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Abstract: To reduce the thermal runaway risk of lithium-ion batteries, a good thermal management
system is critically required. As phase change materials can absorb a lot of heat without the need
for extra equipment, they are employed in the thermal management of batteries. The thermal
management of a Sanyo 26,650 battery was studied in this work by using different composite
phase change materials (CPCMs) at different charge–discharge rates. The thorough analysis on the
thermal conductivity of CPCMs and the effect of CPCMs was conducted on the maximum surface
temperature while charging and discharging. The findings demonstrate the ability of the composite
thermal conductivity filler to increase thermal conductivity. It is increased to 1.307 W/(m K) as
the ratio of silica and graphene is 1:1 (CPCM-3). The CPCMs can reduce the surface temperature
of the cell, and the cooling effect of CPCM-3 is the most obvious, which can reduce the maximum
temperature of the cell surface by 13.7 ◦C and 19 ◦C under 2 C and 3 C conditions. It is also found that
the risk of thermal runaway of batteries under CPCMs thermal management is effectively reduced,
ensuring the safe operation of the battery. This research can assist in the safe application of batteries
and the development of new energy sources.

Keywords: lithium-ion battery; thermal runaway risk; safety; composite phase change material;
temperature

1. Introduction

The carbon peaking and carbon neutrality goals in China promote a low-carbon, eco-
friendly and green way of living. In this context, it is of great significance to vigorously
develop renewable energy. Lithium-ion batteries (LIBs) have received extensive attention
and development in the past decade due to their high energy density, long cycle life and
high efficiency [1]. Although local overheating may increase the risk of thermal runaway,
the performance of LIBs is directly correlated with its operating temperature. The safe
operation of grid-side energy storage power stations requires better management of densely
arranged LIB packs in order to avoid the risk of thermal runaway and fires [2,3]. Therefore,
to guarantee the operation’s safety and the good charge and discharge performance of the
LIB, it is essential to utilize the battery thermal management system to make the battery
pack work effectively [4].

Battery thermal management cooling technologies are mainly divided into air cooling,
liquid cooling and phase change cooling [5,6]. Qian et al. [7] improved the cooling perfor-
mance by increasing the battery separation. The cell spacing distribution for the battery
pack was designed using this optimization approach, which was effective and time-saving.
However, due to the characteristics of the air itself, its cooling effect had certain limita-
tions [8]. Amalesh et al. [9] found that the cooling effect was better than that of the straight
rectangle, and the zigzag and circular channels performed better. Liquid cooling also
exhibits better cooling effects due to the higher thermal conductivity of liquids. However,
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the danger of liquid leaking is one drawback of the liquid cooling method, along with
complicated system manufacturing, and the need for additional power consumption [10].
Phase change cooling uses phase change materials (PCM) to absorb a large amount of
latent heat, and its temperature change is small. Compared with other cooling systems, it
has the advantages of simple structure and low cost [11,12]. In order to create composite
phase change material (CPCM), Abu-Hamdeh et al. [13] added two different thermally
conductive fillers, graphene and graphene oxide, to paraffin. It was found that the addition
of the two materials would improve the thermal conductivity, and the properties exhibited
by graphene more excellent. Yang et al. [14] prepared a thermally CPCM with segregated
structure by hot-pressing paraffin and graphene microencapsulated phase change materials
(MEPCMs). Saydam et al. [15] studied the long-term thermal stability of PCMs by adding
multi-walled carbon nanotubes, graphene nanosheets and alumina nanoparticles to paraf-
fin. Their results showed that different nanoparticles had little effect on long-term thermal
stability. Guo et al. [16] developed a silicone rubber/paraffin wax and silica CPCM through
microcapsules. The results showed that the addition of silica was helpful to enhance the
thermal and mechanical characteristics of the PCM. Jilte et al. [17] adjusted the PCM layout
and used the natural or forced convection of the air around the PCM to minimize the
battery pack’s maximum temperature, and the range of its typical temperatures was less
than 0.12 ◦C at 4 C. Cao et al. [18] mixed paraffin wax, styrene-ethylene-butylene-styrene
and hexagonal boron nitride to prepare a CPCM with good flexibility, high electrical insula-
tion and high thermal conductivity. Previous work has made a lot of progress in adding
high thermal conductivity fillers to enhance the performance of PCMs, mainly through
research into adding different types of thermal conductivity fillers, and has found the
optimal material to improve the performance of phase change materials. However, the
synergistic effect of multiple thermally conductive fillers on enhancing the performance of
PCMs still needs further research.

On the other hand, LIBs’ thermal runaway and fire accidents have occurred frequently.
LIBs are very likely to experience thermal runaway under conditions of thermal abuse,
mechanical abuse and electrical abuse, including short circuit, overcharge, over discharge,
acupuncture, collision, etc. [19]. In a large battery system, LIBs are densely arranged; this
is likely to cause the surrounding batteries to continue to go out of control after a single
battery is in thermal runaway and eventually cause a serious fire or even an explosion.
Therefore, the prevention technology for thermal runaway risk of LIBs research was carried
out at this stage. One such study was on LIB materials, including the thermal stability of
the positive electrode material and separator, the reactivity between the positive electrode
material and the electrolyte, the combustion characteristics of the electrolyte itself, etc., and
it provided relevant basic data for the safety research and development of LIBs [20–22].
Some researchers conducted the studies on the causes and extension mechanism of thermal
runaway of batteries, the critical conditions of thermal runaway propagation and their
fire characteristics, and revealed the law of thermal runaway propagation [23,24]. Other
research has been used to evaluate the fire risk of LIBs, establish thermal runaway critical
criteria and provide a scientific basis for fire protection layout planning and resource alloca-
tion for battery applications [25,26]. The safety monitoring and early warning technology
were conducted for the real-time online monitoring of batteries, modules, etc., and the
change rules of key factors such as voltage, temperature, characteristic gas and smoke are
used to provide early warning and graded warning of thermal runaway [27,28]. In this way,
countermeasures can be taken in the early stages of the abnormal situation of the LIB so as
to stop or slow down the abnormal temperature rise and prevent the occurrence of thermal
runaway. The above research had a good effect on the safety protection of LIBs and the pre-
vention of thermal runaway risks, though the technology still needs further development.
To this end, CPCMs have a good heat dissipation effect, and the prevention technology of
thermal runaway risk with CPCMs can be used as an important development direction.

In this paper, EG, Kaolin, Graphene and Silicon dioxide were used as additives
in the research and development of CPCMs, which effectively improved the thermal
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conductivity of PCM and then improved their effect in battery thermal management
applications. Temperature analyses were used to show more quantitatively how CPCMs
can reduce the risk of thermal runaway. This data of this work could provide a basis
for the risk prevention and control of thermal runaway of LIBs in electrochemical energy
storage systems.

2. Experimental Section
2.1. Materials

Paraffin (PA) has the advantages of large latent heat, suitable phase change tempera-
ture, stable chemical properties, non-toxic, non-corrosive, no overcooling and cheap price
and is suitable for the thermal management of LIBs. Hebei Haoyu New Energy Technology
Co., Ltd., Cangzhou, China, provided the PA, which has a 210 J g−1 latent heat and a
46.0 ◦C melting point. A 99% pure expanded graphite (EG), which was used as the main
supporting material, was bought from Tengshengda Carbon Machinery Co., Ltd., Qingdao,
China. The silicon dioxide with the advantages of non-toxic, non-corrosion, high thermal
conductivity and stable chemical performance was acquired from Nanjing Baoket New
Material Co., Ltd., Nanjing, China, and kaolin originated in Shandong West Asia Chemical
Industrial Co., Ltd., Linyi, China. The Jingrui Alloy Products Co., Ltd., Nangong City,
China provided the few-layer graphene. The type of battery used in the experiment is
a 26,650 LIB (Sanyo MH12210 26650A) produced by Sanyo Company with a capacity of
5000 mAh.

2.2. The Preparation of CPCMs

In this paper, the EG and kaolin are selected to support the PCM of PA, and silica and
graphene are used as thermally conductive fillers to improve thermal conductivity. In order
to ensure the good performance of the materials, the EG is placed in the oven for 24 h before
the experiments. The quantitative PA is weighed and placed in a constant temperature box
at 100 ◦C for one hour, then placed on a magnetic stirrer heated by an oil bath at 90 ◦C.
EG and kaolin are added for evenly stirring, and graphene or silicon dioxide is added to
be fully stirred. The CPCMs are obtained after standing still for 24 h. Through the above
preparation method, CPCMs with different proportions of thermally conductive fillers are
prepared, as shown in Figure 1. Table 1 presents the composition ratio and naming rules of
the CPCMs.
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Table 1. Composition ratio of composite phase change materials.

Samples PA EG Kaolin Graphene Silicon Dioxide

CPCM-1 75% 7% 3% 0% 15%
CPCM-2 75% 7% 3% 5% 10%
CPCM-3 75% 7% 3% 7.5% 7.5%
CPCM-4 75% 7% 3% 10% 5%
CPCM-5 75% 7% 3% 15% 0%

2.3. Sample Tests
2.3.1. XRD

The CPCMs were tested and analyzed by Rigaku’s Ultima IV X-ray diffractometer
(XRD). The tests were carried out on a copper target with a voltage of 40 kV, a current
of 40 mA, a temperature range of 10–60 ◦C and a speed of 5 ◦C/min. By contrasting the
diffraction peak regions between the reference picture and the scanned sample, the content
ratio of each component and whether new substances are formed can be obtained.

2.3.2. Thermal Conductivity

The thermal conductivities of CPCMs were evaluated using the DRE-III multipurpose
fast thermal conductivity tester provided by Xiangyi Instrument Co., Ltd., Xiangtan, China,
as show in Figure 2a. This series of thermal conductivity meters uses the transient plane
heat source method to measure the thermal conductivity of samples. The principle is
based on the step in the infinite medium transient temperature response from a heated
disc-shaped heat source. Using a tablet press, the produced samples were compressed
into two samples, each measuring 40 mm in diameter and 8 mm in thickness. During the
measurement, we clamped two samples and completely covered the thermal conductivity
meter’s hot wire for its temperature sensor, placed them in an incubator and started the
test when there was a temperature differential of less than 0.01 K between the test sample
and the hot wire. Each sample was measured six times, with the average value being used
to decrease error.
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2.3.3. Battery Thermal Performance Test

The Sanyo 26,650 LIB was charged and discharged once before this experiment and
then left for 24 h to stabilize its performance. As shown in Figure 2b, the CPCMs were filled
around the battery. The middle surface of LIB was where the thermocouple was affixed, and
the CPCM powder was fixed with a PVC tube to conduct the charge–discharge experiment.
The experimental process carried out at room temperature is also presented in Figure 2b.
The cycle was carried out by an instrument for charging and discharging (offered by
Shenzhen Neware Electronics Co., Ltd., Shenzhen, China (Model: CT-4008-10V20A-NA)).
The temperature data of the thermocouple were recorded by a data acquisition instrument
provided by National Instruments (Model: NI-9217). The design rates were intended to
make the LIB discharge at 1 C, 2 C and 3 C. During the experiment, the lower limit of the
safety protection voltage for discharging of the battery was set to 2.75 V, and the upper
limit of the voltage was set to 4.3 V. The specific charging and discharging test conditions
of the battery are shown in Table 2.

Table 2. Charging and discharging test conditions of lithium-ion batteries.

Steps Operation Process

1 Constant current discharge Discharge cut-off voltage 2.75 V, current
5 A/10 A/15A

2 Set aside 5 min

3 Constant current constant voltage charge Charge voltage 4.2 V, current 5 A, cut-off
current 0.05 A

4 Set aside 5 min
5 Cycle 1 time

3. Results and Discussions
3.1. Properties of CPCMs
3.1.1. XRD

The XRD pattern in Figure 3 shows that the diffraction peaks related to PA appear at
10.79◦, 12.94◦, 17.3◦, 21.48◦ and 23.76◦, and there is an obvious diffraction peak at 26.51◦

for EG and graphene. Silica has no obvious peak, and kaolin has a peak at 32.7◦. The
diffraction peak for CPCM-1 on the XRD curve is located at the same 2-Theta value as
for PA and EG. It is discovered that CPCM-1 does not have a new peak, although the
diffraction intensity is different. Similar to the EG peak, graphene exhibits a significant
diffraction peak around 26.5◦. Although the thermal conductive materials of other CPCMs
are not the same as those of CPCM-1, the diffraction peaks’ locations on the CPCMs’ XRD
curves are consistent, and no new peaks appear. The CPCMs have different diffraction
peaks at 26.51◦ due to the difference in the amount of graphene added, and the addition
ratio of graphene is reflected on the side. Analysis of the XRD pattern shows that PA/EG
is only physically combined with silica and graphene, rather than via a chemical reaction,
and the structure of the synthesized CPCMs is relatively stable.

3.1.2. Thermal Conductivity

As shown in Figure 4, the CPCMs have different thermal conductivities. The tested
thermal conductivity of CPCM-1 with silica added and CPCM-5 with graphene are
1.132 W/(m K) and 1.131 W/(m K), respectively, which are 325.5% and 325.1% higher
than those of pure paraffin. Comparing CPCM-1 and CPCM-5, the thermal conductivity of
silica-based CPCM composites is not much different from that of graphene-based CPCM
composites. The CPCMs made of silica/graphene (CPCM-2, CPCM-3 and CPCM-4) have
thermal conductivities of 1.188 W/(m K), 1.307 W/(m K) and 1.224 W/(m K), respectively.
It has been discovered that adding hybrid thermally conductive fillers helps to increase
thermal conductivity. The thermal conductivity is the largest when the mass ratio of silica
and graphene is 1:1, reaching 1.307 W/(m K), which is 391.3% superior to that of pure
paraffin wax. This is because adding only one thermally conductive filler makes it simple
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for particles to collect and distribute unevenly across the surface of the material, and the
hybrid thermally conductive filler can improve the thermal conduction channel by reduc-
ing flaws and expanding the PA/EG contact area, thereby improving the performance of
the CPCMs.
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3.2. Battery Cycle Performances

Figure 5 is a graph corresponding to the change of current and voltage during the 1 C
charging and discharging. The battery charge and discharge status can be clearly observed
from the figure. The battery should be put on hold for 5 min to ensure that the current and
voltage are stable. Then, it is discharged at a constant current. When the voltage drops
to 2.75 V, it should be put on hold for another 5 min. It is charged subsequently with a
constant current until the battery voltage is 4.2 V. It is then switched to constant voltage
charging, and charging ceased when the current was less than 0.05 A. It can be seen from
the voltage and current diagram that the LIB is basically stable during normal use. The
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follow-up experiments can better discover the effect of temperature on its charge–discharge
performance’s and the role of CPCMs.
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The two principal heat generating sources used in the charging and discharging of
LIBs to increase the temperature of the battery are the heat released by the Joule effect (from
the resistance of charge transfer in the battery) and the heat released by the electrochemical
reactions. Macroscopically, the battery has exothermic discharging and endothermic charg-
ing, and there is a rise first and then a fall in the temperature curve. When the temperature
is too high, there may be uneven temperature distribution inside the battery, resulting in
battery damage or thermal runaway. The optimal temperature of the battery under normal
applications is between 15–35 ◦C. When it is lower than 15 ◦C, the battery capacity and
performance will decrease. An irreversible reaction will occur and the battery life will be
reduced when the temperature exceeds 35 ◦C [4]. The battery cycle performances test under
natural convection is a control test, which will be used to compare and observe the cooling
effect of adding CPCMs. Figure 6 shows the temperature changes of 1 C, 2 C and 3 C of the
26,650 LIB without adding CPCMs. All experiments are carried out in a constant current
discharge experiment of different discharge rates on the single battery at an ambient tem-
perature of 25 ◦C, and the temperature changes of the battery are observed and analyzed.
As shown in Figure 6, under three different discharge rates, the battery temperature rises
rapidly at the initial stage of discharge, mainly due to the large internal resistance of the
battery and more heat generation. The battery temperature is relatively flat and shows a
steady upward trend in the middle of discharge. During the ending part of discharge, the
battery temperature increases quickly, and as the discharge process progresses, the curve’s
slope likewise has huge differences. When the battery discharge rate is 1 C, the maximum
temperature reaches 39.2 ◦C, the maximum temperature is 62.6 ◦C at 2 C discharged, and
the maximum temperature reaches 81.6 ◦C at 3 C discharged. The faster discharged battery
has the higher maximum surface temperature, and the highest surface temperature of the
3 C discharged cell is 42.4 ◦C higher than that of the 1 C discharged battery.
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3.3. Prevention Technology of Thermal Runaway Risk with CPCMs
3.3.1. Cooling Effects

The surface temperatures of the LIB with CPCMs of different proportions in the
discharge process were tested experimentally. By observing the temperature rise curves
of the battery under several working conditions, the cooling effects of the CPCMs on the
battery can be found. Figure 7a shows the temperature changes of the LIB wrapped by
CPCMs during 1 C discharge. The No-PCM test represents the working condition of the
LIB without adding any CPCMs in the constant temperature box, which is used as the
control group for all the experiments. The results show that the maximum temperature of
the LIB at 1 C discharging is 39.2 ◦C without adding CPCMs. After adding the CPCMs, its
maximum temperature distribution is between 36 and 37.2 ◦C. The heat absorbed by the
CPCMs is normally distributed at different temperatures, and the heat absorption reaches
the maximum near the melting point. The melting points of the CPCMs are around 46 ◦C,
which is higher than the maximum temperatures at 1 C discharging. Therefore, under
the condition of 1 C, the surface temperature of the battery does not exceed the suitable
temperature for battery operation, and the CPCMs does not show excellent cooling effects.
Figure 7b shows the temperature changes of the LIB wrapped with different CPCMs during
2 C discharging. It is found that the maximum temperature of the LIB is 62.6 ◦C without
adding CPCMs, and the maximum temperature of the battery can be reduced to 48.9 ◦C
after adding CPCMs. When CPCM-1 is added, the highest temperature is 55.7 ◦C, which is
6.9 ◦C lower than that of the control group (No-PCM test). When CPCM-3 is added, the
battery’s highest temperature is the lowest at 48.9 ◦C, which is 6.8 ◦C lower than that of
CPCM-1 and 13.7 ◦C lower than that of the control group. In the 2 C working condition,
the battery surface temperature exceeds the melting point of the CPCMs, and the CPCMs
can absorb more heat to exert its cooling effect. Therefore, the cooling effect of adding
CPCMs can be expressed from the temperature difference, among which CPCM-3 has the
best cooling effect. Figure 7c shows the temperature changes of the LIB wrapped with
different CPCMs during 3 C discharging. It is found that the maximum temperature of
the LIB is as high as 81.6 ◦C without the addition of CPCMs. At this time, the long-time
usage of LIBs already has a certain risk of thermal runaway. After adding the CPCMs, the
maximum temperature of the battery can be reduced to 63.6 ◦C. When CPCM-5 is added,
the maximum temperature is 69.1 ◦C, which is 12.5 ◦C lower than that of the control group
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(No-PCM test). When CPCM-3 is added, the battery’s highest temperature is 63.6 ◦C, which
is 5.5 ◦C lower than that of CPCM-5 and 18 ◦C lower than that of the control group. The
cooling effect under the condition of adding phase change materials is more obvious, which
is the same as that of 2 C, and CPCM-3 has the best cooling effect.
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Figure 8 selects a part of the temperature rise to analyze the change law of the tem-
perature rise rate during the LIB discharge process. Comparing these three sets of curves,
it can be clearly found that the temperature rise rates during the LIB discharge process
grow when the discharge rate is added. Nonetheless, the impact of the discharge rate on
the peak temperature rise rate is not obvious, and the peak temperature rise rates in the
three sets of data are all around 400 s. The common feature of the three clusters of curves
is that the temperature rise rate is relatively large at the beginning of the discharge, and
after reaching the peak value, the heat accumulation and release gradually decreases as
the discharge continues and the process is carried out. In the case of 3 C discharging, the
temperature rise rate will increase again in the second half, but the increase rate is small.
In the case of 1 C discharging, the temperature rise rate of the battery can reach up to
0.01 ◦Cs−1, and in the case of 2 C discharging, it is about 0.03 ◦Cs−1. The temperature
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rise rate and peak value in the case of 3 C discharging are more obvious, and the peak
value can reach about 0.06 ◦Cs−1, which is six times that in the case of 1 C discharging.
Excessive battery temperature and temperature rise rates are likely to trigger the reaction
inside the battery, causing the battery to enter a self-heating stage, which may further cause
thermal runaway. The temperature rise rate difference of different curves within a group
becomes obvious as the discharge rate increases. It shows that under the high discharge
rate, the difference of temperature rises and change of LIB is very significant. At the same
time, it can be found that the influence of CPCMs on the temperature increase is lower
than temperature rise rate. In the case of 1 C discharging, the temperature rise rate of the
working conditions with and without CPCMs basically remained at the same level. In
the case of 2 C discharging, the temperature rise rate with CPCMs is smaller than that
without CPCMs, and the temperature rise rate of CPCM-3 is the lowest. In the case of
3 C discharging, relatively large fluctuations occurred. However, it can be seen that the
temperature rise rate in the later period of the working condition without CPCMs is higher
than that of other working conditions.
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It has been founded that the cooling effect of CPCMs with a hybrid composite filler on a
battery will be more outstanding than one with a single filler when comparing the effects of
various CPCMs on the temperature and temperature rise rate of LIBs under the conditions
of 1 C, 2 C and 3 C discharging. Table 3 shows the temperature differences between the
maximum discharge temperature with the addition of CPCMs and the case without CPCMs
(test W). It can be found that the temperature difference of CPCM-3 at 1 C, 2 C and 3 C
reaches 3.2 ◦C, 13.7 ◦C and 19 ◦C, respectively. Compared with the CPCMs (CPCM-1 and
CPCM-5), the cooling effect of CPCM-3 under the three working conditions has been greatly
improved. CPCM-3’s cooling effect is also the most noticeable. According to the thermal
conductivity results of CPCMs, the compound addition of thermally conductive fillers
helps to enhance the surface heat transfer system of CPCMs, thereby improving thermal
conductivity. It can be concluded that the addition of the composite thermally conductive
filler will further increase the thermal conductivity of CPCMs and reduce the apparent
temperature. According to the research of Qu et al. [29], the addition of different thermally
conductive fillers can improve the overall performance of PCMs. In the comparison of
CPCMs prepared with different proportions of thermally conductive fillers, it can be found
that CPCM-3 has the best cooling effect, and the ratio of graphene and silicon dioxide
in CPCM-3 is 1:1. Therefore, when graphene and silicon dioxide are used as thermal
conductive fillers to improve the performance of PCMs, the ratio of 1:1 can achieve the
best effect.

Table 3. Temperature difference of adding CPCMs.

Tests
Temperature Difference with No-PCM Test/◦C

1 C 2 C 3 C

CPCM-1 2 6.9 13.7
CPCM-2 3.2 11.2 16.1
CPCM-3 3.2 13.7 19
CPCM-4 2.9 12.9 18.9
CPCM-5 2.6 11.2 12.5

3.3.2. Impact on Battery Performance

The factors of battery performance are significantly influenced by temperature, and
battery capacity, charge and discharge efficiency, etc., will vary greatly under different
temperatures. As an example, Figure 9a,b shows the LIB’s 2C-discharge working condition
voltage and current change curves. It can be seen that the battery under the action of
different CPCMs has almost the same performance. Under the action of variable materials,
the discharging time is slightly shortened. The main reason for this phenomenon is related
to the battery temperature during the charging and discharging process. When no CPCMs
are used, the highest temperature on the battery surface is 62.6 ◦C, while the normal
operating temperature of the battery is about 15–40 ◦C. As LIBs are being charged and
discharged, the transfer between lithium ions is achieved by the concentration gradient
difference inside the battery. In other words, when the battery temperature is too high, the
lithium-ion diffusion rate inside the battery is fast, and a lower concentration gradient is
required to meet the required flux, resulting in an increase in battery charge and discharge
time when working at a higher temperature. The use of CPCMs will reduce the cell
temperature during operation, reduce the cycle time, stabilize the performance and be
more conducive to ensuring the long-term operation of the battery. The battery’s surface
temperature has a bigger effect on performance the quicker the battery is charged and
discharged, and the addition of CPCMs will make the battery performance more stable.
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3.3.3. Thermal Runaway Risk Analysis

The heat source of LIBs in normal operation mainly comes from the reversible heat
generated by the electrochemical reaction and the irreversible heat generated by the
charge–discharge cycle [30]. As shown in Figure 10, the continuous accumulation of
heat during battery operation leads to a continuous rise in battery temperature, causing
battery damage and even thermal runaway. Ta is the temperature range in which the LIB
can be used normally. When the temperature exceeds Ta and reaches To, the battery is
overheated, and there is a risk of triggering thermal runaway. When this risk continues to
increase, the temperature reaches the critical temperature of thermal runaway, Tr, which
will inevitably lead to the occurrence of thermal runaway. LIBs usually start to self-heat
since their temperature comes to 80 ◦C, and the internal temperature of an LIB is too high
to cause exothermic chemical reactions inside the battery, including the decomposition of
the solid electrolyte interface film, the reaction of the negative electrode active material
and the electrolyte, the reaction between the active material and the binder, the oxidative
decomposition reaction of the electrolyte, etc. [31,32]. The addition of flame retardants in
the electrolyte of the LIB can ameliorate the thermal stability and reduce the risk of battery
thermal runaway from a certain point of view [33]. It is also mentioned in the study by
Börger et al. [34] that as the temperature reaches the threshold, the response rate rises as
a result of the rising temperature, and external methods to control the temperature rise
are no longer effective. This will cause thermal runaway to develop. Understanding the
risk of thermal runaway may be conducted more scientifically by defining several forms
of battery thermal runaway and examining the heat generation in LIBs. In the study by
Meng et al. [35], battery surface temperature and overheating are also important in thermal
runaway risk analysis methods (including fault tree analysis (FT) and dynamic Bayesian
network (DBN)). An overheated environment greatly increases the risk of thermal runaway.
Under the condition of 3 C in the experiment, the maximum surface temperature of the
battery reaches 81.6 ◦C. If the heat accumulation time is increased, it is easy to cause ther-
mal runaway of the battery. Therefore, applying an effective battery thermal management
(BTM) method such as CPCMs-based BTM during the process of battery temperature rising
can effectively reduce the possibility of battery overheating, thereby reducing the risk of
thermal runaway.
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Wang et al. [36] believe that when the maximum temperature of the battery exceeds
50 ◦C, the battery’s cycle life and charging efficiency will both be severely shortened. As a
result, the battery’s temperature must not exceed 50 ◦C. In the research of this paper, the
1 C discharge of the battery fully meets the requirements under the thermal management
of CPCMs, and CPCM-3 can meet the requirements under the condition of 2 C discharge.
In the previous LIB research on mechanical abuse by Ren et al., it was found that when
the battery temperature rises less than 30 ◦C, its thermal runaway risk score is 0, and the
risk level is 0–1. When the battery temperature rises in the range of 30–100 ◦C, the thermal
runaway risk score is 50, the risk level is 2–3 and thermal runaway will occur. When the
temperature rises above 100 ◦C in a short period of time, the thermal runaway risk score is
100, the risk level is 4–7 and there will be gas leakage, ejection, fire, explosion and other
behaviors [37]. According to the experiment in this paper, the ambient temperature of the
experiment is 25 ◦C. If the temperature rise should be controlled within 30 ◦C, the peak
temperature of the battery surface should be below 55 ◦C. From Figure 7, it can be found
that in the case of 1 C discharging, the highest temperature rise of all batteries is less than
55 ◦C, and the battery basically cannot experience thermal runaway. In the case of 2 C
discharging, the CPCMs can effectively control the surface temperature of the battery, the
maximum temperature of the battery is controlled from 62.6 ◦C to below 55 ◦C, and the risk
of thermal runaway is reduced from level 2–3 to level 0–1. In the case of 3 C discharging,
the highest temperature of the battery exceeds 80 ◦C, and the addition of CPCMs ensures
that the battery temperature is controlled between 60 ◦C and 70 ◦C. Wang et al.’s research
on the risk of thermal runaway of LIBs also maintained that the battery is at a very safe risk
level when the surface temperature of the battery is below 70 ◦C [25]. Therefore, the CPCMs
provided in this paper have a good inhibitory effect on the risk of battery thermal runaway.

The development of an emergency cooling system to lessen thermal overheating pro-
duced by the battery’s ongoing temperature rise is one of the finest ways to counteract and
avoid abnormal battery functioning. An emergency cooling system’s usual novel design
idea involves blasting or spraying a cooling medium onto the surface of a damaged battery
cell to absorb heat. The chance of achieving the thermal runaway initiation temperature
is diminished by the emergency cooling. In addition, this action also enables the thermal
shielding of other adjacent battery cells in the event of thermal overheating of a faulty cell
dissipating through radiated heat. To maximize the heat transfer capacity of the emergency
cooling system, the CPCMs with good cooling effects should be popularized and applied.

The generation of LIB thermal runaway will cause the temperature of the surrounding
batteries to rise, which will lead to the propagation of thermal runaway. This greatly
increases the fire risk of the entire battery system. Some researchers have also found that
the risk of spontaneous combustion of the entire battery pack system increases when the
number of batteries in the battery system increases and the heat dissipation methods cannot
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be effectively used [38]. The application of CPCMs can also provide assistance to the heat
management of the entire battery pack, thereby reducing the risk of the system. On the
other hand, researchers realize that PCMs can be improved to be flame retardant, thereby
inhibiting the spread of thermal runaway in battery packs [39,40]. This will also be the
research trend and focus of future work, using PCMs to reduce the risk of thermal runaway
propagation in LIB packs.

4. Conclusions

In this work, by analyzing the effect of PCMs with composite thermally conductive
fillers on the safety prevention and control of LIB thermal runaway risks, the following
conclusions are drawn:

(1) There are no new chemicals created throughout the synthesis process, and the XRD
diffraction peaks of CPCMs emerge at the same 2-Theta value as PA, EG and graphene;

(2) Compared with PA, the thermal conductivity of the CPCMs is greatly improved.
When the ratio of silica and graphene is 1:1, the thermal conductivity of the CPCM is
the largest, which is 1.307 W/(m K);

(3) CPCMs have a significant cooling effect on the thermal management of LIBs, and
the battery surface temperature and temperature rise rate are effectively reduced.
The cooling impact of CPCM-3 is the most pronounced of them. Compared with the
experimental group without CPCMs, the maximum temperature of the battery surface
decreased by 13.7 ◦C at 2 C discharging and decreased by 19 ◦C at 3 C discharging;

(4) CPCMs have little impact on the battery performance but can effectively reduce the
risk of thermal runaway and ensure its stable operation.

CPCMs can absorb a large amount of heat to reduce the surface temperature of the
battery, without requiring additional energy consumption to ensure that the battery is used
normally, and to improve battery safety. Therefore, it is worth continuing to study the
thermal runaway risk safety prevention and control application of large LIB packs under
the carbon peaking and carbon neutrality goals.
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