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Abstract: Historical land and fire management practices coupled with climate change and modern
human development pressures are contributing to larger, more frequent, and more severe wildfires
across Western U.S. forests. Human ignitions are the predominant cause of wildfire throughout the
United States, necessitating wildfire management strategies that consider both the causes of human
ignitions and the factors that influence them. Using a dataset of over 104,000 ignitions from 1992 to
2018 for Oregon and Washington (U.S), we examine the major causes of wildfire ignitions and build
regression models to evaluate the potential influence of both biophysical and socioeconomic factors
on human and natural ignitions across distinct fire regimes west and east of the Cascade Range.
Our results corroborate prior findings that socioeconomic factors such as income, employment,
population density, and age demographics are significantly correlated with human ignitions. In
the Pacific Northwest, we found that the importance of socioeconomic factors on human ignitions
differs significantly between the west and east sides of the Cascade Range. We also found that most
human ignitions are linked to escaped fires from recreation or debris and open burning activities,
highlighting opportunities to tailor wildfire prevention efforts to better control higher risk activities
and reduce accidental ignitions.

Keywords: wildfire occurrence; human ignitions; pacific northwest; social-ecological systems;
wildfire policy; regression analysis

1. Introduction

Historical land and fire management practices [1–3], coupled with anthropogenic
climate change and modern human development pressures, are contributing to larger, more
frequent, and more severe wildfires across the U.S., especially in western U.S. forests [4–8].
Humans directly and indirectly influence wildfire patterns and impacts through multiple
avenues [9]. Not only have humans significantly altered the landscape, more than 90 percent
of wildfires worldwide are linked to intentional and unintentional human actions [10]. This
is also true in the U.S.: humans accounted for 84 percent of all wildfires across the country
between 1992 and 2012 [5], and human ignitions are the dominant cause of wildfires in
98 percent of U.S. counties [11]. In addition, the rapid expansion of human communities
into forested landscapes has both increased the number of human ignitions [6] and the
number of communities exposed to wildfire risk [9,12,13].

Given the magnitude of human influence on ignitions nationally, programs that target
the prevention of human ignitions may have significant potential to reduce overall wildfire
risk. However, effective prevention programs need to be tailored to specific causal factors
and community dynamics that drive human ignitions [11]. Although ignition itself is a
biophysical process, the spatial and temporal patterns of wildfire ignitions are functions
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of both the biophysical environment and socioeconomic factors, such that both must be
considered in wildfire policy and management [12,14,15]. Understanding regional ignition
causes and socioeconomic factors associated with human ignitions is of growing policy and
management interest, especially in regions where human–fire interactions may increase
in frequency or severity with global climate shifts. Were we to find that socioeconomic
factors are correlated with human ignitions, such relationships might point to a need for
policy or programmatic interventions addressing socioeconomic contexts associated with
human ignitions.

Studies examining the spatial and temporal influence of humans on ignition patterns
have been conducted across many regions, including European Mediterranean environ-
ments, China, South America, Australia, and the United States (Table 1). Biophysical
factors influencing ignitions (i.e., climate, vegetation, physiography) have been extensively
studied and found to be important predictors in many regions [16]. Although the roles
of socioeconomic factors (e.g., land use, wealth, education levels) in influencing ignitions
are less well understood, studies have suggested that socioeconomic context can influence
the patterns of wildfire occurrence, especially in regions dominated by human ignitions
(Table 1).

Large fires are becoming more frequent in many regions, with more than half of the
land area in the western U.S. experiencing extreme drought in 2021 [17,18]. Research sug-
gests the Pacific Northwest will likely face more frequent and severe wildfires in the years to
come because of warmer and drier conditions [19]. As human development expands onto
fire-prone landscapes, the influence of human activities has been shown to override climate
change in effecting when and where wildfires occur [5,6]. Recent expensive wildfire-related
losses in the region highlight the need for wildfire management strategies that include
consideration of both socioeconomic and biophysical factors that potentially influence
human ignitions. Despite calls for greater integrated research addressing both the socioeco-
nomic and biophysical conditions that influence human behavior and wildfire [20,21], few
studies have examined the combined influence of these factors on human ignitions in the
Pacific Northwest.

Table 1. Previous studies examining factors associated with wildfire occurrence, explanatory variables
examined, relationships found, and analysis methods. The (+/−) denotes the direction of relationship
for variables that were significant 1 at some level in each study; (~) denotes variables tested but
not significant.

Study Area Dependent
Variable Socioeconomic Variables Biophysical Variables Analysis

[22] U.S.: MN, WI, MI
All ignitions

(most
human-caused)

Seasonal housing units (−),
Road density (+), Rail density
(−), Ownership: state, Tribal,

national forest (−), Population
density (+), Distance to city (+),

Distance to non-forest (−),
Owner occupied units (−)

Mean march precipitation (+),
Mean august max temperature
(−), Land cover (sig. categorical

var w/no sign), Lake density
(−), Mean June precipitation (~)

Generalized linear
regression (GLM)

(negative binomial,
Poisson regression, or

logistic)

[23] Spain
All ignitions

(most
human-caused)

Pop density (+), Rural exodus
(+), Unemployment (+),

Highway density (+), Rural
road density(+), Conventional
road density (+), WUI area (+),

Dense built area (+)

Land cover type (all significant,
relationships vary), Elevation

(+), Slope range (−), Mean
Temperature (+), Mean

Precipitation (−)

GLM, negative
binomial

[24] Spain All ignitions

Population over 64 years (+),
Population density (−), Income
per person (−), Ratio of men to
women (+), Active population:
ratio pop age 40–64 to age 15–39
(−), Livestock (~), Parcel value

(−), Town debt (~), GDP (~),
Foreign population (+)

N/A Multiple linear
regression
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Table 1. Cont.

Study Area Dependent Variable Socioeconomic Variables Biophysical Variables Analysis

[25] Argentina All ignitions in the
WUI

Population density (+),
Unemployment (+),

Unoccupied teens (+),
Educational attainment (−),

Age (+), Poverty (~)

Slope (−), Aspect (+)
Principal component
analysis and quantile

regression

[26] U.S.: MS
Human ignitions

(major causes
modeled separately)

Distance to road, distance to
railroad, distance to city

Population density, Income,
Poverty, Unemployment (sig.
vars reported, relationships
varied by ignition causes)

Spring, Fall/Winter Logistic Regression

[27] China All ignitions (95%
human caused)

Distance to nearest road (+),
Distance to nearest river (+),

Distance to nearest settlement
(+), Population density (+), Per

capita GDP (+)

Elevation (−), Slope (−), Aspect
(+), Daily max temperature (+),

Daily min temperature (−),
Daily max wind (−), Daily
precipitation (−), Sunshine

hours (+), Relative Humidity
(−)

Logistic regression

[28] Italy All fire occurrence

Road length in total municipal
area (+), Average per-capita

disposable income (−),
Commuting workers (+),

Unemployment (+), Built up
area (−), Non-native resident

(−), Tourism facilities (+),
Natural protected land in total

municipal area (+),
Public-owned land in total

agricultural area (−), Inequality
in personal income (−)

Coefficient of variation in
landscape patch size (+),

Pielou’s evenness index of
landscape diversification (+)

OLS, interval
regression, quantile

regression, GLM
(Gaussian, inverse,
negative binomial,

Poisson
distributions)

[29] Spain All ignitions

Rural exodus (+), Density of
human, settlements (+), Density

of roads (+), Density of
agricultural machinery (+),

Rural aging: owners of agrarian
holdings >55 years (+),

Urban/forest interface density
(+)

Mean annual precipitation (+),
Agricultural land fragmentation

(+), Mean elevation (−),
Percentage of wildland area (+)

Linear regression
(OLS), logistic

regression (both
geographically

weighted)

[30] U.S.: FL All ignitions

Housing density (−),
Unemployment (−), Poverty

(−), Population (+), Police (−),
Past prescribed burns (−)

Sea surface temperature
anomalies El Nino (−), North

Atlantic Oscillation (+)

Fixed effects,
Poisson panel model

[31] U.S.: WA
Human/

lightning ignitions
modeled separately

Paved road density (+), Gravel
road density (+), Distance to

WUI (−)

Slope (−), Elevation (−), Brush
fuel model (−) Logistic regression

[32]
Portugal,

Spain, France,
Italy, Greece

All ignitions

Unemployment (−), Livestock
density (+), Density of local

roads (+), Density of highways
(+), Low urban density area (+),
Average pop density (−), WUI

land cover (−)

Pre fire season precipitation (+),
During fire season precipitation

(−), soil moisture (+), Max
temperature (−), Aspect (+),
Relative humidity (−), Max

temp (−)

Multiple linear
regression and
Random Forest

model

[33] Chile All fire occurrence
(most human-caused)

Pop density (+), Indigenous
population (+), Unemployed

(+), Road density (+)

Agriculture land (+), Exotic
plantation land (+), Native

forests (+)

Generalized additive
models with a
Poisson error

structure

[34] U.S.: FL Arson ignitions
Police per capita (−), Poverty
rate (+), Unemployment (~),

Retail wage (−), Population (−)

Previous years wildfire extent
(−), Previous years fuel

treatments (−)

Fixed-effects panel,
Poisson model
(among other

models)
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Table 1. Cont.

Study Area Dependent
Variable Socioeconomic Variables Biophysical Variables Analysis

[35] U.S.: CA
All ignitions
(most human

caused)

Distance to WUI (−), Level of
WUI (+), Distance to roads (−),
Distance to trails (−), Level of

Development (+)

January temperature (−),
Elevation (−), Slope (−),

Southwestness (~), Vegetation
type (results vary by cover type)

Logistic regression
(fire ignitions)

Poisson regression
(fire frequency)

[36] Australia All ignitions

Distance to primary road (−),
Distance to secondary road (−),

Distance to railway (−),
Distance to WUI (−)

Land cover (Forest, grassland,
savannas, shrublands) (−),
Permanent wetlands (~),

Vegetation Index (+), Elevation
(+), Northwestness (~)

Binary multiple
logistic regression

1 Significance and direction of the relationships is included but not strength of significance since magnitude is
influenced by units of measure that varied among studies. Not all variables tested or model results for each study
are listed; instead, the table prioritized listing variables and model results relevant to our study area.

We sought to address these research and policy needs, and build upon previous
research, by examining the major causes of wildfire ignitions in the Pacific Northwest. What
are the primary causes of ignition and what are the key socioeconomic and biophysical
factors that drive ignitions? Specifically, our objectives were to examine ignitions data
spanning years 1992–2018 in Oregon and Washington (U.S.) to (1) characterize patterns
of ignition causes in the distinct fire environments west and east of the Cascade Range
and (2) develop regression models describing the relationships between ignitions and
socioeconomic and biophysical variables. Although our focus was on investigating factors
associated with human ignition, we conducted a separate analysis of factors associated
with natural ignitions for comparison.

2. Materials and Methods
2.1. Study Area

We examined wildfire ignitions in Oregon and Washington, two states that span
108 million acres and share similar environments, settlement histories, and socioeconomic
characteristics (Figure 1). Both states can be broadly characterized as having two distinct
climates and fire regimes separated by the Cascade Mountain range [37]. The landscape
west of the Cascades range crest (the “westside”) is temperate rainforest dominated by
wetter conifer coastal and lower Cascades forests that have historically experienced higher
severity, stand-replacing fires at an infrequent interval (35–200+ years) [38]. The westside
receives higher annual and summer (June through August) precipitation, 1641 mm and
103 mm, respectively, and on average has lower mean summer (17 ◦C) and higher mean
annual temperatures (10 ◦C) as compared to the eastern region (Figure 2). The region
east of the Cascades range (the “eastside”) is dominated by dry ponderosa pine or mixed
conifer forests with less severe but more frequent fires occurring every 0–35 years [38].
Precipitation on the eastside averages 470 mm annually and 54 mm during the summer
months, with an average summer temperature of 19 ◦C and an average annual temperature
of 9 ◦C. To account for major difference in the fire environment, we separated our study
area into two regions divided by the crest of the Cascade Range, which generally follows
several county boundaries for analysis (Figure 1), a common practice among fire ecologists
studying Pacific Northwest fire regimes [39]. Of note, the Klamath-Siskiyou region in
southwestern Oregon (“Klamath Ecoregion” in Figure 1) has climate and fire regime
characteristics intermediate between the eastside and westside, and we accounted for this
in our analysis of the westside.

Some socioeconomic characteristics also differ between the westside and eastside
(Figure 3). In 2018, the combined population of Oregon and Washington was 11.4 million,
with most of the large population centers and 82 percent of the total population living
on the westside. The eastside was more sparsely populated and had higher proportions
of seasonal housing, lower median household income, and higher rates of poverty as
compared to the westside.
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release of the Environmental Protection Agency Level III Ecoregion dataset. 

Figure 1. Map of the study area (Oregon and Washington) showing major landcover types and U.S.
Census county subdivisions, the unit of analysis. Dashed black line demarcates the boundary between
westside and eastside regions for analysis. Data: County subdivision lines from US Census Bureau
2018 TIGER/line files. Major landcover types from United States Geological Survey 2018 National
Land Cover Database. Klamath Ecoregion boundary are authors calculations of county subdivisions
30 percent or more contained within “Klamath Mountains” ecoregion from the 2013 release of the
Environmental Protection Agency Level III Ecoregion dataset.
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Figure 2. Mean (a) annual precipitation (mm), (b) summer (June–August) precipitation (mm),
(c) Annual Temperature (◦C), and (d) Summer (June–August) temperature (◦C) between 1992–2018 by
U.S. Census county subdivisions. Dashed black line demarcates the boundary between west-
side and eastside regions for analysis. Data: County subdivision lines from US Census Bureau
2018 TIGER/line files. Climate variables were author generated from the 2020 release of Parameter-
elevation Relationships on Independent Slopes Model (PRISM) gridded climate data.
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income, (e) percent unemployment, (f) percent of vacant housing for seasonal, recreation, or occa-

sional use. Dashed black line demarcates the boundary between westside and eastside regions. Data: 
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the U.S. Decennial Census and American Community Survey averaged over study period from 

1992–2018. 
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Figure 3. Select socioeconomic variables by U.S. Census county subdivisions: (a) population under
18 years, (b) population over 65 years, (c) population density (persons/km2), (d) median house-
hold income, (e) percent unemployment, (f) percent of vacant housing for seasonal, recreation, or
occasional use. Dashed black line demarcates the boundary between westside and eastside regions.
Data: County subdivision lines from US Census Bureau 2018 TIGER/line files. Socioeconomic data
from the U.S. Decennial Census and American Community Survey averaged over study period from
1992–2018.

2.2. Geographic Unit of Analysis

Our analysis of possible factors associated with human and natural wildfire ignitions
required combining ignitions, biophysical, and socioeconomic data at a scale or unit of
geography for which socioeconomic data were available. We acquired socioeconomic data
from the U.S. Census, which provides statistics for multiple levels of census-defined and
political geographies (e.g., blocks groups, tracts, county subdivisions, and counties). We
chose to use Census County Divisions (CCDs) for our analysis—otherwise known as county
subdivisions—because they are statistical entities designed to represent population centers
or major land use areas with visible and easily described boundaries [40]. Unlike census
tracts or block groups, which are designed to delineate geographies of similar population
sizes such that they are larger in rural areas and smaller in urban areas, county subdivisions
are designed to describe population centers regardless of their population sizes. They
arguably represent a useful approximation of “communities” for social science analysis.

County subdivision boundaries can change in extent or in name before each decennial
census. To ensure that a consistent set of geographies were used over our study period, we
identified any changes over time in county subdivisions by comparing the unique 10-digit
identifier (“GEOID”) and the location of the boundary for each county subdivision across
the census years 1990, 2000, and 2010 and then reconciled these to develop a consistent set
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of county subdivisions for each observation period. Where only name changes occurred,
the 1990 and 2000 county subdivision names were re-coded to match the 2010 name. In
some cases, county subdivisions were split or combined. For boundaries that had been split,
we recombined those to the original for comparison across time, and, in one case, three
county subdivisions in Washington that had been reconfigured completely were combined
into one new unit across all census years and assigned an arbitrary GEOID and name to
create an appropriate time series approximation. After accounting for boundary and name
changes over time, we were left with a final set of 450 county subdivisions for Oregon and
Washington that we used for our analysis.

2.3. Data Collection

We obtained wildfire ignition data from the USDA Forest Service Fire Program Analy-
sis wildfire-occurrence database (FPA FOD), which provided a compilation of fire records
from federal, state, and local fire organization reporting systems [41]. The data included
discovery date, final fire size (acres), fire cause, and a point location at least as precise
as Public Land Survey System section (1 square mile grid) [41]. The 2021 data release
included all recorded fires between 1992–2018, a total of 104,946 ignitions in Oregon and
Washington. We tabulated counts of human ignitions and natural ignitions by year and
county subdivision, removing four misclassified ignition points that occurred outside of
our study area (Appendix A). Natural ignitions were those caused by lightning, with all
other known ignition causes attributed to humans. As county subdivisions vary in size
(ranging from 3126 acres to 4.4 million acres in our study area), we divided the final counts
of human and natural ignitions for each county subdivision and year by the area of the
county subdivision to compute ignition density in number of human or natural ignitions
per unit area.

Reporting on wildfire causes has long suffered from a lack of consistent cause cat-
egories and standardized cause determination protocols across local, state, and federal
agencies [42]. The FPA FOD dataset transforms local, state, and federal fire reports to the
standards of the National Wildfire Coordinating Group (NWCG), reconciling 27 years of
data across numerous agencies with slightly different cause classifications to the NWCG
general cause categories of “arson/incendiarism, debris and open burning, equipment
and vehicle use, firearms and explosives use, fireworks, misuse of fire by a minor, power
generation/transmission/distribution, railroad operations and maintenance, recreation
and ceremony, smoking, other causes, or missing data/not specified/undetermined [41].

We developed a set of 24 biophysical and socioeconomic explanatory variables to
consider for analysis of both human and natural wildfire ignitions based on their use in
previous studies (Table 2). The time span of our explanatory variable data coincided with
the 1992 to 2018 period, for which we had wildfire ignition data. All wildfire ignition,
biophysical, and socioeconomic data were reorganized to conform to the final 450 county
subdivisions using the 2018 boundary Tiger/line shapefiles from the U.S. Census Bureau
and combined into a longitudinal panel structure in R for analysis using Generalized Linear
Models (GLMs). Summary statistics for all variables by analysis regions are provided in
Table 3.

Variation in climate and fuel was largely accounted for by separating the study area
into regions eastside and westside of the Cascade Range for analysis. However, we in-
cluded an additional variable to account for the unique fire environment of southwest
Oregon. Specifically, we created a dummy variable identifying those county subdivisions
comprising land 30 percent or more contained within the EPA level III Klamath Mountains
ecoregion. Additional climate covariates were generated from the 2020 release of Parameter-
elevation Relationships on Independent Slopes Model (PRISM) gridded climate data [43],
available for the conterminous U.S. at a 30 arc-second spatial resolution (approximately
800 m). We calculated mean annual and mean summer (June–August) temperature and pre-
cipitation for each county subdivision for the period 1992–2018. Because we were modeling
ignitions aggregated across communities, we did not include specific topographic vari-
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ables (e.g., aspect, slope, elevation), since inclusion would require averaging or otherwise
adjusting data across space into one value per county subdivision.

Except for road density, all socioeconomic data were derived from the U.S Census and
retrieved from the National Historical Geographic Information System (NHGIS), which
provided both single-year and time series tables that linked together comparable statistics
from multiple census years at selected geographic levels [44]. Multiple socioeconomic
variables were acquired for decennial census years 1990 and 2000 and 5-year American
Community Survey (ACS) estimates for 2010 and 2018. We used these to build the panel
dataset by interpolating values between survey years. Oregon and Washington both had
extensive networks of logging roads, some of which conceivably influenced human igni-
tions. We used a road layer obtained through the USDA Forest Service that incorporated
detailed network information from HERE Technologies and the U.S. Department of Home-
land Security [45] to compute the density of publicly accessible roads and all roads as a
proportion of land area (km of road/km2) for each county subdivision.

Table 2. Independent variables considered in ignition occurrence models.

Variable Description Hypothesized Relationship to Human Ignitions Data

Poverty Rate Population below the poverty level

Human ignitions have been linked to areas with difficult economic conditions including
high poverty in other studies [34]. Greater wealth also provides more opportunity and
access to fire prevention resources [46,47]. Income is also linked with more leisure time

which can increase human activities that carry risk of fire (i.e., recreation) [48].

[44]

Near Poor Rate Population below 185% of the poverty level
Household

Income Median household income in previous year

Per Capita
Income Per capita income in previous year

Home Value Median home value in previous year Fire occurrence may decrease in areas with higher value homes as homeowners have
more resources for fire prevention and fire wise activities (i.e., thinning and pruning). [44]

Educational
Attainment

Population over age 25 with at least a
bachelor’s degree

Higher education is correlated with higher income, potentially influencing access to
resources. Education may also be linked to awareness of fire risk and valuation of natural

resources, overall reducing human-caused fire occurrence.
[44]

Unemployment
Rate

Population over age 16 and under 65 in
labor force and unemployed Unemployment and labor force participation may be linked with social unrest and higher

crime, which may increase arson fires but also may indicate high levels of idleness among
members of the population, which could increase the number of human ignitions.

[44]Labor Force
Participation

Rate

Population over age 16 and under 65
participating in the labor force.

Seasonal
Housing

Vacant housing units that are designated for
seasonal, recreational, or occasional use

Second homes are linked with both amenity communities, wildland urban interface areas,
and the presence of human activity. Areas with high percentages of second homes may

decrease fire occurrence due to the presumed wealth associated with second
homeownership and less frequent human activity or it may increase human fires due to

the potential links to the wildland urban interface and fuels rich environments. Vacant or
abandoned land has been linked to increased wildfire occurrence [24].

[44]

Elder (65+) Population over 65 years Age demographics influence patterns of development and land use and may be tied to
certain types of human activities that carry a risk of fire (i.e., more youth may be

associated with more misuse of fire or accidental fires related to risky behaviors and
negligence, whereas more active adults may be associated with recreation activities or

equipment use that may lead to accidental fire).

[44]
Youth (0–18) Population under 18 years

Adults (18–24) Population between 18–24 years
Adults (18–39) Population between 18–39 years
Adults (40–64) Population between 40–64 years

Rural
Population

Population in US Census designated
rural areas Population density and urban/rural status can influence fire occurrence through fuel

availability, presence of human activity, and through cultural activities associated with
rural or urban areas (i.e., open burning of yard debris in rural areas with no organized

garbage pick-up).

[44]Rural Housing
Units

Housing units in US Census designated
rural areas

Population
Density Population per area of land

All Road
Density

Kilometers of all public and private roads
per area of land

Roads represent greater density of human settlements and regional access to forested
areas. As in other studies, it is expected that more roads will increase human ignitions

[22,31,33].
[45]Public Road

Density
Kilometers of public access roads per area

of land

Klamath
Ecoregion

1 indicates county subdivisions 30% or more
contained in the EPA Klamath

Mountains Ecoregion

The Klamath Ecoregion is a dummy variable accounting for the substantially different
vegetation, climate, and fire regime in the southern portion of the “westside” of the

study area.
[49]

Annual
Precipitation Mean annual precipitation

Annual and summer precipitation influence the amount of vegetation available for
ignition during the fire season. Annual and summer temperatures and precipitation are

also related to fuel moisture and thus influence the likelihood of ignition.
[43]

Summer
Precipitation Mean June–August precipitation

Summer
Temperature Mean June–August temperature

Annual
Temperature Mean annual temperature
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Table 3. Summary statistics for dependent and independent variables for all county subdivisions
across all years (1992–2018).

Western Region (N = 7128) Eastern Region (N = 4968)

Variable Mean St. Dev. Min Max Mean St. Dev. Min Max

Natural Ignition Density
(10,000 km2) 11.9 40.4 0.0 790.0 36.5 58.6 0.0 805.0

Human Ignition Density
(10,000 km2) 91.8 137.3 0.0 1501.0 59.6 117.3 0.0 1872.0

All Road Density (km/km2) 2.3 2.0 0.2 13.0 0.5 0.8 0.0 6.8
Public Road Density

(km/km2) 1.8 2.1 0.1 12.8 0.6 0.9 0.0 6.7

Rural Housing Units (%) 62.9 36.9 0.0 100.0 78.5 32.8 0.2 100.0
Rural Population (%) 62.7 36.8 0.0 100.0 77.6 33.2 0.1 100.0

Youth (0–18 years) (%) 23.5 4.7 0.0 41.3 25.2 5.6 0.0 44.0
Young Adults (18–24 years)

(%) 11.7 3.0 0.0 32.3 12.3 4.9 0.0 50.6

Young Adults2 (18–39 years)
(%) 25.2 6.0 0.0 63.4 24.8 7.0 0.0 68.3

Adult (39–64 years) (%) 35.3 5.2 0.0 55.9 34.0 6.0 0.0 55.3
Elder (65+ years) (%) 16.1 6.4 0.7 100.0 16.0 5.9 0.0 67.5
Seasonal Housing (%) 7.4 12.2 0.0 91.3 10.3 13.4 0.0 83.5

Educational Attainment (%) 21.0 10.4 0.0 70.5 18.4 9.0 0.0 85.7
Unemployment (%) 8.0 3.5 0.0 34.8 8.7 4.5 0.0 44.8

Labor Force Participation (%) 59.6 8.2 0.0 85.6 58.8 8.2 0.0 89.6
Household Income ($) 47,459.9 16,150.7 0.0 197,152.0 39,783.5 11,775.7 0.0 97,639.0
Per Capita Income ($) 23,159.0 8099.4 0.0 118,166.0 19,496.5 6431.8 0.0 68,229.0

Poverty (%) 12.3 5.2 0.0 44.4 15.5 7.1 0.0 53.7
Near Poor (%) 28.5 9.2 0.0 63.3 35.8 10.8 0.0 72.8

Home Value ($) 184,573.6 83,362.0 36,060.0 676,400.0 130,490.0 62,801.6 0.0 538,500.0
Population Density (km2) 132.4 352.2 0.0 4621.2 26.9 77.6 0.0 696.2
Summer Temperature (◦C) 17.0 1.6 10.4 23.4 18.6 2.4 9.3 24.7
Annual Temperature (◦C) 10.4 1.4 4.1 14.1 8.8 1.8 1.6 13.5

Summer Precipitation (mm) 103.5 65.1 1.5 550.4 54.1 39.1 0.0 326.9
Annual Precipitation (mm) 1641.5 738.1 283.5 5268.5 470.3 265.2 85.1 2008.2

2.4. Data Analysis

We first conducted preliminary analyses to characterize spatial patterns of major
ignition causes (human vs. natural) and specific human ignition causes across the area.
We then estimated separate regression models to evaluate the influence of biophysical and
socioeconomic factors on human ignitions and natural ignitions for each county subdivision
and year (1992–2018). We modeled both human and natural ignitions for the westside and
eastside regions separately to control for major differences in climate, vegetation, and fire
regime. Independent models for ignition cause and region also enabled us to compare
the influence of explanatory factors on human ignitions relative to natural ignitions and
detect differences between the westside and eastside regions. To aid in later interpretation
of regression results, we feel it is important to stress that the wildfire ignition data are a
proxy for the true numbers of actual ignitions because they necessarily reflect ignitions that
were both observed and reported by someone. Some ignitions may have gone unobserved
and/or unreported. As such, any potential correlations between individual socioeconomic
variables examined and ignitions could be owed to either an actual correlation with ignition,
a correlation with observation and reporting of an ignition, or both.

Previous studies of ignition occurrence have tended to rely on generalized linear re-
gression techniques, including multiple linear regression, logistic regression, or Poisson and
negative binomial regressions, depending on whether response variables were constructed
from continuous, discrete, or count data [16]. Our response variable represented counts of
ignitions that were normalized by the area of each county subdivision to create a measure of
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ignition density that accounted for large variations in the sizes of the county subdivisions.
Although commonly used for count data, the Poisson distribution was limited by the
assumption that the sample mean was equal to the sample variance (“equi-dispersion”).
Our data showed signs of overdispersion, where variance exceeded the mean, which is
commonly found in fire occurrence datasets [23]. The negative binomial distribution was
an alternative used to fit over-dispersed count data [50] that had been used in other fire
occurrence studies [23,33,51], and we deemed this to be most appropriate for our data.

Our data included many zero observations (e.g., county subdivisions that did not
record an ignition in a particular year). Zero-inflated models were developed to cope with
data with a high occurrence of zeros. These models assume that zero observations originate
from two different processes—“sampling” and “structural” [50]. “Sampling zeros” are
those due to chance, whereas “structural zeros” are those due to some specific structure in
the sampling procedures [51]. In our dataset, we assumed that we had both. Wildfire is a
relatively rare event; thus, “sampling zero” observations occurred in some years and county
subdivisions as a part of a negative binomial distribution that included both zero and non-
zero counts, and some “structural zeros” occurred because of data collection methods
(e.g., in sparsely populated rural areas ignitions may have occurred but not developed into
a large enough fire to be observed or reported).

We chose to use a zero-inflated negative binomial (ZINB) regression, which belongs
to the family of generalized linear models (GLMs) and estimates linear and non-linear
effects of the covariates on ignitions [52]. We rescaled our dependent variable to reflect
ignitions per 10,000 km2 then rounded to the nearest integer to ensure that smallest density
values were preserved (and not rounded to zero)—a similar approach to that used by
Pozo et al. [33]. We evaluated our explanatory variables for potential multicollinearity
using Pearson’s correlation coefficients, ensuring that our estimated models did not include
highly correlated explanatory variables, which we assumed were indicated by a Pearson’s
correlation coefficient greater than 0.60 (Appendix A). We used a stepwise selection process
that utilized AIC (Akaike’s Information Criterion) to determine the set of explanatory
variables that best described human ignitions for our dataset. We also estimated models
describing natural ignitions using the same covariates for comparison. All analyses were
performed in R version 3.6.2 GUI 1.70, and models were run in the R package pscl [52].

We also tested zero-inflated GLMs with random effects (RE) for county subdivision
and year to account for relationships across space and time and their influence on ignitions.
Diagnostic plots of random effects models suggested that these alternative models were not
superior to the zero-inflated negative binomial (ZINB) model estimated with fixed effects.

3. Results
3.1. Question 1: What Are the Patterns of Ignition Causes across the Pacific Northwest?

The historical wildfire data that we examined indicated that human ignitions were the
predominant cause of wildfires on the westside from 1992 to 2018, accounting for 73 percent
of all ignitions (28,711 ignitions). Natural causes (e.g., lightning) made up the remaining
26 percent (10,301 ignitions) (Figures 4 and 5). On the eastside, the proportions of human
and natural ignitions were roughly even at 48 percent (49,516 ignitions) and 51 percent
(33,727 ignitions). On both the eastside and the westside, the remaining roughly one percent
of ignitions were classified as having missing or unknown causes. Across both regions,
over half of all human ignitions with known causes were caused by either “recreation and
ceremony” or “debris and open burning” (Figures 6 and 7). Human ignitions with unknown
origins made up the third largest category for both regions followed by “equipment and
vehicle use” at 9 percent (eastside) and 13 percent (westside) (Figure 6).
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subdivisions. Dashed black line demarcates the boundary between westside and eastside regions
for analysis. Data: Ignitions data are from the 2021 release of the United States Forest Service Fire
Program Fire Occurrence Database (FPAFOD). County subdivision lines from US Census Bureau
2018 TIGER/line files.
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Figure 7. Top three known causes of human ignitions, 1992–2018, by U.S. Census county subdivisions:
(a) recreation and ceremony, (b) debris and open burning, and (c) equipment and vehicle use. Values
are shown as average ignitions per 10,000 km2. Dashed black line demarcates the boundary between
westside and eastside regions for analysis. Data: Ignitions data are from the 2021 release of the United
States Forest Service Fire Program Fire Occurrence Database (FPAFOD). County subdivision lines
from US Census Bureau 2018 TIGER/line files.



Fire 2023, 6, 300 14 of 23

3.2. Question 2: How Might Socioeconomic and Biophsyical Factors Influence Wildfire Ignitions?

Our selected final regression models estimated relationships between human and
natural ignition density for each county subdivision and year for westside and eastside
regions and several socioeconomic and biophysical covariates:

Xit = β0 + β1it vacant seasonal housing + β2it elder + β3it household income + β4it population density + β5it
unemployment + β6it summer precipitation + β7it summer temperature + β8it klamath ecoregion + ∈it

where Xit = Number of human or natural ignitions per square kilometer in county subdivi-
sion i in year t, i = 1. . .450, and t = 1992–2018.

Most explanatory variables for our models of human ignition density were significant
at a 10 percent significance level or stronger (Table 4). Vacant seasonal housing was
associated with increased human ignitions on the westside and fewer human ignitions
on the eastside. Unemployment also had opposite relationships with human ignitions
between the two regions, with higher unemployment correlated with fewer ignitions on
the westside and increased human ignitions on the eastside. In both regions, an increased
proportion of population over age 65 was associated with decreased human ignitions while
higher median household income and population density was associated with increased
human ignitions. The relationship between mean summer temperature was significant
and positively correlated with human ignitions across both eastside and westside models,
whereas mean summer precipitation was only significant in the westside model and
associated with decreased ignitions.

Table 4. Regression results evaluating the relationships between biophysical and socioeconomic
factors and human and natural ignition density across westside and eastside regions.

Human Ignitions Natural Ignitions

Westside Eastside Westside Eastside

Explanatory
Variables

Estimated
Coefficients Odds Estimated

Coefficients Odds Estimated
Coefficients Odds Estimated

Coefficients Odds

Intercept 3.499 *** 33.09 3.018 *** 20.46 3.847 *** 46.85 4.618 *** 101.27
Seasonal Housing 0.212 * 1.24 −0.541 *** 0.58 −0.491 ** 0.61 0.079 1.08

Elder −0.600 *** 0.55 −4.976 *** 0.01 1.238 ** 3.45 0.215 1.24
Unemployment

Rate −1.041 *** 0.35 6.708 *** 818.54 −0.321 0.73 4.237 *** 69.23

Household Income 0.027 *** 1.03 0.308 *** 1.36 −0.072 *** 0.93 0.041 ** 1.04
Population

Density 0.001 *** 1.00 0.004 *** 1.00 0.000 1.00 0.002 *** 1.00

Summer
Precipitation −0.321 *** 0.73 0.094 1.10 −0.269 *** 0.76 0.091 * 1.09

Summer
Temperature 0.095 *** 1.10 0.008 * 1.01 0.033 * 1.03 −0.067 *** 0.93

Klamath Ecoregion
Dummy 0.079 * 1.08 NA NA 0.177 ** 1.19 NA NA

AIC Value 64,727 40,561 20,131 33,445

Notes: * p < 0.1 (10%), ** p < 0.05 (5%), *** p < 0.01 (1%); Westside (N = 7182), Eastside (N = 4968). Select variables
were rescaled during analysis: Household Income ($10,000), Population Density (1000 persons/km2), and Summer
Precipitation (cm).

Some socioeconomic and biophysical factors were statistically significant (p < 0.1) in
the natural ignition density model as well (Table 4). On the westside, median household
income and vacant seasonal housing were associated with fewer natural ignitions, and
elder population was associated with increased natural ignitions. On the eastside, unem-
ployment, income, and population density were significant and associated with increased
natural ignitions. Both mean summer precipitation and temperature variables were signifi-
cant across both regions. Higher mean summer precipitation was associated with decreased
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natural ignitions on the westside and increased natural ignitions on the eastside. Higher
mean summer temperature was associated with increased natural ignitions on the westside
and decreased natural ignitions on the eastside.

A sensitivity analysis of the estimated coefficients for human ignitions indicated that
summer precipitation and summer temperature had the greatest magnitudes of influence
on human ignitions for the westside over the actual range of individual explanatory
variable values (Table 5, Figure 8). Of the socioeconomic explanatory variables, sensitivity
analysis indicated that the greatest magnitude of impact arose from the elder population
and median household income variables (Table 5, Figure 8). For the eastside model, median
household income, elder population, and unemployment had far greater influences on
human ignitions than biophysical variables. By comparison, sensitivity analysis indicated
natural ignitions models were most sensitive to mean summer precipitation and median
household income on the westside, and to mean summer temperature and precipitation on
the eastside (Table 5).

Table 5. Sensitivity analysis showing predicted values * of human ignition and natural ignitions
(ignitions/10,000 km2) when setting individual explanatory variables at their sample minimum,
mean, and maximum values (see Table 3).

Westside Eastside

Explanatory Variables Held at: Explanatory Variables Held at:

Explanatory Variables Minimum Mean Maximum Difference § Minimum Mean Maximum Difference §

Human Ignitions predicted values †:
Seasonal Housing 4.74 4.76 4.94 0.19 4.24 4.18 3.79 0.45

Elder 4.85 4.76 4.26 0.60 4.98 4.18 1.62 3.36
Unemployment Rate 4.84 4.76 4.48 0.36 3.60 4.18 6.60 3.00
Median Household

Income 4.63 4.76 5.17 0.54 2.96 4.18 5.96 3.01

Population Density 4.76 4.76 4.77 0.01 4.18 4.18 4.18 0.00
Mean Summer
Precipitation 5.09 4.76 3.33 1.76 5.00 4.18 4.44 0.56

Mean Summer
Temperature 4.13 4.76 5.37 1.24 4.03 4.18 4.23 0.21

Klamath Ecoregion
Dummy 4.75 4.76 4.83 0.08 NA NA NA NA

Natural Ignitions predicted values †:
Seasonal Housing 3.98 3.94 3.53 0.45 3.98 3.98 4.04 0.07

Elder 3.75 3.94 4.98 1.23 3.95 3.98 4.09 0.15
Unemployment Rate 3.97 3.94 3.85 0.11 3.62 3.98 5.51 1.90
Median Household

Income 4.28 3.94 2.86 1.42 3.82 3.98 4.22 0.40

Population Density 3.94 3.94 3.94 0.00 3.98 3.98 3.99 0.00
Mean Summer
Precipitation 4.21 3.94 2.74 1.48 4.78 3.98 4.23 0.54

Mean Summer
Temperature 3.72 3.94 4.15 0.43 5.24 3.98 3.57 1.67

Klamath Ecoregion
Dummy 3.92 3.94 4.10 0.18 NA NA NA NA

Global minimum, mean,
maximum predicted

values ‡:
Human Ignition Density 4.48 4.76 3.82 −0.66 3.89 4.18 5.74 1.85
Natural Ignition Density 4.19 3.94 2.58 1.62 4.62 5.13 6.63 2.01

Notes: Westside (N = 7182), eastside (N = 4968); * Predicted using the estimated coefficients in Table 4. † Predicted
values computed by setting listed explanatory variables at their minimum, mean, and maximum value, respec-
tively, and holding all other variables at their mean. ‡ Predicted by using the estimated coefficients and setting all
explanatory values at their global mean, minimum, and maximum values. § Difference between the predicted
value at the maximum vs. predicted value at the minimum.
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Figure 8. Summary of regression and sensitivity analysis results illustrating the relationships between
significant (p < 0.10) socioeconomic (blue) and biophysical (green) factors and human ignitions only.
Significant factors are shown by magnitude of impact based on sensitivity analysis in Table 5 (noted
in parenthesis). Note that significance is not absolute and the choice to use a different significance
cutoff would have resulted in a different graphical representation of results.

4. Discussion

Our results suggest that human ignitions in the Pacific Northwest are influenced by
socioeconomic factors. Although many of our findings reinforce results of other studies
that suggest that human ignitions are influenced by social, economic, and cultural contexts,
we found that relationships between individual socioeconomic factors and human ignitions
may be regionally specific. Moreover, the variation across regions in how socioeconomic
factors might influence human ignitions may not always be intuitive. This was the case
with results from our eastside and westside regions.

For example, the proportion of vacant seasonal housing was associated with fewer
human ignitions on the eastside, a result also found by Cardille et al. [22] in the upper
Midwest U.S., but increased human ignitions on the westside. This inverse relationship
may indicate that there are differences in the characteristics of the seasonal housing across
the westside and eastside regions. The negative relationship between seasonal housing
and human ignitions on the eastside could involve a combination of greater fire awareness
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among eastside homeowners, where fire risk is higher, and an association between second
homeownership and wealth, with individuals in locations having higher proportions of
seasonal homes potentially having greater financial resources with which to invest in
wildfire mitigation activities [47].

Estimated relationships between unemployment and human ignitions also varied
between our westside and eastside regions. Unemployment was associated with increased
human ignitions on the eastside and decreased human ignitions on the westside. Unem-
ployment can be a proxy for the economic vitality of an area [23,32], which conceivably
could influence ignition occurrence in several ways. The opposite effect of unemploy-
ment on the westside from the eastside suggests the characteristics of the unemployed
populations differ between the two regions. For example, on the more densely populated
westside, unemployment may be driven by urban populations, whereas unemployment
may have more to do with a lack of employment opportunities in extensively rural areas
on the eastside. Some analysts linked high unemployment and other measures of eco-
nomic distress with increased social unrest and elevated accounts of arson [23]. Previous
research literature has found varied results regarding relationships between human ig-
nitions and unemployment, with many studies finding statistically significant positive
correlations [23,28,35]. A positive relationship could suggest that investments in education
and employment opportunities could lead to reductions in human ignitions over time.

We found that other socioeconomic factors, including elder population, median house-
hold income, and population density, had similar relationships with human ignitions across
our westside and eastside regions, even as our results differed from other studies. For
example, an increase in population over age 65 was associated with fewer human ignitions
in the Pacific Northwest, whereas results from Spain found older adult populations had
a positive relationship with human ignitions, potentially due to the associated cultural
burning practices in the region [24]. Given that the largest subset of human ignitions in the
Pacific Northwest was attributed to recreation, relationships between age demographics
and human ignitions may have been related to patterns of recreation use (e.g., less overnight
camping in the backcountry where campfire may escape more easily among adults over age
65). Unsurprisingly, population density was also associated with increased human ignitions
in both regions, results found in numerous studies nationally and globally [23,25,53].

Interestingly, median household income was associated with increased human ig-
nitions across in the Pacific Northwest, a somewhat counterintuitive finding given that
studies in Italy and Spain have found higher incomes associated with decreased wildfire
ignitions [24,28], and studies in the Southern United States have found higher poverty rates
associated with increased human ignitions [26]. This inconsistency may be explained by the
fact that higher income areas are often located in amenity-rich communities that interface
with forestlands in the Pacific Northwest, providing greater opportunity for human igni-
tions. These differences highlight the importance of regional social and cultural contexts
in influencing ignition patterns. Conceivably, there also may be a non-linear relationship
between income and human ignitions, whereby income might be associated with increased
ignitions up to a point but then lead to reductions in ignitions in the wealthiest locations.
Testing for this possibility was beyond the scope of our analysis.

We also modeled natural ignitions as a function of both biophysical and socioeconomic
factors for comparison. As expected, biophysical factors were significant predictors of both
human and natural ignitions. On the westside, increased mean summer precipitation was
associated with fewer human and natural ignitions, results found in numerous studies indi-
cating additional summer rain can increase fuel moisture and lower ignition risk [23,27,32].
Mean summer temperature was associated with increased ignitions in both westside and
eastside models of human ignitions and in the westside natural ignition model. Summer
temperature’s positive influence on human ignitions is well established [23,27] and is likely
related to the fact that drier fuels present more opportunity for accidental ignitions or fire
escape during permitted activities such as burning slash or logging.



Fire 2023, 6, 300 18 of 23

We had expected to find that none or few of the socioeconomic factors were significant
predictors of natural ignitions, given that humans and civil infrastructure are unlikely
to directly influence where and when lightning strikes. Prior research has established
lightning-caused ignitions to be primarily driven by biophysical factors such as elevation,
fuel moisture, vegetation type, and local weather [54–56], with few studies explicitly
addressing human influence on natural ignitions. However, unemployment, median
income, and population density were statistically significant in our eastside model, and
median income, seasonal housing, and elder population were statistically significant in
our westside model. It is worth remembering that an ignition needed to be witnessed and
reported by humans to be included in the FPA FOD. Thus, any correlation found between
socioeconomic factors and natural ignitions likely arises either from spurious correlation
between a particular factor and the propensity of lightening to strike a given location or from
the correlation between a particular factor and its influence on facilitating the propagation
or discovery of natural ignitions. For example, we speculate that more lightning ignitions
on hills or ridgetops are reported than those in valleys obscured from view, and more
lightning ignitions are reported near buildings and roads than in roadless areas. It also is
conceivable that human presence may, in some way, influence the ignitability of forest fuel
at the location of lightning strikes, either because of past forest management practices that
alter fuel density, moisture content, stand age, species composition, or some other factor. In
the Western U.S., where lighting fires are more common, both road density and recreational
infrastructure have been shown to be correlated with increased natural ignitions [31,57].
Regardless of the reason, our results indicate that there can be a spatial correlation between
reported natural ignitions and human communities. And, while we assume that the
statistically significant relationships we found between natural ignitions and socioeconomic
variables reflect an unknown relationship, more directly examining possible causes for
correlation could yield useful insights regarding how best to interpret possible causation
inherent in correlations found between socioeconomic and natural ignitions.

Our results demonstrate the potential influence of socioeconomic factors on human
ignitions in the Pacific Northwest, but also underscores the role of human ignitions in
overall wildfire risk in Oregon and Washington, where the vast majority of ignitions on
the westside and nearly half of ignitions on the eastside were caused by humans over the
past quarter century. A closer look at specific causes of human ignitions reveals nearly half
of those human ignitions were caused by recreation or open burning, both of which are
discretionary behaviors in that they are generally permitted activities involving directly
ignited fires that escaped their intended purpose. Although they make up a smaller portion
of ignitions, vehicle use, smoking, operating firearms, and fireworks also contribute to
human ignitions, each of which are also discretionary human behaviors that carry an
indirect risk of accidental ignition given the right conditions.

Maps of ignitions density (Figure 7) suggest that specific ignition causes exhibit unique
spatial patterns. Higher densities of recreation caused ignitions were found along the west-
side of Cascade mountain range and outside of urban centers such as Portland, Oregon,
and Seattle, Washington, where recreation use is high (Figure 7a), and concentrations of
ignitions attributable to debris and open burning were clustered in more rural areas im-
mediately surrounding major cities and in the northeast region of Washington (Figure 7b).
Ignitions caused by equipment and vehicle use (Figure 7c) were concentrated in the south-
west of Oregon, where forestry and agriculture activity intersected with the areas of higher
wildfire hazard potential. These patterns were further explored with spatial hotspot analy-
sis, which indicated that these clusters of county subdivisions with high human ignition
density were statistically significant (Appendix B, Figures A1 and A2).

From a policy and management perspective, it may be useful to consider how inter-
ventions might be designed and deployed to address behaviors that lead to ignitions of
unintended human-caused wildfires (Table 6). Given that discretionary direct behaviors
(recreation and open burning) generated over half of the known causes of human ignitions
(56 percent) in Oregon and Washington over the past quarter century, it may be prudent
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to develop more tailored information and outreach programs that guide risk assessment
of these activities under high risk fire weather conditions geared towards recreationists
or for those applying for burn permits and to target interventions to the most relevant
areas. Similarly, the development of tailored information regarding wildfire risk of common
discretionary indirect activities could help reduce the number of ignitions resulting from
activities such as vehicle and equipment use, the third largest known cause of human
ignitions in the region.

Table 6. The percentage of all human ignitions in Oregon and Washington between 1992–2018,
grouped to highlight potential areas for policy intervention.

Discretionary Direct Behavior

Recreation and ceremony 32%
Debris and open burning 24%

Total 56%

Discretionary Indirect Behavior

Equipment and vehicle use 13%
Firearms and explosives use 0%

Fireworks 6%
Misuse of fire by a minor 4%

Smoking 7%
Total 30%

Institutional Behaviors

Railroad operations and maintenance 1%
Power generation/transmission/distribution 4%

Total 5%
Notes: Arson and “other cause” make up 10%. Does not include missing or unknown causes that account for ~16%
of human-caused ignitions. Discretionary direct are accidental ignitions that arise from human activities, in which
individuals intend to light fires that escaped control; discretionary indirect are those accidental ignitions that
arise indirectly from common human activities that carry a risk of wildfire in certain conditions; and institutional
behaviors are those ignitions that arise from operation of human infrastructure.

Our study reinforces the findings of others: that socioeconomic contexts are asso-
ciated with human wildfire occurrence. We demonstrate that vacant seasonal housing,
age demographics, and economic factors such as income and unemployment significantly
influence human ignition activity in Oregon and Washington, though their influences on
human ignitions vary across the region. While wildfire managers cannot easily change the
socioeconomic conditions that may lead to increased human ignitions, analysis of ignition
data indicated 56 percent of human ignitions, for which we have known causes, were
attributed to recreation or open burning, human behaviors that could be addressed through
increased regulation, improved enforcement of current regulations, or more targeted ed-
ucation campaigns. A useful next step would be to use results from this study to design
more in-depth analysis of circumstances that lead to specific human ignition causes and to
investigate the effectiveness of current regulatory and fire prevention efforts in communi-
ties where human ignitions are particularly high. Fuel treatments and improved wildfire
responses will play an important role in restoring fire resiliency to western landscapes and
protecting communities, but understanding regional ignition causes and the social factors
that influence human ignitions will also be imperative for tailoring wildfire prevention
efforts to address the underlying human behaviors that drive unplanned human ignitions,
especially given that human ignitions are more likely to occur near human communities
putting homes and lives at risk.
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Appendix A. Appendix Table

Table A1. Misclassified ignition points removed from Fire Program Analysis Fire Occurrence
Database for Oregon and Washington prior to analysis. Data: (Short, 2021).

FOD ID State NWCG General Cause Fire Year Notes

400025889 OR Arson/incendiarism 2017 In OK not OR, point dropped
400280014 WA Missing data/not specified/undetermined 2010 In CA not WA, point dropped
400025885 OR Arson/incendiarism 2017 In OK not OR, point dropped
1276308 WA Natural 1994 In ID not WA, point dropped

Table A2. Correlation matrix of variables included in final models.

Westside (N = 7128) Eastside (N = 4968)

Explanatory Variables 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1. Summer Temperature 1.0 1.0
2. Summer Precipitation −0.6 1.0 −0.5 1.0

3. Elder (65+ years) 0.0 −0.2 1.0 −0.2 0.1 1.0
4. Vacant Seasonal Housing −0.4 0.2 0.4 1.0 −0.4 0.2 0.3 1.0

5. Unemployment rate 0.0 0.0 0.1 0.0 1.0 −0.2 0.1 −0.1 0.0 1.0
6. Household Income 0.2 −0.1 −0.2 −0.2 −0.2 1.0 0.2 −0.2 0.1 0.0 −0.3 1.0
7. Population Density 0.2 −0.1 −0.2 −0.2 −0.1 0.3 1.0 0.2 −0.1 −0.2 −0.2 0.0 0.1 1.0

Appendix B. Hotspot Analysis

Hotspot analysis was performed in ArcGIS pro 2.9.5 using the Optimized Hot Spot
Analysis tool for both human and natural ignitions (Figure A1) and for the top three known
causes of human ignition (Figure A2). The tool calculated the Getis-Ord (Gi*) statistic for
each feature. For our hotspot analysis, we used the mean ignition density for each county
subdivision across the study period (1992 to 2018). The Gi* statistic returned a z-score
for each feature in the dataset. For statistically significant positive z-scores, the larger the
z-score was the more intense the clustering of high values (“hotspots” indicated in red).
For statistically significant negative z-scores, the smaller the z-score was the more intense
the clustering of low values (“coldspots” indicated in blue). The statistical significance
reported was automatically adjusted for multiple testing and spatial dependence using the
False Discovery Rate (FDR) correction method [58].
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