puge, Dechang, Mianning, and Xide were 
mostly characterized by Class III and IV areas of fire risk level zoning, so these areas were 
prone to fire. Furthermore, Muli, Meigu, Leibo, Jinyang, Zhaojue, and Butuo were classed as 
Class Ⅰ or Ⅱ fire risk zones, so the probability of fire in these areas was minimal. 

The area of each risk level and its proportion indicated that in the fire risk zoning, 
the area of the Class Ⅰ fire risk zone accounted for 68.87% (the largest proportion), while 
the area of the Class Ⅱ fire risk zone accounted for 19.46%. That is, the low-risk fire areas 
accounted for 88.33% of the total. The proportion of third-level risk zones, namely the 
medium-risk fire areas, reached 5.16%; the proportions of Class Ⅳ and Ⅴ risk zones 
were 2.15% and 2.68%, respectively; and the high-risk fire areas accounted for 4.83% (i.e., 
the medium- and high-risk areas were more than 1/5 of the total area of the Liangshan Yi 
Autonomous Prefecture (Table 4)). Therefore, attention to these medium-high-risk fire 
areas is needed. Indeed, fire prevention measures should be strengthened, and the forest 
fire controllability of these areas should be improved to better cope with the difficult 
forest fire situation in the prefecture. 

Table 4. The proportion of forest fire risk level zoning areas. 

Fire Risk Probability (P) Fire Risk Class Area (km²) Area Percentage (%) 
P ≤ 0.2 Class I fire risk areas 41,511.25 68.87 

0.2 < P ≤ 0.4 Class II fire risk areas 11,729.25 19.46 
0.4 < P ≤ 0.521 Class III fire risk areas 3109.50 5.16 
0.521 < P ≤ 0.6 Class IV fire risk areas 1298.00 2.15 
0.6 < P ≤ 0.831 Class V fire risk areas 1613.63 2.68 

Figure 7. Spatial distribution of forest fire probability and risk level zoning: (a) forest fire probability;
(b) forest fire risk level.

As shown by the forest fire probability risk level zoning, the medium- and high-
risk fire risk areas in the Liangshan Yi Autonomous Prefecture were spatially clustered
and mainly concentrated in the south, central, and midwest parts, among which Huili,
Xichang, Yanyuan, and Huidong were high-risk forest fire-prone areas, mainly due to the
IV and V fire risk level areas; Ningnan, Puge, Dechang, Mianning, and Xide were mostly
characterized by Class III and IV areas of fire risk level zoning, so these areas were prone to
fire. Furthermore, Muli, Meigu, Leibo, Jinyang, Zhaojue, and Butuo were classed as Class I
or II fire risk zones, so the probability of fire in these areas was minimal.

The area of each risk level and its proportion indicated that in the fire risk zoning,
the area of the Class I fire risk zone accounted for 68.87% (the largest proportion), while
the area of the Class II fire risk zone accounted for 19.46%. That is, the low-risk fire areas
accounted for 88.33% of the total. The proportion of third-level risk zones, namely the
medium-risk fire areas, reached 5.16%; the proportions of Class IV and V risk zones were
2.15% and 2.68%, respectively; and the high-risk fire areas accounted for 4.83% (i.e., the
medium- and high-risk areas were more than 1/5 of the total area of the Liangshan Yi
Autonomous Prefecture (Table 4)). Therefore, attention to these medium-high-risk fire areas
is needed. Indeed, fire prevention measures should be strengthened, and the forest fire
controllability of these areas should be improved to better cope with the difficult forest fire
situation in the prefecture.

Table 4. The proportion of forest fire risk level zoning areas.

Fire Risk Probability (P) Fire Risk Class Area (km2) Area Percentage (%)

P ≤ 0.2 Class I fire risk areas 41,511.25 68.87
0.2 < P ≤ 0.4 Class II fire risk areas 11,729.25 19.46

0.4 < P ≤ 0.521 Class III fire risk areas 3109.50 5.16
0.521 < P ≤ 0.6 Class IV fire risk areas 1298.00 2.15
0.6 < P ≤ 0.831 Class V fire risk areas 1613.63 2.68

4. Discussion
4.1. Effects of Meteorological Factors on Forest Fires

The meteorological factors considered in this study were temperature, precipitation,
wind, and relative humidity, which are important factors driving the occurrence of forest
fires, of which temperature has a stronger contribution. Air temperature will directly
affect the water contents of fuels. A high temperature will intensify the transpiration of
plants and lead to a decrease in plant water contents, reducing the critical value of the
fuel ignition point and making the forest more prone to fire. In turn, precipitation will
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increase the amount of water in the fuel, reducing the likelihood of forest fires [46]. In
addition to temperature and precipitation, wind speed and humidity also directly affect the
water content of the fuel [17]. Because combustibles exist in the atmosphere, they exchange
energy and matter with the surrounding environment and maintain water balance. When
combustibles burn, water evaporates and decomposes into combustible gases. Therefore,
the lower the relative humidity, the lower the energy required for fuel combustion or the
lower the evaporation potential, the higher the risk of fire [47]. In general, the higher the
wind speed, the higher the plant transpiration, resulting in more oxygen, increasing the
risk of fire [48]. However, the wind speed in the results of this study was not a significant
factor affecting fires because the intensity and spread direction of fires will change sharply
with the change in wind [49] and the near-surface wind in mountainous terrain has certain
fluctuations in small-scale time and space [50], which leads to uncertainty regarding wind
speed and wind direction in fire fields, and forest fires are prone to sudden changes in
behavior. Therefore, the monitoring and forecasting of fine mountain wind fields before
the fire has become an urgent need. This can not only effectively prevent the occurrence of
forest fires but also provide scientific guidance for the deployment of forest fire fighting
and rescue.

4.2. Effects of Topographic Factors and Vegetation Factors on Forest Fires

The vegetation factor has also become an important indicator of forest fire probabil-
ity [14]. The type of vegetation in an area has a certain influence on the probability of
forest fire occurrence. The main regional vegetation type of fire in the Liangshan Prefec-
ture is coniferous forest. This is because the special climatic conditions in the Liangshan
Prefecture provide a suitable living environment for Yunnan pine, resulting in an area of
Yunnan pine as high as 1.275 million hm2, accounting for 40.3% of the total forest stock
volume in the Liangshan Prefecture. Because of the large amount of litter, it is not easy
for it to decompose, and it becomes the origin of the main forest fires. The distribution of
vegetation can reflect the trend in forest fires during the spatial development process. The
topographic factors considered here were mainly elevation and slope, and differences in
these may lead to changes in local meteorological elements such as solar radiation, tem-
perature, and precipitation. As is well known, temperature will decrease with increasing
altitude. Altitude not only directly changes the moisture contents of fuel by affecting the
temperature but also changes the distribution of vegetation [51]. In general, high-altitude
areas have more than enough combustible materials and stronger connectivity between
fuels, but high-altitude areas are limited by conditions such as humidity and temperature
and do not easily produce ignition sources and thus fires [52]. In the study of the Penticton
Creek watershed in southeastern BC, Canada, Spittlehouse and Dymond found that the
fire risk decreased significantly with the increase in altitude regardless of the historical data
results or future projections [53]. On the other hand, high altitudes are sparsely populated,
and almost none of the fires at these elevations are caused by human activity [54]. But
as the altitude increases, the possibility of fire caused by lightning will increase [55]. In
addition, slopes will affect the soil’s water-holding capacity, which will change the demand
conditions for the growth and development of vegetation and affect the spatial patterns of
vegetation distribution, resulting in fluctuations in the probability of forest fires [56].

4.3. Effects of Human Factors on Forest Fires

Relevant studies have shown that population density is usually positively correlated
with the probability of forest fires because of human activities such as living fires, ancestral
worship, garbage incineration, and land burning, which will greatly increase the probability
of forest occurrence [21,57]; this was consistent with the results of this study. As one of
China’s key poverty alleviation areas, the government has been focused on the urbanization
of the Liangshan Yi Autonomous Prefecture and the development of characteristic regional
industries since it achieved certain results of poverty alleviation in 2018. Areas with a high
population were mostly concentrated in urban centers, industrial parks, or developed areas
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with high degrees of urbanization. Therefore, the possibility of fires caused by frequent
human activities caused by high population concentration will be very high. However,
human-caused fires are not always the result of arson [21,22]. These fires may also be
caused by a lack of education and basic forest protection knowledge, resulting in activities
such as garbage incineration, land burning, discarding unextinguished cigarette butts, etc.
Population density is not surprising as an important driver of fires, as most fires are caused
by human activity [14]. The land use type and the distance from roads were also identified
as important factors controlling the probability of forest fires [56,58]. The spatial clustering
of human-caused fires is high around the accessibility network [59]. Ricotta et al. analyzed
the interaction between roads and land cover in driving fire ignition and found that in all
classes of land use types, the impact of roads on fire spatial patterns was not the same [60].
However, this study identified the DisFR as a positive driver of forest fires. A greater
distance from human infrastructure translates into an area being more remote with more
spatially continuous vegetation distribution and a higher likelihood of fires starting and
continuing to spread [61]. Owing to China’s policy support, the on-duty road bayonet or
sentry booth enforcement personnel in the Liangshan Yi Autonomous Prefecture area can
strictly control the source of a fire in the field. Furthermore, building vigorous fire channels
and isolating these have become an effective means of preventing and controlling forest
fires [62].

4.4. Limitations and Future Developments

Time, cost, and ethnic policy factors in the Liangshan Yi Autonomous Prefecture
region prevented us from exploring additional potential impact factors in the model, such
as human entertainment activities, planned burning policies released in April 2020, and
other variables related to human activities. The complexity of forest fires not only dictates
that the same variables cannot be used in models for different regions [63] but also implies
that over time, new influencing variables may appear in models for the same region or
that the relationship between variables may also change, requiring that the models be
updated periodically to improve their quality. The OPLR model proposed in this paper can
effectively determine the optimal spatial analysis scale and eliminate the subjectivity of
model construction, but since forest fires are generated through interactions of multiple
factors, the applicability and interpretation of each forest fire prediction model will differ
according to the geographical conditions. At present, in addition to statistical models,
numerous studies on forest fire prediction models have been carried out by scholars
using machine learning models such as artificial neural network (ANN) models, random
forest (RF) models, and deep belief network (DBN) models [10,26,64] to define nonlinear
characteristics among the driving factors of forest fires. However, a single algorithm lacks a
proper representation of the input data, which may lead to a model that does not correctly
represent the actual spatial distribution of the sample set. In the future, a combination of
linear regression and machine learning methods could be considered to explore optimal
interpretation models of forest fire prediction.

5. Conclusions

The OPLR model presented in this study was based on the optimal spatial analysis
scales and optimal model parameters to identify the factors driving forest fires in the
Liangshan Yi Autonomous Prefecture and to establish a prediction model on a larger tem-
poral scale using four aspects of terrain, vegetation, climate, and human influence. Seven
different factors driving forest fires (slope, Veg, Temp, Prec, Rhum, Popd, and LandUT)
were determined. Five forest fire risk levels were identified based on the prediction model.
The results showed that the logistic forest fire regression model based on the optimal
parameters had a good performance. Pan et al. [12] and Chang et al. [35] used the logistic
regression methods to predict forest fires in Shanxi and Heilongjiang, respectively. Both
obtained prediction models with an accuracy rate of about 70% and an AUC of about
0.75. The prediction accuracy of the OPLR model proposed in this paper was about 81%,
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and the AUC was about 0.83. The performance of the model was significantly improved.
According to the results of the evaluation of the factors affecting fire occurrence, the climate
factor was the main driver behind the occurrence of forest fires within the region, among
which Temp was the most influential factor. The slope, Temp, Rhum, and Popd had an
extremely significant effects on the occurrence of forest fires (P < 0.01), while Prec, Veg,
and LandUT had comparatively weak effects on the latter (P < 0.05). According to the
spatial division of forest fire risk probability, the medium- and high-risk areas in Liangshan
Yi Autonomous Prefecture comprise 6021.13 km2, accounting for 9.99% of the total. Fire
sources should be strictly controlled and managed in these areas, fire prevention infras-
tructure should be strengthened, forest fire prevention education should be carried out
to improve people’s fire prevention awareness, and various measures should be taken
to ensure the long-term security of the forests. Although forest fires remain random and
uncertain and are extremely difficult to fully control, estimating the fire risk conditions and
building a prediction model of fire risks can help prevent the possible losses caused by the
fires, better allocate fire prevention resources, and thus reduce the fire hazard. The OPLR
model presented in this paper provides a fire risk zoning scheme for forest fires, and the
quantitative evaluation of fires will serve to analyze the comprehensive situation of forest
fires, understand the spatial distribution and degree of damage of forest fires, and provide
a scientific basis and technical support for forest fire prevention and management.
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