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Abstract: The real-time monitoring and analysis system based on video images has been implemented
to detect fire accidents on site. While most segmentation methods can accurately segment smoke
areas in bright and clear images, it becomes challenging to obtain high performance due to the low
brightness and contrast of low-light smoke images. An image enhancement model cascaded with a
semantic segmentation model was proposed to enhance the segmentation effect of low-light smoke
images. The modified Cycle-Consistent Generative Adversarial Network (CycleGAN) was used to
enhance the low-light images, making smoke features apparent and improving the detection ability
of the subsequent segmentation model. The smoke segmentation model was based on Transformers
and HRNet, where semantic features at different scales were fused in a dense form. The addition
of attention modules of spatial dimension and channel dimension to the feature extraction units
established the relationship mappings between pixels and features in the two-dimensional spatial
directions, which improved the segmentation ability. Through the Foreground Feature Localization
Module (FFLM), the discrimination between foreground and background features was increased,
and the ability of the model to distinguish the thinner positions of smoke edges was improved.
The enhanced segmentation method achieved a segmentation accuracy of 91.68% on the self-built
dataset with synthetic low-light images and an overall detection time of 120.1 ms. This method can
successfully meet the fire detection demands in low-light environments at night and lay a foundation
for expanding the all-weather application of initial fire detection technology based on image analysis.

Keywords: low-light image enhancement; smoke segmentation; Cycle-Consistent Generation
Adversarial Network; vision transformer; attention module

1. Introduction

Fire accidents are one of the major disasters that seriously endanger the safety of
people’s lives and property in daily life. Prevention and the timely alarm of fire accidents
are the top priorities to protect people’s safety. Before most fire accidents, a mass of
smoke will be produced at the ignition point. Consequently, monitoring smoke can detect
fires quickly to avoid excessive fire spread and critical property damage. With the rapid
development of computer vision and artificial intelligence, fire detection technology based
on image processing and object detection has been widely studied. Smoke detection
technology based on video images has been gradually replacing traditional temperature
and smoke sensors with its faster response speed, more comprehensive detection range,
lower cost of use, and weaker environmental restrictions.

Object detection mainly relies on color information, edge contour, texture features, and
motion information of smoke images to extract features [1,2]. Therefore, it is challenging for
object detection algorithms to accurately separate smoke areas from backgrounds during
feature marking and extraction due to smoke’s variable scale, strong diffusion, blurred
boundary, and broad color change with concentration.

As the semantic segmentation methods gradually become a hot spot in image seg-
mentation, this pixel-by-pixel classification method can effectively avoid the influence of
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background on smoke features and overcome the weakness that the object detection algo-
rithm is only suitable for rigid targets. The semantic segmentation methods based on deep
learning are more efficient in the segmentation task of smoke images than the traditional
ones. During the training process, the deep learning models can select the features which
need to be learned according to different distributions of the datasets. Therefore, the precise
separation of smoke and non-smoke areas can be realized, and the segmentation method is
accurate, fast, and robust [3,4].

Current semantic segmentation methods can obtain high accuracy when applied to
the segmentation task of bright and clear smoke images during the daytime. However,
their segmentation effects for low-light smoke images have difficulty reaching the practical
application levels. Images captured in low-light conditions tend to have longer exposure
times, which results in more noise and blur, as well as unclear edges and features, affecting
the performance of the segmentation model. In addition, many unattended areas such as
warehouses and computer rooms are in low-light environments, making it more important
to improve the detection ability of segmentation algorithms for early smoke in low-light
or nighttime environments, which is especially significant for fire accident detection and
alarm tasks.

Considering these points, we proposed an innovative semantic segmentation method
which is specifically designed to work in low-light environments for smoke images. It will
provide theoretical and technical support for detecting smoke areas in real low-light scenes.
The main contributions of our work can be summarized into three key points:

• We have overcome the challenge of extracting features from low-light smoke by
separating the entire detection task and completing the low-light smoke image seg-
mentation task through an image enhancement network cascaded with a semantic
segmentation network.

• We have designed a low-light image enhancement network based on unsupervised
transfer learning methods. Our modified CycleGAN [5] algorithm has significantly
improved the brightness and contrast of the smoke image, making it more suitable for
subsequent segmentation tasks.

• We have designed a multi-scale feature extraction network based on a Transformer,
which is capable of handling smoke feature extraction tasks in complex scenes. By
fusing the semantic features of different resolution branches, the extraction ability of
our network on the global features of smoke is enhanced.

2. Related Works

Many scholars have proposed various methods to enhance the segmentation ability to
overcome the difficulties of image segmentation tasks in low-light environments. Ref. [6]
proposed an unsupervised nighttime semantic segmentation model called DANIA. DANIA
uses image relighting networks with light loss functions to narrow the image intensity
distribution gap in different domains. Additionally, it combines the image relighting
network and Convolutional Neural Networks (CNNs) to perform semantic segmentation
as a generator. DANIA also designs a discriminator that performs adversarial learning
to distinguish whether the segmentation prediction is from the source or target domain.
While DANIA has successfully achieved state-of-the-art performance on night driving test
datasets, it is not applicable for smoke segmentation due to the variable scales, irregular
shapes, and texture information, which are greatly affected by brightness and concentration.

To improve the model’s ability to learn from night images, Ref. [7] introduced a
self-attention mechanism that considers position information based on Deeplab v3+ [8].
Additionally, a lighting adaptation mechanism was added to reduce the differences in the
feature maps extracted by the shallow layers of the network. The model also addressed
the differences between normal and low-light feature maps by using an illumination reflec-
tion weight map, which improves the feature extraction ability of unevenly illuminated
positions. However, this method only considers the illumination and position feature infor-
mation based on low-light images. Although the attention mechanism enhances the feature
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extraction ability during the end-to-end training process, more improvements are needed
to solve the problems of inaccurate low-light feature extraction and difficult recovery of
edge details.

Ref. [9] proposed a semantic segmentation network that combines visible and infrared
images to improve segmentation accuracy in low-light environments. The network design
includes two parallel encoders that extract pixels of both modes separately, followed by a
fusion process where each pixel of the infrared images is fused into the visible images. This
complementary process combines the location information and pixel associations of the
two domain images and effectively extracts features from complex nighttime backgrounds.
However, the dual-mode segmentation model requires the support of real datasets con-
taining visible and infrared images, which are challenging to construct and prone to class
imbalance. The increase in dataset capacity also leads to longer image acquisition and
training times, as well as expanded training complexity.

Furthermore, the segmentation network built in Refs. [7–9] mainly utilizes convo-
lutional units. CNNs have advantages in spatial position representation. However, it is
difficult for them to capture global feature context information due to the locality of con-
volution operations [10]. At the same time, CNNs can reduce the amount of computation
through pooling operations in the feature extraction process, which will instead lead to the
loss of detailed features [11,12]. For smoke targets, the loss of small-scale features can result
in poor segmentation of the details of edges. With the application of a Transformer to the
visual field, it can capture the long-distance feature dependence of complex spatial transfor-
mation domains between feature maps with self-attention and establish the global feature
representation of the candidate regions [13]. However, Transformers may ignore the local
feature information, which reduces the ability to distinguish between the foreground and
the background in images. Therefore, designing a network that integrates the Transformer
and CNNs can complete the complementary fusion of global semantic information and
local detail features.

3. Method

In order to address the issue of unclear features in low-light images, we cascade an
image enhancement network prior to the segmentation task. Our modified CycleGAN
algorithm is designed to enhance low-light images, making them more similar to their
daytime counterparts. Then, more accurate smoke segmentation results can be obtained
with our semantic segmentation network. Figure 1 depicts the entire flow of our low-light
smoke image segmentation algorithm.

Figure 1. Entire flow of our low-light smoke image segmentation algorithm.
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By cascading the two network models, it is possible to avoid the need for complex
fusion methods while effectively reducing the model’s complexity and computational scale.
Furthermore, our approach allows for the enhancement and segmentation networks to
be replaced based on different task scenes and requirements, improving the method’s
generalization and flexibility. Our highly efficient and adaptable approach makes it a
valuable tool for applications in low-light environments.

3.1. Image Enhancement Network

To improve the smoke characteristics in low-light environments, we modify the Cy-
cleGAN model as the main component of our image enhancement network. The original
CycleGAN has difficulty preserving image details during the enhancement process, which
results in artifacts, blur, and noise in enhanced images, making the subsequent segmenta-
tion task challenging. Inspired by EnlightenGAN [14], we modify the generator network
with an encoder–decoder structure to restore the smoke details accurately. We also add
a brightness equalization branch to balance the brightness of each part of an image. To
ensure that the smoke features are preserved during the enhancement process, we attach a
similarity discriminant branch to the discriminator network based on a two-branch form.
Figure 2 shows the structure of our low-light smoke image enhancement algorithm.

Figure 2. Structure of our low-light smoke image enhancement algorithm.

The encoder follows the same structure as EnlightenGAN, while the decoder part’s
upsampling process is completed using PixelShuffle [15]. Through convolution and multi-
channel recombination, the low-resolution feature map transforms into a high-resolution
feature map. PixelShuffle is used mainly to handle the loss of details during upsampling
based on a single feature map. The skip connection between the encoding and decoding
stages ensures that original image features are transmitted, allowing some of the lost details
from downsampling to be recovered. The brightness equalization branch applies additional
weights to darker areas of the images, which can make them brighter—at the same time,
suppressing the enhancement effect of brighter areas to avoid overexposure problems. The
structure of the brightness equalization branch is shown in Figure 3.

To ensure that the brightness equalization branch is sensitive to variable levels of
darkness in low-light images, we choose the Parametric Rectified Linear Unit (PReLU) [16]
as the activation function. By adjusting the parameters in PReLU adaptively according
to different brightness levels in different areas of the images, the equalization branch’s
sensitivity to different brightness levels is significantly improved. Inspired by Enlighten-
GAN’s dual discriminant branch, our discriminator enhances the global brightness level
and corrects image details. However, the generator’s skip connection can only partially
counteract the loss or change of image features during enhancement. To further recover
detailed features, we design a similarity discrimination branch that works in couple with
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the subsequent segmentation model in the discriminator network, ensuring that the image
enhancement process will not significantly impact the smoke features. The discriminator
structure, including the similarity discriminant branch, is illustrated in Figure 4.

Figure 3. The structure of the brightness equalization branch.

Figure 4. Structure of the discriminator.

For the local discriminator, we modify the loss function of the original LS-GAN [17]
with the least squares loss:

LLocal(G, DLocal
Y ) =

1
2

Ex f∼Pf data(x f )
[(DY(x f )− 1)2] (1)

For the global discriminator, to improve the quality of the generated images and
reduce the training time, we refine the original loss function with the standard function of
the relativistic adversarial network [18]. The least square loss of the global discriminator
according to the corresponding regression target is

LGlobal(G, DGlobal
Y ) =

1
2

Exr∼Prdata(xr)[(Davg
RY (xr, x f )− 1)2]

+
1
2

Ex f∼Pf data(x f )
[(Davg

RY (x f , xr))
2]

(2)

where D represents the discriminator network. xr and x f represent the distribution of real
and fake images.
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With unsupervised training, the transfer effect of domains is controlled by the differ-
ence between the quadratically generated and real images. To ensure that the characteristic
information of the smoke area remains unchanged, we append the cycle consistency loss
based on the LS-GAN loss, which helps to prevent the subsequent segmentation process
from being adversely affected. The cyclic consistency loss expression is as follows:

LCycle(G, F) = Exr∼Prdata(xr)[‖F(G(xr))− xr‖1] + Eyr∼Prdata(yr)[‖G(F(yr))− yr‖1] (3)

where G and F represent the generators in two directions, x represents the low-light images,
y represents the images in the daytime, and the difference between images is measured
by 1-norm.

As shown in Figure 4, our similarity discrimination branch effectively mitigates the
loss and alteration of image specifics caused by downsampling in enhancement networks.
Therefore, we increase the object similarity loss using the segmentation model:

Lseg(G, F) =
1

H ×W × C

{
[Φ(F(G(xr)))−Φ(xr)]

2 + [Φ(G(F(yr)))−Φ(yr)]
2
}

(4)

where Φ represents the pixel-by-pixel classification results obtained by the subsequent
semantic segmentation algorithm of the fake and real images. H, W, and C are the dimen-
sions of the corresponding feature maps. We use Mean Squared Error (MSE) to represent
the absolute difference between two image segmentation results.

Lseg improves the recovery of details of the images. However, it also leads to blurry
output images since quality evaluation indicators such as MSE only consider the difference
between pixels at a single point without considering the correlation between them. They
ignore the correlation between pixels. Therefore, we incorporate a loss based on the
Structure Similarity Index Measure (SSIM) between the real images and the quadratically
generated images:

LRelevance(G, F) = Lcyc(G, F) + Lone−way(G, F) (5)

Lcyc(G, F) = [1− SSIM(xr, F(G(xr)))] + [1− SSIM(yr, G(F(yr)))] (6)

Lone−way(G, F) = [1− SSIM(xr, F(yr))] + [1− SSIM(yr, G(xr))] (7)

where Lcyc indicates the structural similarity loss added to the cyclic generation discrimi-
nant, and Lone−way represents the structural similarity difference for G and F added in the
one-way generation process.

In summary, the loss function of the image enhancement network we proposed is
as follows:

LTotal =
1
2

[
LLocal(G, DLocal

Y ) + LLocal(F, DLocal
X )

]
+

1
2

[
LGlobal(G, DGlobal

Y ) + LGlobal(F, DGlobal
X )

]
+λ1LCycle(G, F) + λ2Lseg(G, F) + λ3LRelevance(G, F)

(8)

where λ1, λ2, and λ3 are the balance parameters that control the proportion of different loss
functions. Based on the various experiments we conducted, we found that the parameters
λ1 = 5, λ2 = 10, and λ3 = 10 are the most suitable for our enhancement network. We use
two branches to calculate the LS-GAN loss based on the two-branch discriminator, while
the remaining three loss functions are calculated solely based on the generator network.

3.2. Semantic Segmentation Network

When it comes to smoke segmentation, it can be quite challenging due to the extensive
range of sizes, strong diffusion, and changeable shapes of smoke. Background information
can also significantly affect the segmentation results, making it even more difficult to obtain
satisfactory results. Therefore, the networks which work well for other targets may not
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be effective for smoke segmentation tasks. To meet the requirements of video monitoring
and analysis systems for detecting and announcing fire accidents, we propose a semantic
segmentation network based on HRNet [19] and HRFormer [20]. It allows for the extraction
of multi-scale features of smoke, making it possible to segment smoke images enhanced by
our image enhancement network accurately. The structure of our semantic segmentation
algorithm is shown in Figure 5.

Figure 5. Structure of our semantic segmentation algorithm.

Due to the variable scales and shapes of smoke, feature extraction concentrating on
one single scale makes it challenging to obtain accurate segmentation results. We modify
HRFormer’s Transformer block to handle multi-scale changes in the targets effectively.
Additionally, using 3 × 3 depth-wise convolution for information interaction between
windows in HRFormer is not sufficient, as it barely covers the internal features of the win-
dows. Meanwhile, increasing the sizes of convolution kernels will import more background
information. Therefore, we use the Shifted Window-based Multi-head Self-Attention (SW-
MSA) [21] of a Swin Transformer (SW-Trans) instead. The entire structure of our feature
extraction module is shown in Figure 6.

Figure 6. Structure of the feature extraction module.

Compared with the classical network structure of HRNet, our shallow and deep
module parts utilize different numbers of feature extraction units. The high-resolution
branches generate larger feature maps with fewer output dimensions, which allow for better
preservation of pixel spatial positioning information. On the other hand, the low-resolution
branches generate smaller feature maps with a larger number of output dimensions, making
them better at extracting abstract semantic features. We gradually increase the number of
Transformer blocks in our network from high-resolution to low-resolution branches, which
allows us to extract both local details and global semantic information in parallel.

The parameters of our feature extraction modules are shown in Table 1. M1, M2,
M3, and M4 represent the numbers of modules in different stages, and B1, B2, B3, and B4
represent the numbers of Transformer blocks in each branch of different modules.
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Table 1. Parameter settings of our feature extraction modules.

Resolution Stage 1 Stage 2 Stage 3 Stage 4

4×

 1× 1, 64
3× 3, 64

1× 1, 256

× B1×M1 [T − Block]× B1 ×M2 [T − Block]× B1 ×M3 [T − Block]× B1 ×M4

8× [T − Block]× B2 ×M2 [T − Block]× B2 ×M3 [T − Block]× B2 ×M4
16× [T − Block]× B3 ×M3 [T − Block]× B3 ×M4
32× [T − Block]× B4 ×M4

Consistent with Figure 5, M1, M2, M3, and M4 are 1, 2, 4, and 3, and B1, B2, B3, and
B4 are 2, 3, 4, and 4. The numbers of Transformer block channels at different resolutions
are, respectively, 32, 64, 128, and 256 at 4, 8, 16, and 32 times. The numbers of self-attention
heads are, respectively, 1, 2, 4, and 8. The Multi-Layer Perception (MLP) extension ratio in
all transformer blocks is 4.

By incorporating the Local Spatial Attention Module (LSAM) and the Global Channel
Attention Module (GCAM), we improve our Transformer block’s ability to extract local spa-
tial information and aggregate global context information. The structure of our Transformer
block is shown in Figure 7.

Figure 7. Structure of our Transformer block.

The LSAM structure is shown in Figure 8, and the GCAM structure is shown in Figure 9.

Figure 8. Structure of LSAM.
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Figure 9. Structure of GCAM.

LSAM reshapes the tokens into feature maps before extracting structural information
through a 3 × 3 convolutional layer. Depending on the stage and branch where the
transformer block is located, H and W take different values. Once the structural information
is extracted, global average pooling is performed in the width and height directions to
obtain statistical information:

vk
hi
=

1
w

w−1

∑
j=0

ẑk(i, j) (9)

vk
wj

=
1
h

h−1

∑
i=0

ẑk(i, j) (10)

where vk
hi
∈ Rh×1×cl and vk

wj
∈ R1×w×cl are one-dimensional spatial attention vectors in the

height and width directions. ẑ is the feature map obtained by the convolutional layer, and
the Batch Normalization (BN) and Gaussian Error Linear Unit (GELU) activation functions
are used after convolution. The corresponding operating ranges are 0 ≤ i < h, 0 ≤ j < w,
and 0 ≤ k < cl .

A feature map of h× w× 1 is obtained by matrix multiplication using the tensors in
the width and height directions within each channel:

vk
wj

=
1
h

h−1

∑
i=0

ẑk(i, j) (11)

After obtaining two spatial attention vectors in the height and width direction and
a two-dimensional spatial attention feature map with information interaction in two di-
rections, the next step is to activate the three attention weight vectors with the sigmoid
function. These weight vectors are multiplied point by point to the original feature map.
Then the spatial position attention map M ∈ Rh×w×cl of LSAM is obtained. The out-
put feature map of LSAM is calculated by adding M to the output sl+1 of the SW-Trans
branch yields:

F = sl+1 ⊕Φ(σ(vh)� ẑ + σ(vw)� ẑ + σ(vh,w)� ẑ) (12)

where⊕ represents the point-by-point summation,� represents the point-by-point product,
and Φ represents the reshaping of the feature maps.

The attention feature vectors in different directions can capture long-distance feature
dependencies in their respective direction. By integrating the spatial position information of
two directions after multiplying, a two-dimensional spatial mapping between the features
and the pixels can be established. LSAM can effectively extract the regional features of
smoke, which helps suppress background information and noise to a certain extent.

GCAM performs global average pooling and global max pooling of LSAM output
features in the spatial dimension. By learning the weight distributions of the obtained max
pooling features and average pooling features in the channel dimension through a shared
fully connected layer, GCAM can reduce the dimensionality of the channel features and
acquire two feature vectors. After applying GELU activation, the fully connected layer
upgrades the feature maps and restores the initial number of channels. Finally, the two
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attention vectors of features are added and activated by the sigmoid function before being
applied to the output features of LSAM to obtain the output of the Transformer block:

sl+1 = F⊗ σ[ f0( f1(AvgPool(F))) + f0( f1(MaxPool(F)))] (13)

where ⊗ represents the channel attention weights multiplied by the corresponding feature
map, f0 and f1 represent the two shared fully connected layers that perform dimension-
ality operations, and AvgPool and MaxPool represent global average pooling and global
max pooling.

The Transformer block can adaptively assign feature weights on the channel and
spatial domains according to the degree of correlation of features in the smoke image. It
also allows for essential features to be enhanced and invalid information to be suppressed.

The segmentation task for the enhanced smoke images is challenging due to the
blurred appearances. We modify the Pyramid Pooling Module (PPM) [22] and extend it
into a dense style using DenseNet [23]. After each module of our backbone network, we
implement a fusion module to upsample the low-resolution feature maps. By concatenating
the feature maps of different scales and repeating the upsampling process, our network
can increase the receptive field of the feature maps and extract more context information
effectively. The structure of Dense PPM is shown in Figure 10.

Figure 10. Structure of Dense PPM.

In the proposed network, we implement depth-wise separable convolution [24] instead
of original convolutional units to reduce the computation amount during the training
process, which results in a notable improvement in the network’s training speed.

To accurately distinguish smoke from the background areas and ensure that the
segmentation effect is not disturbed by external factors, we propose a foreground feature
localization module called FFLM, which can precisely segment the thin smoke areas in the
images through the calculation of correlation between each pixel and the smoke foreground.
FFLM also helps to increase the differentiation between smoke areas and background
information and prevent confusion. The specific structure of FFLM is shown in Figure 11.
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Figure 11. Structure of FFLM.

The output feature maps Fin ∈ Rh×w×c, which contain rich and detailed features and
semantic information, are processed with average pooling, max pooling, and soft pool-
ing [25] techniques in the channel dimension. The statistics obtained from these techniques
are combined through a shared fully connected layer. The sum of average and max pooling
is then multiplied by the index weights of soft pooling. With the obtained global weight
description passing through a fully connected layer and a sigmoid function, the foreground
normalized features of each channel of the output feature maps are presented.

Finally, the foreground normalized features are multiplied with the original pixel
features Fin to obtain the foreground area features:

Pavg,max = f1(AvgPool(Fin)) + f1(MaxPool(Fin)) (14)

Pso f t = f1(SoftPool(Fin)) (15)

F̂ = σ[ f2(Pavg,max � Pso f t)]� Fin (16)

where F̂ represents the foreground area features, Pavg,max ∈ R1×1×c represents the statistical
feature description after the sum of average pooling and max pooling, Pso f t represents
the description of the statistical features obtained by soft pooling. AvgPool, MaxPool, and
SoftPool correspond to the operations of average pooling, max pooling, and soft pooling
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in the channel dimension. f1 and f2 are fully connected layers. � is the point-by-point
product operation.

The degree of association between each pixel and the foreground areas can be calcu-
lated with the foreground area features and the original pixel features:

Σ =
exp(ϕ(F̂))

exp(ϕ(Fin))
(17)

where Σ is the foreground correlation representation. ϕ is the foreground correlation
calculation function implemented by convolution, BN, and Rectified Linear Units (ReLUs).

The output features enhanced by FFLM can be obtained by fusing foreground correla-
tion features, foreground area features, and original pixel features:

Fout = Fin + ρ(Σ · δ(F̂)) (18)

where ρ and δ are the fusion functions implemented by convolution, BN, and ReLUs. Fout
is the enhanced output features. FFLM can help improve the overall quality of images by
enhancing the features in the foreground area while reducing the impact of the background
on smoke feature extraction. Additionally, FFLM can improve the ability of segmentation
in thin smoke areas.

The smoke segmentation task is a pixel-level dense binary classification, and each
pixel needs to be classified between the foreground and background areas. Therefore, we
use a binary cross-entropy loss to design the loss function of our segmentation network:

L = − 1
N

n

∑
i=1

[qi log(pi) + (1− qi) log(1− pi)] (19)

where N is the number of pixels in the feature map. pi is the probability that the pixel is
predicted as smoke foreground. qi is the ground truth of the pixel.

When analyzing images with smoke areas, it is important to consider the proportion of
the smoke areas in relation to the background regions. If the loss function treats these areas
with a consistent weight, the party with a larger proportion will play a more dominant role
in the backward propagation process, resulting in a higher weight during the prediction.
Therefore, we introduce weighted coefficients to the two parts of the loss function based on
the relative sizes of the smoke areas and background regions. The coefficients allow our
model to balance the feature learning process between the two regions and adapt to the
unique characteristics of each image. The modified loss function includes a foreground
weight coefficient α f :

L = − 1
N

n

∑
i=1

[α f · qi log(pi) + (1− qi) log(1− pi)] (20)

We add an intermediate layer loss to the foreground feature localization process and
weigh it against the loss on the segmentation results to balance the supervision throughout
the network training process. Both the intermediate layer loss and the final loss use a
foreground-weighted binary cross-entropy loss function:

Lm = − 1
N

n

∑
i=1

[α f · qi log(pm
i ) + (1− qi) log(1− pm

i )] (21)

Lout = −
1
N

n

∑
i=1

[α f · qi log(pout
i ) + (1− qi) log(1− pout

i )] (22)

Ltotal = αuLm + (1− αu)Lout (23)
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where Lm and Lout are the intermediate layer loss and final loss. pm
i and pout

i are the
probability value that the intermediate layer pixel and output feature pixel are classified
to the foreground. αu is the balance weight parameter of the union loss. After conducting
numerous experiments, it has been determined that our segmentation model achieves
optimal performance with a value of 0.25 for αu when applied to our smoke dataset.

4. Results and Discussion
4.1. Dataset Settings

There is a lack of public image datasets available for the smoke segmentation task,
and even fewer public datasets that include smoke images in low-light environments.
Therefore, we utilize the smoke video dataset from the State Key Laboratory of Fire Science
(SKLFS) [25] and add our own collected images to construct a dataset in the PASCAL VOC
format. The training set of the image enhancement network includes 1000 smoke images
in the daytime and 1000 synthetic low-light images. The test set includes 200 synthetic
low-light smoke images. The semantic segmentation network’s training set consists of
4000 smoke images in the daytime, and its test set consists of 200 enhanced synthetic
low-light smoke images and 400 images in the daytime. Overall, our datasets include
70 scenes, and some of the images in the daytime are shown in Figure 12.

Figure 12. Examples of images in the daytime.

The differences in brightness between low-light images and daytime images are not
constant. The values increase as brightness increases, meaning high-brightness pixels in
an image are reduced in brightness more than low-brightness ones when transitioning
to low-light environments. To simulate these conditions, we use gamma correction [26]
methods based on existing synthetic low-light image generation techniques [27–29]. We
transform the V channel of the images in HSV space and add Gaussian and Poisson noise
to simulate the blur and noise captured by the camera in low-light environments. Our
image conversion formula is as follows:

Xout = BG(S · (Xin)
γ) + NG + NP (24)

where Xin is the value of the V channel of an HSV image. Xout is an output synthetic low-
light image. BG is a Gaussian blur function that sets the standard deviation to a random
value between 1.5 and 2. S and γ are the correction parameters corresponding to gamma
correction and are, respectively, set to 0.8 and 0.65. NG is Gaussian noise, whose kernel size
is (5, 5), and the standard deviation is 1.25. NP is Poisson noise, whose λ is 1.0.
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The synthetic low-light images are shown in Figure 13. The detailed features of each
part can still be obtained, but it may take some time to distinguish each area. Our network
configurations during training and testing are shown in Table 2. The size of images is
normalized to 640 × 480. The network batch size is set to 1. The epoch is set to 300. The
initial value of the learning rate is 0.0005. The learning rate decays to 0.0001 when the
epoch reaches 150.

Figure 13. Examples of synthetic low-light images.

Table 2. Configurations of network during training and testing.

Hardware/Software Configurations

CPU Intel Xeon Silver 4214R 12CPU@2.40 GHz
GPU NVIDIA TITAN XP

Programming Language Python 3.7
Deep Learning Framework Pytorch 1.13.1

4.2. Comparison Experiments of Image Enhancement Algorithm

In order to verify the effectiveness and superiority of our enhancement algorithm, we
select several methods such as LIME [30], SRIE [31], RetinexNet [32], EnlightenGAN [14],
LLFlow [33], Zero-DCE [34], and CycleGAN [5] for comparative experiments. Signal
Noise Ratio(SNR), Peak Signal Noise Ratio(PSNR), and SSIM are used as image quality
evaluation indicators. The average evaluation results on our synthetic low-light smoke
image dataset are shown in Table 3. Our enhanced network has advantages over traditional
methods SIRE and LIME in various evaluation indicators. Compared with fully supervised
algorithms such as RetinexNet, LLFlow, and Zero-DCE, our algorithm also has a certain
degree of advantage. In comparison to the unsupervised EnlightenGAN and CycleGAN,
although there is not much difference in SNR, our algorithm has excellent advantages in
SSIM and NIQE indicators. The results in Table 3 clearly demonstrate that our proposed
enhancement algorithm is superior to other low-light image enhancement algorithms in
various evaluation indicators.
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Table 3. Comparison of experimental results of image enhancement networks.

Networks MSE SNR PSNR SSIM NIQE

LIME [30] 931.994 14.350 18.989 0.884 6.154
SIRE [31] 877.623 12.906 19.043 0.837 6.073
RetinexNet [32] 519.397 15.515 21.302 0.909 5.760
EnlightenGAN [14] 73.162 24.314 30.508 0.935 4.856
LLFlow [33] 353.466 17.322 23.436 0.927 4.997
Zero-DCE [34] 424.280 16.599 23.532 0.915 5.015
CycleGAN [5] 44.154 25.929 32.111 0.937 5.024
Ours 35.996 26.617 32.816 0.964 4.699

Figure 14 shows the enhancement results on our synthetic low-light smoke image dataset.

Figure 14. Examples of enhancement results on our synthetic low-light smoke image dataset.

The enhancement effects of SRIE and LIME on low-light smoke images are not satisfac-
tory. The enhanced images tend to be overexposed or underexposed, and the boundaries
between areas of similar colors appear blurred. Similarly, RetinexNet and Zero-DCE also do
not produce desired results. Their enhanced images show severe blur and color distortion,
as shown in the fifth row of column (c) and the first row of column (f). CycleGAN can
recover the color of images effectively and suppress noise in some uncomplicated scenes.
However, when the background information becomes complex, the images enhanced by
CycleGAN tend to produce more severe blurring, such as the third and fourth rows of
column (g), which can negatively impact subsequent segmentation tasks.

LLFlow and EnlightenGAN can cause slight chromatic aberration, and their enhanced
images have high contrast. LLFlow tones appear warmer, while EnlightenGAN tones
are colder than real images. However, our method stands out as it can restore image
details better, and the enhanced images contain a lower noise level. Most importantly, the
enhanced images obtained by our method have the highest structural similarity, indicating
that our enhancement operation has the most negligible impact on subsequent segmentation
tasks, which further demonstrates the advantages of our method over other segmentation
algorithms in low-light smoke image segmentation tasks.

4.3. Ablation Experiments of the Image Enhancement Algorithm

The proposed low-light image enhancement algorithm is subjected to ablation experi-
ments in order to effectively verify the contribution of each individual part. The ablation
objects are mainly aimed at the brightness equalization branch and the object similarity
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discrimination between the generated images and the original real samples during the loop
generation. The quantitative results of the ablation experiments are shown in Table 4, and
the qualitative results are shown in Figure 15.

Table 4. Ablation experimental results of our image enhancement algorithm.

Networks Brightness Equalization Branch Object Similarity Discrimination SNR PSNR SSIM

Net1 12.703 16.881 0.871
Net2 X 18.247 23.372 0.938

Net3/Ours X X 26.617 32.816 0.964

Figure 15. Examples of the ablation experimental results.

Net1 is a generator network without a brightness equalization branch or attention
module, which only contains the encoder–decoder structure of EnlightenGAN. Its discrimi-
nator still uses the two-branch discriminator structure of PatchGAN to fuse local features
with global information. Net2 adds a parallel brightness equalization branch to Net1. Net3
is our network for the low-light smoke image enhancement task.

Based on the experimental data in the SSIM column of the table, it appears that the
structural control of the generated images with the subsequent segmentation network
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is quite useful, and Net3 achieves an SSIM increase of 0.026 compared to Net2. The
ablation experiment shown in Figure 15 compares the effects of different networks on
low-light image enhancement. Net2’s brightness equalization branch helps to balance
the image’s brightness enhancement, avoiding the problem of local brightness being too
high or too low and the problem of overexposure or underexposure. Net3’s similarity
discrimination branch helps to segment the local details more finely. The results of the
ablation experiments visually demonstrate the effectiveness of each part of our low-light
image enhancement algorithm.

4.4. Comparison Experiment of Semantic Segmentation Algorithm

In order to verify the effectiveness of our segmentation algorithm in multiple scenes
in low-light environments, we compare PSPNet [22], HRNet [19], Deeplab v3+ [10], Seg-
Net [35], SW-Trans [21], and HRFormer [20] with our algorithm on the self-built test set.
Quantitative comparison results on test images in the daytime are shown in Table 5. We
use Mean Intersection over Union (mIoU) as the primary evaluation criterion. At the same
time, Floating Point Operations (FLOPs), parameter amount (Params), and detection time
(T) are considered as auxiliary evaluation indicators.

Table 5. Comparison of experimental results of segmentation networks.

Networks mIoU/% FLOPs/G Params/M T/ms

PSPNet [22] 90.12 300.3 68.0 89.90
HRNet [19] 90.83 110.2 65.9 54.46

Deeplab v3+ [10] 90.34 298.1 62.6 89.57
SegNet [35] 88.91 35.8 29.0 31.04

SW-Trans [21] 91.97 97.9 59.9 51.33
HRFormer [20] 92.08 74.4 43.2 44.75

Ours 92.93 125.7 63.4 58.16

The pooling operation of PSPNet can lead to the loss of local features between layers,
which negatively affects its ability to identify the edges of smoke. SegNet eliminates the
fully connected layer and uses pooled indexes to replace feature map concatenating opera-
tions, which significantly reduces the number of network operations. Although SegNet
achieved a segmentation accuracy of 88.91%, it is the fastest in comparison experiments.
Deeplab v3+ uses the Atrous Spatial Pyramid Pooling (ASPP) module to fuse multi-scale
features. However, atrous convolution introduces many background contexts while ex-
panding the receptive field. It is unsuitable for smoke, whose texture features will be
greatly affected by background information. Therefore, the improvement in segmentation
accuracy brought by ASPP modules is not apparent. Additionally, the computational cost
of Deeplab v3+ has increased significantly due to the use of the Xception modules instead
of ResNet-101, which results in a slower segmentation speed than other CNN models.
HRNet is more effective for smoke segmentation than other CNN models, achieving an
mIoU of 90.83%. The better performance indicates that using multiple resolution branches
for parallel feature extraction for smoke is effective.

SW-Trans and HRFormer achieve higher segmentation accuracy than the CNN models,
which indicates that in the segmentation task for smoke, better global feature extraction
ability can bring higher segmentation performance. By introducing Window-based Multi-
Head Self-Attention (W-MSA) into the self-attention stage, the calculation is limited to
a small scale, and the calculation complexity of the model is effectively controlled while
introducing the CNN effect locally. HRFormer uses 3 × 3 depth-wise convolution at the
window’s interaction, while SW-Trans moves the windows by the masks and feature shift
operations, making its Transformer blocks more computationally intensive than HRFormer.
However, HRFormer still acquires higher segmentation accuracy than SW-Trans because the
medium and low-resolution branches supplemented the semantic information of different
scales for high-resolution streams.
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According to Table 5, our segmentation network has demonstrated a remarkable
accuracy of 92.93% on our self-built smoke dataset, outperforming all the other algorithms.
In order to further enhance the accuracy, we incorporate LSAM and GCAM attention
modules into Transformer blocks, allowing us to extract smoke features. Additionally, we
enhance the smoke foreground areas to better differentiate texture from the background in
thinner areas of the smoke edges. These improvements enable us to achieve a significantly
higher segmentation accuracy than HRFormer.

Since our segmentation model modified the Transformer blocks and added a fore-
ground enhancement module after the feature extraction, our model’s complexity is higher
than that of SW-Trans and HRFormer, leading to a decline in speed. Nevertheless, our
segmentation network still holds practical value at the application level, particularly in
situations where real-time demands are not excessive.

The segmentation results of the classical segmentation algorithms and ours on the
images of daytime are shown in Figure 16.

Figure 16. Examples of segmentation results of the images in the daytime.

As mentioned earlier, PSPNet has difficulties with identifying the background near
the edges of smoke, as seen in too many smoke areas in the first, second, and third rows.
On the other hand, SegNet performs worse in segmentation, with more non-smoke areas
being divided in the segmentation results and the outline being too smooth in the first,
fourth, and fifth rows. Moreover, there are isolated misjudgment segmentation areas in the
second row. Compared with the previous two algorithms, Deeplab v3+ has improved its
segmentation ability on smoke, reflected in the noticeable improvement in the second and
fifth rows. However, Deeplab v3+ still has problems accurately recognizing some detailed
texture information. Finally, HRNet achieves better segmentation results than other CNN
models. However, due to its focus on local feature information, it may divide thin areas
around smoke into more extensive ranges, such as the left area of the third row.

Due to their exceptional global feature extraction capabilities, SW-Trans and HRFormer
have significantly improved segmentation effects for large-scale smoke compared with
CNN models. However, in the second row, the foreground target becomes muddled with
background information, leading to poor segmentation effects. Some of the bright window
areas near the smoke become erroneously classified as smoke targets. Our segmentation
algorithm incorporates a foreground feature localization module, which enhances the seg-
mentation accuracy of smoke by highlighting foreground pixels. With this, our algorithm
achieves superior segmentation results on the smoke in the second row and other smoke
images, with results that come close to the ground truth.

To verify the effectiveness and generalization of our segmentation network and prove
that it surpasses other existing algorithms considering segmentation performance, we con-
duct a comparison experiment using the public dataset [36] proposed by Bilkent University.
We compared our segmentation network with three smoke segmentation algorithms [37–39],
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which perform well on daytime smoke datasets. The results of the comparison segmenta-
tion are presented in Figure 17.

Figure 17. Examples of segmentation results on the public datasets.

AOSVSSNet [37] introduces a new plug-and-play Convolutional Block Attention
Module (CBAM) based on the U-Net++ [40] network. The new module focuses more on the
spatial location information of smoke areas, which results in improved segmentation results
for smoke areas with high concentrations, such as the source areas in the second and third
rows. However, the CBAM and improved loss function introduced by AOSVSSNet tend to
focus more on the global location information of smoke rather than local characteristics.
Therefore, AOSVSSNet is more suitable for optical satellite smoke images than rarefied
ones and has poor segmentation results for thin smoke areas.

CGRNet [38] designs attention convolution modules based on Gated Recurrent Units
(GRUs) to identify spatial correlation and global context dependence of smoke. Addition-
ally, the Multi-scale Context Contrasted Local (MCCL) calculates the difference of smoke
features at different resolutions to enhance the model’s ability to segment small-scale smoke.
The results of smoke segmentation on the public dataset show that CGRNet outperforms
AOSVSSNet regarding the segmentation effect on the second and third rows of small
targets and the first and fourth rows of the thin smoke boundary. In the fifth row especially,
CGRNet has no false division for the light area. However, in the classification of the location
of smoke in the second and third rows, AOSVSSNet performs better than CGRNet. Overall,
CGRNet has shown significant improvements in smoke segmentation.

According to Ref. [39], the W-Net architecture utilizes multiple asymmetric encoder–
decoder structures to create a waveform structure. The semantic information of images
is mainly contained in the trough position, while the peak position contains local and
mesoscale information. The use of skip connections between the peak and trough positions
and the decoding layers enhances the accuracy of smoke segmentation. However, since
W-Net adopts an upsampling and downsampling path similar to U-Net, the details lost
in pooling operations are difficult to recover. W-Net divides excessive smoke areas in the
first and fourth rows, which are highly diffuse smoke images, and misjudges the smoke
in the second, third, fourth, and fifth rows. Overall, the segmentation effect of W-Net is
relatively poor.
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As shown in the results of comparison experiments, our smoke segmentation network
is highly effective in identifying the edges of smoke with high concentrations. Moreover, it
can accurately distinguish the background information from the smoke characteristics in the
thin smoke areas. In particular, our algorithm can delineate clear smoke boundaries for the
first row. For the second and third rows, which involve small-scale and high-concentration
smoke targets, our algorithm performs better than Refs. [37–39]. Although our network
has a small-scale misjudgment in the fourth row, our algorithm correctly judges the light
in the fifth row to the background. These results demonstrate the generalization ability
and practicality in multiple scenes of our segmentation algorithm, as well as its superior
performance compared to other smoke segmentation algorithms.

4.5. Ablation Experiments of Semantic Segmentation Algorithm

In order to assess the contributions of the modules to performance improvement, we
perform ablation experiments on each module on our synthetic self-built dataset. The
ablation modules consist of the Transformer blocks with W-MSA and SW-MSA, the LSAM
and GCAM, Dense PPM with feature fusion between branches of different resolutions,
and FFLM after the feature extraction network. Table 6 presents the results of the ablation
experiment, providing valuable insights into the functioning of our network.

Table 6. Ablation experimental results of our smoke segmentation algorithm.

Networks W-MSA and SW-MSA LSAM and GCAM Dense PPM FFLM mIoU/% FLOPs/G T/ms

HRNet* X X X 91.35 196.5 72.72
Net1 90.41 85.1 47.86
Net2 X 91.19 65.7 42.05
Net3 X X 91.81 79.3 46.20
Net4 X X X 92.26 90.6 49.38

Net5/Ours X X X X 92.93 125.7 58.16

In Table 6, the row of HRNet* represents the original HRNet with modified LSAM
and GCAM, the same Dense PPM after each stage, and FFLM after segmentation. Net1 is
a modified version of HRNet with reduced convolutional modules in each branch. Net2
replaces the convolutional units in Net1 with Transformer blocks. Net3 adds LSAM and
GCAM to the Transformer blocks in Net2. Net4 is based on Net3 but with a different feature
fusion method using Dense PPM. Finally, Net5 is our proposed segmentation network,
which combines all the modifications made in the previous rows. X in the table indicates
that the module is selected.

The comparisons between the mIoU of 90.83% with the detection time of 54.46 ms
of HRNet in Table 5 and Net1 in Table 6 indicate that reducing the number of feature
extraction units of each branch can decrease the complexity and calculation scale while
still improving the accuracy. The comparison results between Net2 and Net1 and between
HRNet* and Net5 indicate that the convolution modules containing W-MSA and SW-MSA
can reduce the computational scale and improve the segmentation performance of the
network. These results also demonstrate that the better the global feature extraction ability
of the model, the better the ability to segment smoke will be.

Based on the comparison of Net3 and Net2, adding LSAM and GCAM resulted in
an increase of 13.6 G FLOPs and a 0.62% improvement in segmentation accuracy, which
proves that GCAM and LSAM can reduce feature loss and suppress irrelevant feature
information related to smoke. Furthermore, the integration of Dense PPM contributes
to more efficient incorporation of smoke features at different resolutions, resulting in a
0.45% improvement in segmentation accuracy between Net3 and Net4. On the other hand,
FFLM can attenuate the influence of background information on the extraction process of
smoke features, particularly in the thin positions of smoke where texture and background
information can be easily confused. The data in Table 6 also support the effectiveness of
FFLM, as Net5 shows a 0.67% improvement in segmentation accuracy compared to Net4.
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Our modifications to HRNet can improve the segmentation accuracy of smoke without
causing a significant increase in network computation. Our network can still meet the
actual detection requirements. The comparison results of the ablation experiment are
shown in Figure 18.

Figure 18. Examples of the ablation experimental results.

As shown in Figure 18, the smoke segmentation performance of Net5 is superior
to that of HRNet*. Specifically, Net5 achieves more accurate segmentation results with
fewer smoke edge miscalculations, as evidenced by the results of the third and fourth
rows. Moreover, compared to Net2, Net3 exhibits better segmentation performance in
regions with high smoke concentrations, such as the lower areas of the first and fifth rows.
By incorporating FFLM, Net5 can more effectively differentiate between the thin edges
of smoke and background information, as demonstrated in the first, third, and fourth
rows. Our ablation experiment confirms the efficacy of our modifications for improving
smoke segmentation.

4.6. Enhancement Segmentation Experiments

In order to accurately segment low-light smoke, our segmentation network needs
to be highly precise when enhancing smoke images. We test our semantic segmentation
algorithm on enhanced smoke images acquired in Section 4.2. The results are presented
in Table 7, where the T/ms column represents the overall detection time achieved after
we cascade the image enhancement network and the smoke segmentation network. The
partial segmentation results are shown in Figure 19.

Table 7. Comparison of experimental results of our cascaded enhancement segmentation network.

Networks mIoU/% T/ms

PSPNet [22] 89.32 153.94
HRNet [19] 90.27 118.45

Deeplab v3+ [10] 89.71 153.50
SegNet [35] 88.09 94.11

SW-Trans [21] 90.24 112.89
HRFormer [20] 91.05 107.58

Ours 91.86 120.10
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Figure 19. Examples of the comparison experimental results of our cascaded enhancement segmenta-
tion network.

The above results show that our algorithm performs better than other networks in
the low-light smoke image segmentation task. For the image in the first row, PSPNet and
SegNet misjudge the tree area in the upper right corner and do not accurately divide the
smoke boundary, which is confused with the background information. Similarly, for the
fourth-row image, SegNet and PSPNet have connectivity of smoke segmentation and are
unable to distinguish between the background area and smoke. HRNet and Deeplab v3+
divide too few or too many smoke areas for highly diffuse smoke in the fifth row, indicating
a low ability to distinguish between texture features and background information around
edges. Our algorithm achieves superior segmentation results for the smoke images in the
second, third, and sixth rows compared to SW-Trans and HRFormer.

In summary, our method can accurately segment smoke areas in daytime images
and provide exceptional segmentation performance for low-light images enhanced by
our enhancement network. While our approach has slightly increased detection time due
to the complexity of the model, it still meets low-light smoke segmentation and alarm
requirements in scenes that do not require high real-time performance.

To evaluate the efficacy of our approach in real low-light environments, we perform
enhancement and segmentation of low-light smoke images in real nighttime environments.
The results are shown in Figure 20.

Since low-light images in real-world scenes are different from synthetic low-light ones,
the characteristics of non-smoke objects are unclear. As a result, our enhancement network
is more capable of recovering smoke features, while non-smoke areas still show unknown
black features like the original images. The results indicate that our enhancement network
can effectively restore the smoke features in low-light images, and our segmentation model
can complete the segmentation task of the enhanced images. Therefore, our proposed
method is highly effective and practical in restoring smoke features and segmenting smoke
areas in low-light images.
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Figure 20. Examples of enhancement segmentation results on real low-light images.

5. Conclusions

We propose a low-light smoke image segmentation method utilizing a cascaded image
enhancement algorithm with a semantic segmentation algorithm. The method shows
excellent performance in accurately segmenting smoke images in low-light environments.
To address the challenge of unclear smoke features in low-light environments, we propose
a low-light smoke image enhancement network based on CycleGAN. Furthermore, we pro-
pose a multi-scale smoke semantic segmentation network based on HRNet and HRFormer
to segment smoke areas in enhanced images accurately. Through a series of experiments,
our method’s ability to effectively complete the segmentation task of smoke in low-light
environments is proven.

In addition, the real images collected at nighttime have unclear color information,
making many details difficult to recover. Therefore, improving the suppression ability of
irrelevant information in the semantic segmentation algorithm will be the direction of our
research in the future.
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Abbreviations

The following abbreviations are used in this manuscript:
CycleGAN Cycle-Consistent Generative Adversarial Network
CNN Convolutional Neural Network
PReLU Parametric Rectified Linear Unit
MSE Mean Squared Error
SSIM Structure Similarity Index Measure
SW-MSA Shifted Window-based Multi-Head Self-Attention
MLP Multi-Layer Perception
LSAM Local Spatial Attention Module
GCAM Global Channel Attention Module
GELU Gaussian Error Linear Unit
BN Batch Normalization
PPM Pyramid Pooling Module
FFLM Foreground Feature Localization Module
ReLUs Rectified Linear Units
SKLFS State Key Laboratory of Fire Science
SNR Signal Noise Ratio
PSNR Peak Signal Noise Ratio
mIoU Mean Intersection over Union
FLOPs Floating Point Operations
Params Parameter amount
T Detection time
ASPP Atrous Spatial Pyramid Pooling
W-MSA Window-based Multi-Head Self-Attention
CBAM Convolutional Block Attention Module
GRU Gated Recurrent Unit
MCCL Multi-Scale Context Contrasted Local
SW-Trans Swin Transformer
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