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Abstract: Wildland fires are one of the most dangerous natural risks, causing significant economic
damage and loss of lives worldwide. Every year, millions of hectares are lost, and experts warn that
the frequency and severity of wildfires will increase in the coming years due to climate change. To
mitigate these hazards, numerous deep learning models were developed to detect and map wildland
fires, estimate their severity, and predict their spread. In this paper, we provide a comprehensive
review of recent deep learning techniques for detecting, mapping, and predicting wildland fires using
satellite remote sensing data. We begin by introducing remote sensing satellite systems and their
use in wildfire monitoring. Next, we review the deep learning methods employed for these tasks,
including fire detection and mapping, severity estimation, and spread prediction. We further present
the popular datasets used in these studies. Finally, we address the challenges faced by these models
to accurately predict wildfire behaviors, and suggest future directions for developing reliable and
robust wildland fire models.

Keywords: fire detection; fire mapping; fire spread; damage severity; smoke; wildfire; satellite;
deep learning

1. Introduction

Wildland fires are a natural disaster resulting in a loss of property, life, and homes, as
well as a high level of damage to natural resources such as soil, forests, biodiversity, and
wildlife. For example, in Canada, the year 2022 was among the most intense fire seasons,
with 5449 fires burning 1,610,216 hectares [1]. Researchers have introduced adequate and
effective wildfire detection systems using aerial images as well as ground images, which
were captured from a terrestrial position. A plethora of wildfire detection systems have
been developed over the years [2–4]. Satellite systems were also applied to address the
wildland fire problem due to their reliability, high availability, fast execution, and capacity
to monitor very large areas [5]. They acquire data on wildfires using numerous sensors such
as thermal and optical to detect the physical characteristics of light such as wavelength,
intensity, polarization, or vision to collect visual data from the environment, and radar
sensors that produce accurate information. In addition, the researchers used satellite data to
study the behaviors of forest fires, as well as their impact on a worldwide scale, providing
important information such as the number of wildfires, their rate of spread, their size,
and their evolution. Moreover, to monitor wildland fires, satellite remote sensing data
were used in a wide variety of applications related to fire research and management such
as fire danger assessment [6], fuel moisture content [7], fuel types [8], active fire [9], fire
effects [10], post-fire [11], fire propagation [12], etc. The detection and analysis process of
active fires can be applied in many fields, such as identifying the source of pollution in air
quality analysis, locating the initial burned areas, and predicting the spread and growth of
fires. As a result, satellite remote sensing data played a very important role in advancing
wildfire research and management, and in helping to develop efficient strategies to reduce
the impacts of wildland fires.
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Deep learning (DL)-based approaches were recently used and showed promising
results in satellite remote sensing applications such as damage mapping [13], anomaly
detection [14], classification [15], water segmentation [16], weather forecasting [17], cloud
cover detection [18], and forest disturbance segmentation [19]. In addition, DL models
demonstrated their ability to perform well in the challenge of detecting wildfires by identi-
fying their presence, mapping their extent and location, and predicting their behavior and
potential impacts using satellite data compared to machine learning (ML) methods. To the
best of our knowledge, there is a noticeable lack of comprehensive reviews that reported
recent DL models for wildland fire applications using satellite data in the literature. As an
example, Barmpoutis et al. [20] presented a comprehensive review of fire detection systems,
including ground, airborne, and spaceborne systems. They also illustrated the DL and
classical models of ML adopted to detect fire and smoke on each system. Ghali et al. [21]
reviewed recent DL models used for wildland fire recognition, detection, and segmentation,
using ground and aerial images. They also presented popularly used datasets such as
CorsicanFire, FLAME, DeepFire, and the FD-dataset, as well as major challenges related
to these techniques, such as data collection and labeling. Mohapatra and Trinh [22] pro-
vided a review of the recent trend and advancements in technologies (ground sensors,
cameras, drones, and satellites) proposed for wildfire monitoring and firefighting tasks.
Akhloufi et al. [23] reviewed the development of unmanned aerial vehicles (UAVs) for
wildfires, highlighting wildland fire datasets, fire detection, segmentation, geolocation,
and modeling methods, as well as cooperative autonomous systems for wildland fires.
Therefore, in this paper, we conduct a detailed analysis of DL models for wildland fire
detection, mapping, and prediction using satellite remote sensing data. We also present the
most commonly used datasets for these tasks, as well as the main challenges and limitations
associated with these models.

The main contributions of this review are as follows:

• We provide a comprehensive analysis of recent (between 2018 and 2022) deep learning
models used for wildland fire detection, mapping, and damage and spread prediction
using satellite data.

• We review the most popular datasets used for wildland fire detection, mapping, and
prediction tasks, providing an overview of their attributes.

• We discuss the challenges associated with these tasks, including data preprocessing
(i.e., filtering, cleaning, and normalizing data), and the interpretability of deep learning
models for each of these tasks.

The remainder of the review is organized as follows: Section 2 provides an overview of
satellite systems. Sections 3, 4, 5, and 6 respectively review the recent deep learning models
utilized for fire detection, mapping, and damage and spread prediction using satellite data.
Section 7 presents the most commonly used datasets for these tasks. Section 8 discusses
the challenges of deep learning models related to these tasks, including data preprocessing
and models interpretability. Finally, Section 9 concludes the review, highlighting future
research directions.

2. Satellite Systems

Spaceborne systems use satellites in space to provide telecommunication services.
They cover a very large area and provide a secure connection that is not affected by physical
and weather obstacles compared to terrestrial systems. They are employed for many appli-
cations such as tracking the position of ships, sending and receiving data, collecting data
about the earth’s surface, monitoring, and analyzing a variety of environmental changes.

Recently, satellite systems were adopted as a solution for detecting, monitoring, and
mapping wildland fires, as well as in firefighting on the earth’s surface in near-real-time.
They use thermal, optical, vision, and radar sensors to produce accurate information such
as temperature, humidity, vegetation, atmospheric conditions, meteorological data, to-
pographic data, historical fires, and human activities by providing information on the
location and intensity of fires. Optical sensors can detect changes in vegetation and land
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cover that may indicate the presence of smoke and fire. Thermal sensors can detect heat
information associated with smoke and flames and provide information on the temper-
ature and intensity of fires. Radar sensors transmit and receive signals to see through
smoke, darkness, and clouds to generate high-resolution images of the land surface, even
under nighttime conditions. These data are then processed using mathematical models
or artificial intelligence techniques such as ML and DL models, to detect and monitor
potential wildland fire activities. In addition, the information obtained from satellite remote
sensing systems can be employed to: (1) Support evacuation efforts by providing real-time
information about the extent and location of a wildfire, which can be used to ensure the
safety of nearby human populations. (2) Predict wildfire behaviors by estimating and
tracking fire spread rates. This information helps to allocate firefighting resources and
to develop efficient firefighting strategies. (3) Identify fire perimeters by detecting the
boundaries of a wildfire. This information can be used to generate wildfire maps and to
provide firefighting operations with better situational awareness. (4) Assess the impact
of wildfires by determining the damage caused by a wildfire and estimating the severity
of burned areas. This information can be used to plan post-fire recovery efforts and to
protect ecosystems. Based on their orbit, these systems can be divided into three categories:
geostationary orbit (GEO), low-earth orbit (LEO), and polar sun-synchronous orbit (SSO),
as shown in Table 1.

• Geostationary orbit (GEO) circles the earth above the equator of the earth following
the rotation of the earth. It orbits the earth at an altitude of 35,786 km. The satellite in
GEO appears to be stationary above a fixed point on the earth’s surface, thus providing
continuous coverage to the same area. Many satellites are used, such as Geostationary
Operational Environmental Satellites (GOES) [24], Landsat [25], and Sentinel [26].
They have a high temporal resolution. GOES offers a high spatial, temporal, and
spectral resolution. It provides accurate weather information and real-time weather
monitoring. However, some of them have a low spatial resolution and long revisit
times, for example, eight days for LandSat-8, and 2 to 3 days for Sentinel-2B. GEO
systems allow for the detection of the size, intensity, and locations of wildfires. They
provide information on the wind direction and speed, which can help in estimating
the spread of wildfires and in firefighting operations.

• Low-earth orbit (LEO) is an orbit centered on the earth having an altitude of less
than or equal to 2000 km. Its orbital period is less than one day. It is more suitable
for observation and communication as it is closer to the earth. It provides high-
resolution imagery, low communication latency, and high bandwidth. However, LEO
satellites have a limited lifetime due to their low altitude. LEO systems can be used to
detect wildland fires, as well as their locations and behaviors, which helps firefighting
operators provide accurate strategies for wildfire prevention.

• Polar sun-synchronous orbit (SSO) is an orbit around the earth in which the ground
track of the satellite follows the sun. It has the same position at all times, with an
altitude of between 200 and 1000 km, which allows for a continuous coverage of a
precise zone at the same time and place every day. Numerous satellites are used,
such as MODIS (Moderate Resolution Imaging Spectroradiometer) [27], AVHRR (Ad-
vanced Very-High-Resolution Radiometer) [28], and VIIRS (Visible Infrared Imaging
Radiometer Suite) [29]. SSO satellites are used for monitoring the climate and for
forecasting the weather. They are also capable of detecting and monitoring wildland
fires, providing the size, location, and intensity of wildfires, as well as their spread
based on weather information. However, their lifetime is very limited due to their low
altitude.
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Table 1. Overview of satellite systems used for fire detection, mapping, and prediction.

System Advantage Disadvantage

Geostationary orbit (GEO) Altitude of 35,786 km
Provides a consistent view of the same zone
High temporal resolution

Coverage limited area
Large revisit time

Low-earth orbit (LEO) Altitude less than or equal to 2000 km
High-resolution imagery
Low communication latency
High bandwidth

Lifetime limited

Polar sun-synchronous orbit (SSO) Altitude between 200 and 1000 km
Continuous coverage of a precise zone at the same time and
place everyday

Lifetime limited

3. Deep Learning-Based Approaches for Fire Detection Using Satellite Data

To detect and monitor fires on remote sensing satellite images, DL-based fire segmen-
tation and detection methods have been developed in recent years. Both methods have
shown an interesting result compared to traditional ML methods. In addition, they are very
useful for efficient fire management. Fire detection focuses on identifying the presence of
fire (smoke, flame, or both) and classifying it (see Figure 1), while fire segmentation is the
process of grouping similar pixels of smoke or flame in an input satellite image based on
their characteristics such as color, shape, and texture, and outputting the result as a mask
(see Figure 2).

Figure 1. Fire detection based on DL model.

Figure 2. Fire segmentation based on DL model.

DL models were used to analyze smoke ignition and to automatically detect the
presence of fires. They are capable of recognizing patterns in satellite imagery data corre-
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sponding to smoke plumes and fires, and of using this information to identify fire instances
as they appear. Numerous DL models were proposed to detect and segment fires using
satellite data, as shown in Table 2. CNN (Convolutional Neural Network) is a popular
approach used to detect smoke by analyzing satellite images. CNNs are designed to iden-
tify patterns in visual data, and to recognize smoke plumes and other fire-related features.
Kang et al. [30] developed a CNN, which consists of three 3 × 3 convolutional layers, each
followed by a ReLU activation function and max pooling layer, and two fully connected
layers to detect forest fires on geostationary satellite data. Using 2157 Himawari-8 images
with 93,270 samples without fire and 7795 samples with fire, the proposed CNN showed
superior performance, achieving an F1-score of 74% compared to the random forest method.
Azami et al. [31] evaluated the CNN models (MiniVGGNet, ShallowNet, and LeNet) in
detecting and recognizing wildfires on images collected by the KITSUNE CubeSat. Using
715 forest fire images, MiniVGGNet, ShallowNet, and LeNet achieved an accuracy of 98%,
95%, and 97%, respectively. Kalaivani and Chanthiya [32] proposed a custom optimized
CNN which integrated an ALO (Antlion Optimization) method inside a PReLU activation
function to detect forest fires. An accuracy of 60.87% was achieved using Landsat satellite
images. Seydi et al. [33] presented a deep learning-based active forest fire detection method
called Fire-Net, which consists of residual, point/depth-wise convolutional, and multiscale
convolutional blocks. Fire-Net was trained using 578 Landsat-8 images, and tested on
144 images of the Australian forest, Central African forest, Brazilian forest, and Chernobyl
areas, achieving F1-scores of 97.57%, 80.52%, 97.00%, and 97.24%, respectively. Palacio and
Ian [34] used two pretrained deep learning models, MobileNet v2 [35] and ResNet v2 [36],
on the ImageNet dataset [37] to predict wildfire smoke through satellite imagery of the Cal-
ifornia regions. Using fire perimeters, fire information (date, area, longitude, and altitude),
and a historical fire map collected from Landsat 7 and 8, and MobileNet v2 obtained the
best accuracy of 73.3%. Zhao et al. [38] investigated the impact of using the IR (infrared)
band in detecting smoke. They proposed a lightweight CNN, called VIB_SD (Variant Input
Bands for Smoke Detection), which integrates the inception structure, attention method,
and residual learning. VIB_SD was trained using 1836 multispectral based on Landsat 8
OLI and Landsat 5 TM imagery data, and divided into three classes, (“Clear”, “Smoke”,
and “Other_aerosol”), with horizontal/vertical flip as the data augmentation methods.
The experimental results showed that adding an NIR band improved the performance
by 5.96% compared to only using an RGB band (an accuracy of 86.45%). Wang et al. [39]
proposed a novel smoke detection method named DC-CMEDA (Deep Convolution and
Correlated Manifold Embedded Distribution Alignment), consisting of deep CNN (ResNet-
50) and CMEDA as an improved MEDA (Manifold Embedded Distribution Alignment).
First, ResNet-50 extracted the smoke features of the target and source domains (satellite
and video images) data. Then, CMEDA was employed to reduce the bias in the source
domain and make it more similar to the target domain, Finally, the presence or absence
of smoke was generated as the output. A total of 200 satellite images and 200 RGB im-
ages were utilized in DC-CMEDA training, each including 100 smoke and 100 non-smoke
images. In transferring from satellite images to video images, DC-CMEDA achieved an
accuracy of 93.0%, overcoming the state-of-the-art methods, Filonenko’s method [40], and
DC-ILSTM [41], by 2.5% and 1.5%, respectively. In transferring from video images to
satellite images, DC-CMEDA also reached a high accuracy of 89.5%, surpassing Filonenko’s
method and DC-ILSTM by 6.5% and 4.0%, respectively. Higa et al. [42] explored object
detection methods such as PAA [43], VFNET [44], ATSS [45], SABL [46], RetinaNet [47],
and Faster R-CNN [48] to detect and locate active fires and smoke in the Brazilian Pantanal
regions. Using 775 images downloaded from the CBERS (China-Brazil Earth Resources
Satellite) 04A WFI dataset [49], VFNET achieved the highest F1-score of 81%. Ba et al. [50]
proposed a smoke detection method based on CNN and SmokeNet, using MODIS data.
They presented a new dataset, called USTC_SmokeRS [51], comprising 6255 satellite images
of smoke and various classes very close to smoke, such as haze, clouds, fog, etc. SmokeNet
is a modified AttentionNet method that merges spatial and channel-based attention with
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residual blocks. It achieved an accuracy of 92.75%, outperforming VGG [52], ResNet [36],
DenseNet [53], AttentionNet [54], and SE-ResNet [55]. Phan et al. [56] proposed a 3D CNN
model to locate wildfires using satellite images collected from the GOE satellite, GOES-16.
They integrated spatial and spectral information at the same time. The 3D CNN contains
three 3D convolutional layers, followed by the ReLU activation function and batch normal-
ization, fully connected layer, and softmax function. Imagery data and weather information
were used as inputs to detect the presence of forest fires. Using 384 satellite images, an
F1-score of 94% was achieved, outperforming baseline models such as MODIS-Terra [5],
AVHRR-FIMMA [57], VIIRS-AFP [58], and GOES-AFP [59]. Hong et al. [60] designed a
new CNN, FireCNN, to detect fires in Himawari-8 satellite images. FireCNN consists of
three convolutional blocks and a fully connected layer. Each convolutional block consists
of two convolutional layers, each followed by a ReLU activation and a max pooling layer.
FireCNN was tested on a dataset containing 3646 non-fire spots and 1823 fire spots [61],
obtaining an accuracy of 99.9% higher than the traditional ML methods (thresholding,
SVM (Support Vector Machine), and random forest). Wang et al. [62] employed Swin trans-
former [63], which adopts attention mechanism to model local and global dependencies in
detecting smoke and flame. A set of 5773 images obtained from FASDD (Flame and Smoke
Detection Dataset) [64] were used in training this model, obtaining a mAP (mean Average
Precision) of 53.01%.

FCN (Fully Convolutional Network) and the encoder–decoder model are the widely
used types of CNNs in image segmentation tasks. FCN is the first CNN developed for pixel-
level classification. It employs a series of convolutional and pooling layers to extract features
from the input image, and then generates a binary mask as the output. Larsen et al. [65]
proposed an FCN to predict smoke in satellite images acquired by Himawari-8 and the
NOAA (National Oceanic and Atmospheric Administration) Visible Infrared Imaging
Radiometer Suite in near-real-time [66]. FCN consists of four convolution layers, three
max pooling layers, three transposed convolution layers, batch normalization, and ReLU
activation functions. It was trained on 975 satellite images, attaining an accuracy of 99.5%.
The encoder–decoder architecture contains two parts (encoder and decoder). The en-
coder performs convolutional and pooling layers to extract high- and low-level features,
while the decoder employs transposed convolutions, which are designed to upsample the
compressed feature map to produce a segmentation mask as output. U-Net [67] is the
popular encoder–decoder architecture used for image segmentation. It also employs skip
connections to combine the features from the encoder and the decoder to better capture
finer details and to produce a more accurate result. Khryashchev et al. [68] applied U-Net
with ResNet-34 as the backbone to detect and segment wildfire areas. Numerous data
augmentation techniques (rotation, shift, flip, mirroring, and random chromatic distor-
tion in HSV color) and 1850 satellite RGB images were used to train and test this model,
achieving a Dice coefficient of 81.2%. Pereira et al. [69] adopted a modified U-Net ar-
chitecture by adding dropout layers to avoid overfitting and batch normalization after
each convolutional layer, to detect and segment active fire areas on Lansdsat-8 imagery
data. The modified U-Net was trained using a large dataset, called the Landsat-8 Active
fire detection (LAFD) dataset [69,70], which contains 8194 wildfire images and their cor-
responding binary masks. An accuracy of 87.2% was achieved, surpassing traditional
machine learning methods for active fires [71–73]. Rashkovetsky et al. [74] also explored
the semantic segmentation method, U-Net, to detect wildfires on images collected by multi-
sensor satellites such as Sentinel-1, -2, -3, Terra, and Aqua. A total of 1324 records of fire
perimeters, which occurred between 1950 and 2019 in California [75], and 38,897 satellite
images (Sentinel-1: 2619 images, Sentinel-2: 1892 images, Sentinel-3: 15,514 images, and
Terra and Aqua: 18,872 images) were used. In cloudless conditions (clear weather), U-Net
obtained an F1-score of 83% and 87% using Sentinel-2 data and the fusion of Sentinel-2
and Sentinel-3 data, respectively. Under cloudy conditions, U-Net achieved an F1-score
of 67% and 72% using the Sentinel-3 data and the merged Sentinel-1 and Sentinel-2 data,
respectively. Rostami et al. [76] developed an encoder–decoder, MultiScale-Net, which in-
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cludes dilated convolutional layers with different dilation rates, and convolutional kernels
with varying sizes to detect active fire. The LAFD dataset (144 Landsat-8 images) and data
augmentation technique (horizontal and vertical flip) were used in training MultiScale-Net.
Based on the input bands, three scenarios (B1: AFI, B2: SWIR2 + SWIR1 + Blue, and B4:
SWIR2 + SWIR1 + Blue + AFI) were evaluated, providing F1-scores of 90.53%, 89.09%, and
90.58% in B3, B1, and B4, respectively. Shirvan et al. [77] proposed a DL-based approach to
detect and segment woodland fires zones in Mozambique regions. AUNet (attention gate
units), which is a modified U-Net by adding an attention method and RAUNet (residual
blocks and attention gate units) method, which integrates attention gates and residual
blocks into the U-Net architecture, were employed to identify small fires and to detect fire
events. Sentinel-1 and -2 data, Google Earth images, MODIS fire products, and field obser-
vation data were used to train and to evaluate these approaches. RAUNet achieved a high
accuracy of 98.53%, outperforming U-Net and AUNET by 0.74% and 0.55%, respectively.
Sun [78] designed a deep CNN method to generate pixel-level binary fire masks on Landsat
8 images of South American regions, using SWIR (Short-Wave Infrared) and Green bands.
First, an encoder–decoder method (called FCN), which is a modified U-Net by adding three
upsampling and downsampling convolutional blocks, was used to generate the binary
mask. Then, a K-Means clustering was performed to determine the levels of cirrus cloud
contamination. Finally, a CNN, which contains four convolutional layers, each one followed
by ReLU activation and batch normalization, four max pooling layers, and a fully connected
layer, was used three times with three different data features (only SWIR data, SWIR and
raw cirrus data, and SWIR and segmented cirrus data) to determine the influence of simpli-
fied features on model performance and training time. FCN obtained a precision of 87.8%
on the test data (14,274 fire images and 10,685 non-fire images) [79]. Wang et al. [80] pre-
sented a smoke segmentation model, Smoke-UNet, to detect forest smoke on multispectral
Landsat-8 data. Smoke-UNet is an improved U-Net architecture that integrates a residual
block to improve feature extraction ability and an attention mechanism to remove irrelevant
and invalid information transmitted by skip connections. Numerous data augmentation
techniques such as cropping and horizontal/vertical mirroring were applied to augment the
training data, yielding 47 multispectral wildland smoke images composed of SWIR, RGB,
mid-infrared, and NIR bands. The training result showed that Smoke-UNet reached the
best accuracy of 92.3%, overcoming UNet, Res-UNet, Attention Res-UNet, FCN [81], PSP-
Net [82], and SegNet [83] by 12.2%, 11.8%, 8.8%, 7.8%, 7.8%, and 9.2%, respectively. Wang
et al. [84] developed a semantic segmentation method, AOSVSSNET (Attention-Guided
Optical Satellite Video Smoke Segmentation Network), to detect and segment smoke areas.
AOSVSSNET is a modified UNet++ [85] by adding a convolutional attention module to
suppress noisy and irrelevant characteristics. AOSVSSNET reached an IoU of 72.84% and
70.51% using real satellite smoke images (200 images) and synthetic images (10,000 images),
respectively, surpassing UNet, DeepLabv3+ [86], and FCN. Knopp et al. [87] employed a
CNN based U-Net for burnt area segmentation on Sentinel-2 data. New learning data were
created and collected from three data sources: burned areas, which were processed at the
DLR (German Aerospace Center), the fire incident dataset of CALFIRE (by the California
Department of Forestry & Fire Protection), and the burned area data of the Portuguese
ICNF (Institute for Nature Conservation and Forests). It includes burned areas acquired
between 2017 and 2018, covering different seasons and biomes. It consists of 2637 satellite
images and their burned area masks, divided into training, validation, and testing sets.
This proposed model was trained using data augmentation techniques (random brightness,
rotation, shift, contrast, and scale), which were employed to increase the learning data three
times, achieving an accuracy of 98%.



Fire 2023, 6, 192 8 of 35

Table 2. Deep learning models for fire detection and segmentation using satellite data.

Ref. Methodology Dataset Results (%)

[30] Simple CNN 2157 Himawari-8 images, with 93,270 samples without fire and
7795 samples with fire

F1-score = 74.00

[31] MiniVGGNet 715 wildfire images collected by the KITSUNE CubeSat Accuracy = 98.00

[32] Custom optimized CNN Landsat satellite images Accuracy = 60.87

[33] Fire-Net 722 Landsat-8 images F1-score = 97.57

[34] MobileNet v2 Fire perimeters, fire information (date, area, longitude, and altitude),
and historical fire map collected from Landsat 7 and 8

Accuracy = 73.30

[38] VIB_SD 1836 multispectral based on Landsat 8 OLI and Landsat 5 TM im-
agery data

Accuracy = 92.41

[39] DC-CMEDA 200 satellite images and 200 RGB images, each one including
100 smoke and 100 non-smoke images

Accuracy = 96.00

[42] VFNET CBERS 04A WFI dataset: 775 images F1-score = 81.00

[50] SmokeNet USTC_SmokeRS: 6255 satellite images Accuracy = 92.75

[56] 3D CNN Weather data and imagery data (384 images) F1-score = 94.00

[60] FireCNN Himawari-8 satellite images: 3646 non-fire spots and 1823 fire spots Accuracy = 99.90

[62] Swin transformer FASDD dataset: 5773 images mAP = 53.01

[65] FCN 975 satellite images acquired by Himawari-8 and NOAA Visible In-
frared Imaging Radiometer Suite

Accuracy = 99.50

[68] U-Net with ResNet-34 1850 satellite RGB images Dice = 81.20

[69] Modified U-Net LAFD dataset: 8194 wildfire images and their corresponding bi-
nary masks

Precision = 87.20

[74] U-Net 1324 records of fire perimeters and 38,897 satellite images (Sentinel-1:
2619 images, Sentinel-2: 1892 images, Sentinel-3: 15,514 images, Terra
and Aqua: 18,872 images)

F1-score = 87.00

[76] MultiScale-Net LAFD dataset: 144 Landsat-8 images F1-score = 90.58

[77] RAUNet Sentinel-1 and -2 data, Google Earth images, MODIS fire products,
and field observation data

Accuracy = 98.53

[78] FCN LAFD dataset: 14,274 fire images and 10,685 non-fire images Precision = 87.80

[80] Smoke-UNet 47 Landsat-8 images Accuracy = 92.30

[84] AOSVSSNET 200 real satellite smoke images
10,000 synthetic satellite images

IoU = 72.84
IoU = 70.51

[87] U-Net 2637 satellite images collected from Sentinel-2 and their burned
area masks

Accuracy = 94.00

4. Deep Learning-Based Approaches for Fire Mapping Using Satellite Data

Similarly to fire detection, fire mapping can provide maps to visualize the intensity
and location of detected wildland fires. It is the process of generating maps, and showing
the locations and extents of wildland fires. These maps were utilized for a wide variety of
purposes, such as fire damage reporting, firefighting and evacuation efforts planning, and
wildland fire management. Many DL approaches were adopted for the fire mapping task,
as summarized in Table 3. Belenguer-Plomer et al. [88] investigated CNN performance
using Sentinel-1 and/or Sentinel-2 data, which were downloaded from the Copernicus
Open Access Hub in detecting and mapping burned areas. The proposed CNN comprises
two convolutional layers, each one followed by the ReLU activation function, max pooling
layer, two fully connected layers, and the sigmoid function to predict the probabilities of
burned or unburned areas. It reached a Dice coefficient of 57% and 70% using Sentinel-1
and Sentinel-2 data, respectively. Abid et al. [89] developed an unsupervised deep learning
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model to map the burnt forest zones on Sentinel-2 imagery data of Australia. First, a
pretrained VGG16 was used to extract features of input data Then, K-means clustering and
thresholding methods were used to perform the clustering of input data, which has similar
features. This method achieved an F1-score of 87% using the real-time data of Sentinel-2
as the learning data. Hu et al. [90] explored numerous semantic segmentation networks
such as U-Net, Fast-SCNN [91], DeepLab v3+ [86], and HRNet [92] in mapping burned
areas using multispectral images of the boreal forests in Sweden and Canada, and the
Mediterranean regions (Portugal, Spain, and Greece). Sentinel-2 and Landsat-8 images and
data augmentation methods (resizing, mirroring, rotation, aspect, cropping, and color jitter)
were used in training these DL models. The testing results demonstrated that DL-based
semantic segmentation models showed higher performances compared to ML methods
(LightGBM, KNN, and random forest) and thresholding methods, NBR (Normalized Burnt
Ratio). and dNBR (delta NBR). As an example, with Sentinel-2 images, U-Net achieved
the best Kappa coefficient of 90% in a Mediterranean fire site in Greece, and Fast-SCNN
performed better, with a kappa coefficient of 82% in a boreal forest fire in Sweden. With
Landsat-8 images, HRNet reached the best Kappa coefficient of 78% in a Sweden forest fire.
Cho et al. [93] also employed U-Net as a semantic segmentation method to map burned
areas. They used learning data, including satellite images with a resolution of 3 m per pixel
collected from the PlanetScope dataset [94], and their ground truth masks, the dissimilarity
obtained from GLCM (Gray-Level Co-occurrence Matrix), NDVI (Normalized Difference
Vegetation Index), and land cover map data, as well as the topographic normalization of
each image to reduce the effect of shadow, and a data augmentation technique (rotation,
mirroring, and horizontal/vertical flip) to train U-Net, achieving F1-scores of 93.0%, 93.8%,
and 91.8% in the Andong, Samcheok, and Goseong study areas, respectively. Brunt and
Manandhar [95] also used U-Net to map burned areas in Sentinel-2 images of Indonesia
and Central African regions. U-Net obtained an F1-score of 82%, 91%, and 92% using
the Indonesia test data, the Central Africa test data, and the test data of both regions,
respectively. Seydi et al. [96] developed a DL method, Burnt-Net, to map burned areas
from post-fire Sentinel-2 images. Burnt-Net is an encoder–decoder architecture, including
convolutional layers, ReLU functions, max pooling layers, batch normalization layers,
residual multi-scale blocks, morphological operators (dilation and erosion), and transposed
convolutional layers. Burnt-Net was trained with Sentinel-2 images of wildland fires in
Spain, France, and Greece, France, and tested using wildland fires located in Portugal,
Turkey, Cyprus, and Greece, obtaining an accuracy of 98.08%, 97.38%, 95.68%, and 95.51%,
respectively, superior to the accuracy of U-Net and the Landsat burned area product.
Prabowo et al. [97] also employed U-Net to map burned areas. They collected a new dataset
comprising 227 satellite images with a resolution of 512 × 512 pix. acquired by the Landsat-
8 satellite in Indonesian regions, and their corresponding binary masks. Using a data
augmentation method (rotation), U-Net obtained a Jaccard index of 93%. U-Net was also
evaluated in Colomba et al. [98] to map burned areas. It was trained and evaluated with 73
images downloaded from the satellite burned area dataset [98,99] and data augmentation
techniques (rotation, shear, and vertical/horizontal flip), obtaining an accuracy of 94.3%.
Zhang et al. [100] performed deep residual U-Net, which adopts the ResNet model as a
feature extractor to map wildfires using the Sentinel-2 MSI time series and Sentinel-1 SAR
data. Deep residual U-Net reached an F1-score of 78.07% and 84.23% on the Chuckegg
Creek fire data acquired in 2019, and on the Sydney fire data collected between 2019 and
2020, respectively. Pinto et al. [101] proposed a deep learning approach, BA-Net (Burned
Areas Neural Network), based on daily sequences of multi-spectral images to identify
and map burned areas. BA-Net is an encoder–decoder with five connections between the
encoder and decoder. The encoder comprises ST-Conv3 modules and spatial convolution.
Each ST-Conv3 consists of two 3D convolution layers, followed by batch normalization
with a ReLU activation function and a 3D dropout layer. The decoder contains UpST-Conv3
modules and 3D transposed convolutions. Each UpST-Conv3 module includes two 3D
transposed convolution layers, followed by batch normalization with the ReLU activation
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function and a 3D dropout layer. Several datasets covering five regions (California, Brazil,
Mozambique, Portugal, and Australia) were used to train and test this approach: VIIRS
Level 1B data [102], VIIRS Active Fires data [58], MCD64A1C6 [103], FireCCI51 [104],
Landsat-8 53 scenes [105], the FireCCISFD11 dataset [106], the MTBS dataset [107], TERN
AusCover data [108], and ICNF Burned Areas [109]. BA-Net showed an excellent result (a
Dice coefficient of 92%) in dating and mapping burned areas, outperforming the FireCCI51
simulators, thus confirming its ability in determining the spatiotemporal relations of active
fires and the daily surface reflectances. Seydi et al. [110] presented a new method, DSMNN-
Net (Deep Siamese Morphological Neural Network) to map burned areas using PRISMA
(PRecursore IperSpettrale della Missione Applicativa) and Sentinel-2 multispectral images
of the Australian continent. Two deep feature extractors, which adopt 3D/2D convolutional
layers and a morphological layer based on dilation and erosion, were employed to extract
features from the pre-fire and post-fire datasets. Two scenarios were investigated: in
the first scenario, pre- and post-fire datasets collected from Sentinel-2; and in the second
scenario, pre-fire datasets downloaded from Sentinel-2 and post-fire datasets obtained
from PRISMA. The numerical results showed that DSMNN-Net achieved an accuracy of
90.24% and 97.46% in the first and second scenarios, respectively, outperforming existing
state-of-the-art methods such as CNN proposed by Belenguer-Plomer et al. [88], random
forest [111,112], and SVM [113] .

Table 3. Deep learning models for fire mapping using satellite data.

Ref. Methodology Dataset Results

[88] Simple CNN Sentinel-1 data
Sentinel-2 data

Dice = 57.00
Dice = 70.00

[89] VGG16, K-means, and
thresholding methods

Sentinel-2 imagery data of Australia F1-score = 87.00

[90] U-Net
Fast-SCNN
H-RNet

Sentinel-2 and Landsat-8 images Kappa = 90.00
Kappa = 82.00
Kappa = 78.00

[93] U-Net PlanetScope dataset, dissimilarity, NDVI, and land cover map data F1-score = 93.80

[95] U-Net Sentinel-2 imagery data of the Indonesia and Central Africa regions F1-score = 92.00

[96] Burnt-Net Post-fire Sentinel-2 images Accuracy = 98.08

[97] U-Net 227 satellite images and their corresponding binary masks Jaccard = 93.00

[98] U-Net Satellite burned area dataset (73 images) Accuracy = 94.30
[100] Deep residual U-Net Sentinel-2 MSI time series and Sentinel-1 SAR data F1-score = 84.23

[101] BA-Net VIIRS Active Fires data, VIIRS Level 1B data, MCD64A1C6, FireCCI51,
Landsat-8 53 scenes, FireCCISFD11 dataset, MTBS dataset, TERN Aus-
Cover data, ICNF Burned Areas

Dice = 92.00

5. Deep Learning-Based Approaches for Fire Susceptibility Using Satellite Data

Deep learning models were applied to estimate fire severity and susceptibility using
vegetation data, meteorological data, topographic data, historical fires, and human activities
by providing information on the locations and intensities of fires, as shown in Figure 3. The
severity level refers to the degree of vegetation damage caused by the wildland fire, and
can be classified as very low, low, moderate, high, or very high, according to the severity of
the damage.
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Figure 3. Fire severity damage prediction based on DL model.

Table 4 presents the deep learning methods used in order to predict the damage
level caused by the fire. Zhang et al. [114] proposed a spatial prediction model based on
CNN for wildfire susceptibility modeling in China (Yunnan province). This CNN includes
three convolutional layers, a ReLU activation function, two pooling layers, and three fully
connected layers. The authors used numerous data, including the interpretation of satellite
images and historical fire reports from 2002 to 2010 (7675 fires occurred) to generate a
wildfire event map as the output. They also used fourteen fire influencing factors, divided
into three categories: vegetation-related (distance to road, distance to rivers, NDVI, and
forest coverage ratio), climate-related (average temperature, specific humidity, average
precipitation, average wind speed, precipitation rate, and maximum temperature) [115],
and topography-related (aspect, slope, and elevation) [116]. A higher accuracy of 95.81%
was achieved, outperforming four benchmark models that are multilayer perceptron neural
networks, random forests, kernel logistic regression, and SVM. Prapas et al. [117] proposed
a DL method, named ConvLSTM, for forest fire danger forecasting in the regions of Greece.
The Datacube dataset [118] was used in training and testing this model. It contains burned
areas and fire information (climate data, human activity, and vegetation information)
between 2009 and 2020, daily weather data, satellite data collected from MODIS (LAI (Leaf
Area Index), Fpar (Fraction of Photosynthetically Active Radiation), NDVI, EVI (Enhanced
Vegetation Index), day/night LST (Land Surface Temperature), road density, land cover
information, and topography data (aspect, slope, and elevation). ConvLSTM reached
a precision of 83.2% better than random forest and LSTM (Long Short-Term Memory).
Zhang et al. [119] studied the ability of CNN in predicting forest fire susceptibility maps
divided into five levels (very high, high, moderate, low, and very low). Based on the
processing cell type (grid and pixel), they proposed two CNNs, CNN-1D based on pixel
cells and CNN-2D based on grid cells. CNN-1D consists of two 1D convolutional layers,
three fully connected layers, ReLU activation functions, and a sigmoid function. CNN-2D
contains two 2D convolutional layers, each one followed by ReLU activation and the max
pooling layer, and three fully connected layers, the first two of which are followed by the
ReLU activation function, and the last by a sigmoid function. Various data were employed
in learning CNN: daily dynamic fire behaviors, individual fire characteristics, and estimated
day of burn information, collected from the GFA (Global Fire Atlas) product from 2003 to
2016; metrology data obtained from the GLDAS (NASA Global Land Data Assimilation
System), including average temperature, specific humidity, accumulated precipitation,
soil moisture, soil temperature, and standardized precipitation index; vegetation data
(LAI and NDVI) downloaded from the USGS (United States Geological Survey) website.
Testing results showed that CNN-2D achieved accuracies of 91.08%, 89.61%, 93.18%, and
94.88% for four seasons (March–May, June–August, September–November, and December–
February, respectively), surpassing the accuracies of CNN-1D and multilayer perceptron
models. Le et al. [120] developed deep neural computing, Deep-NC, which includes three
ReLU activation functions and a sigmoid function to predict wildfire danger in Gia Lai
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province in Vietnam. In total, there were 2530 historical fire locations from 2007 to 2016;
2530 non-forest fire data points, slope, land use, NDWI (Normalized Difference Water
Index), aspect, elevation, NDMI (Normalized Difference Moisture Index), curvature, NDVI,
speed of the wind, relative humidity, temperature, and rainfall information were assessed
to remove noise and were used as input [121]. In the training step, four optimizers that
are SGD (Stochastic Gradient Descent), Adam (Adaptive Moment Estimation), RMSProp
(Root Mean Square Propagation), and Adadelta were employed to optimize Deep-NC’s
weights. Deep-NC with Adam optimizer reached an accuracy of 81.50%. Omar et al. [122]
employed a DL method, which consists of LSTM, fully connected layers, dropout, and a
regression function in predicting forest fires. In total, 536 instances and twelve features,
including temperature, relative humidity, rain, wind, ISI (Initial Spread Index), DMC (Duff
Moisture Code), FWI (Forest Fire Weather Index), FFMC (Fine Fuel Moisture Code), and
BUI (Buildup Index) were used to train the proposed model, obtaining an RMSE (Root
Mean Squared Error) score of 0.021, and surpassing machine learning methods (decision
tree, linear regression, SVM, and a neural network). Zhang et al. [123] developed a hybrid
deep neural network (CNN2D-LSTM) to predict the global burned areas of wildfires based
on satellite burned area products and historical time series predictors. CNN2D-LSTM
includes two convolutional layers, three fully connected layers, ReLU functions, two max
pooling layers, and two LSTM layers. A good RMSE of 4.74 was obtained using monthly
burned area data between 1997 and 2016, collected from the GFED dataset, and temporally
dynamic predictors (monthly maximum/minimum temperatures, average temperature,
specific humidity, accumulated precipitation, soil moisture, soil temperature, standardized
precipitation index, LAI, and NDVI), which affect forest fires. Shoa et al. [124] proposed
a DL model, which includes linear layers, batch normalization layers, and LeakyReLU
activation functions to predict the occurrence of wildfires in China. To train the proposed
model, they used historical fire data (96,594 wildfire points collected on MODIS from 2001 to
2019) in China’s regions, climatic data (daily maximum temperature, average temperature,
daily average ground surface temperature, average air pressure, maximum wind speed,
sunshine hours, daily average relative humidity, and average wind speed), vegetation
data (fractional vegetation cover), topographic data (slope, aspect, and elevation), and
human activities (population, gross domestic product, special holiday, residential area, and
road). The testing results showed that the proposed DL model reached an accuracy of 87.4%.
Shams-Eddin et al. [125] proposed the 2D/3D CNN method to predict wildfire danger. The
2D CNN method was used to generate static inputs such as a digital elevation model, slope,
distance to roads, population density, distance to waterways, etc., while 3D CNN generated
dynamic inputs, including temperature, day/night land surface temperature, soil moisture
index, relative humidity, wind speed, 2 m temperature, NDVI, surface pressure, 2 m
dewpoint temperature, and total precipitation. Two LOADE (Location-Aware Adaptive
Denormalization) blocks were also integrated into the 3D CNN to modulate dynamic
features based on static features. Using FireCube [126] and NDWS (Next Day Wildfire
Spread) [79] datasets, 2D/3D CNN showed a high performance (an accuracy of 96.48%),
better than the baseline methods such as random forest, XGBoost, LSTM, and convLSTM.
Jamshed et al. [127] adopted the LSTM method to predict the occurrence of wildland fires
from 2022 to 2025. Historical wildfire data and burned data from Pakistan during 2012 and
2021 were used as training data and provided an accuracy of 95%. Naderpour et al. [128]
designed a spatial method for wildfire risk assessment in the Northern Beaches region of
Sydney. This method consists of two steps. In the first step, twelve influential wildfire
factors (NDVI, slope, precipitation, temperature, land use, elevation, road density, distance
to river, distance to road, wind speed, humidity, and annual temperature) [129,130] were
fed into a deep NN (Neural Network) as a susceptibility model, which included more than
three hidden layers to determine the weight of each factor, and then an FbSP (supervised
fuzzy logic approach) method was used to optimize the results generated by deep NN.
In the second step, the AHP (hierarchical analytical process) method was adopted as the
vulnerability model to generate the physical and social vulnerability index using social and
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physical parameters such as population density, age, employment rate, housing, land use,
high density, high value, etc. [131,132]. Finally, a risk function was used to calculate the
wildfire risk map, giving the inventory of fire events (very low, low, medium, high, and
very high). The proposed method obtained a Kappa coefficient of 94.3%. Nur et al. [133]
proposed the hybrid models CNN-ICA and CNN-GWO, which include a CNN and a
metaheuristic method (ICA: Imperialist Competitive Algorithms [134] and GWO: Grey
Wolf Optimization [135]) to assess wildland fire susceptibility divided into five classes
(very low, low, moderate, high, and very high). First, the DPM (Damage Proxy Map)
method was adopted to identify burned forest areas on Sentinel-1 SAR (Synthetic Aperture
Radar) images from 2016 to 2020 in the Plumas National Forest regions, and to generate an
inventory dataset. Then, the inventory data and 16 wildfire conditioning factors, including
topography factors (aspect, altitude, slope, and plan curvature), meteorological factors
(precipitation, maximum temperature, solar radiance, and wind speed), environmental
factors (distance to stream, drought index, soil moisture, NDVI, and TWI (Topographic
Wetness Index)), and anthropological factors (land use, distance use, and distance to
settlement) were used to train and test this model. Finally, the CNN hyperparameters were
optimized using the ICA and GWO methods, and forest fire likelihoods were produced. The
obtained result revealed that the CNN-ICA performance (an RMSE of 0.351) is better than
the CNN-GWO result (an RMSE of 0.334). Bjånes et al. [136] designed an ensemble learning
model based on two CNN architectures, namely CNN-1 and multi-input CNN, to predict
forest fire susceptibility classes, which are split into five classes (very low, low, moderate,
high, and very high) using satellite data from the Biobio and Nuble regions. CNN-1 is a
modified Zhang’s CNN [114] by adding batch normalization in the first convolutional layer
and dropout in the fully connected layers. Multi-input CNN is a simple CNN proposed
by San et al. for flower grading [136]. A large data was used as learning data, consisting
of fifteen fire influencing factors and fire history data from 2013 to 2019 (including 18,734
fires). The fire influencing factors were grouped into four categories: climatic data collected
from the TerraClimate dataset [137] (minimum/maximum temperature, precipitation, wind
speed, climatic water deficit, and actual evapotranspiration), anthropogenic data (distance
to urban zones and distance to roads), vegetation data (NDVI, distance to rivers, and land
cover type), and topographic data (aspect, surface roughness, slope, and elevation). This
proposed model showed an F1-score of 88.77%, surpassing CNN-1 and multi-input CNN,
and traditional methods such as XGBoost and SVM.

Deep learning methods were also employed to map burn severity as a multi-class
semantic segmentation task. Huot et al. [138] studied four deep learning models; con-
volutional autoencoder, residual U-Net, convolutional autoencoder with convolutional
LSTM, and residual U-Net with convolutional LSTM to predict wildfires. To train deep
learning models, several datasets were used: historical wildfire data [139] since 2000 col-
lected from MOD14A1 V6 of daily fire mask composites at 1 km resolution, vegetation
data [140] obtained from the Suomi National Polar-Orbiting Partnership (S-NPP) NASA
VIIRS Vegetation Indices (VNP13A1) dataset, and contained vegetation indices since 2012
sampled at 500 m resolution, topography data [141] obtained from the SRTM (Shuttle
Radar Topography Mission) and sampled at 30 m resolution, drought [142], and weather
data (temperature, humidity, and wind) [143] collected from GRIDMET (Gridded Surface
Meteorological) at 4 km resolution since 1979. Residual U-Net achieved the best accuracy
of 83%, showing a great ability to detect zones of high fire likelihood. Farasin et al. [144]
proposed a novel supervised learning method, called Double-Step U-Net, to estimate the
severity level of affected areas after wildfires through Sentinel-2 satellite data, giving each
sub-area of the wildland fire area a numerical severity level of between 0 and 4, where 0, 1,
2, 3, and 4 represent an unburned area, negligible damage, moderate damage, high damage,
and areas destroyed by fire, respectively. First, a binary classification U-Net method was
employed to identify each sub-area as unburned or burned. Then, a regression U-Net
method was applied to determine the severity level only of the burned area. Two sources of
information were used, Copernicus EMS (Emergency Management Service), which offers
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the damage severity maps of five burned regions (Spain, France, Portugal, Sweden, and
Italy) affected by past fires used as ground truth maps, and Sentinel-2, which offers satellite
imagery. Using data augmentation techniques (horizontal/vertical flip, rotation, and shear),
Double-Step U-Net achieved an F1-score of 95% for binary classification U-Net, and a high
RMSE for regression U-Net, outperforming the U-Net and dNBR (delta Normalized Burnt
Ratio) [145] methods. Monaco et al. [146] also studied the ability of Double-Step U-Net
with varying loss functions (Binary Cross Entropy (BCE) and Intersection on Union Loss)
in generating the damage severity map on manually labeled data collected by Copernicus
EMS. The experiment results showed that the Double-Step U-Net with BCE loss achieved
the best MSE of 0.54. Monaco et al. [147] also developed a two-step CNN solution to
detect burned areas and predict their damage on satellite data. First, a binary semantic
segmentation method-based CNN was used to detect burned areas, and then a regression
method-based CNN was applied to predict their damage severity between 0 (no damage)
and 4 (completely destroyed). Four semantic segmentation methods (U-Net, U-Net++, Se-
gUNet, and attention U-Net [148]) were employed as a backbone to extract wildfire features.
Using a satellite image collected from Copernicus EMS, DS -UNet, and DS-UNet++ models
with BCE loss showed a higher IoU of 75% and 74%, respectively, in delineating the burnt
areas compared to DS-AttU and DS-SegU; DS-AttU, DS-UNet, and DS-UNet++ performed
better in predicting the damage severity levels of burned areas, obtaining an RMSE of 2.429,
1.857, and 1.857, respectively. Monaco et al. [149] also used DS-UNet to detect wildfire
and to predict the damage severity level, from 0 (no damage) to 5 (completely destroyed)
on Sentinel-2 images. DS-UNet achieved an average RMSE of 1.08, overcoming baseline
methods such as DS-UNet++, DS-SegU, UNet++, PSPNet, and SegU-Net. Hu et al. [150]
also investigated various deep learning-based multi-class semantic segmentation methods
such as U-Net, U2-Net [151], UNet++, UNet3+ [152], attention U-Net, Deeplab v3 [153],
Deeplab v3+, SegNet, PSPNet, etc. in mapping burn severity into five classes that are
unburned, low, moderate, high, and non-processing area/cloud. A large-scale dataset,
named MTBS (Monitoring Trends in Burn Severity), was developed to learn these mod-
els. It includes post-fire and pre-fire top-of-atmosphere Landsat images, dNBR images,
perimeter mask, RdNBR (relative dNBR) images, and thematic burn severity from 2010 to
2019 (more than 7000 fires). Five loss functions (Cross-entropy, Focal, Dice, Lovasz softmax,
and OHEM loss) and data augmentation techniques (vertical/horizontal flip) were used
to evaluate these models. Attention U-Net achieved the best Kappa coefficient of 88.63%.
Ding et al. [154] designed a deep learning method based on U-Net, called WLF-UNet, to
identify the wildfire location and intensity (no-fire, low-intensity, and high-intensity) on
the Himawari-8 satellite data. More than 5000 images captured by the Himawari-8 satellite
between November 2019 and February 2020 in the Australian regions were employed as
training data, achieving an accuracy of greater than 80%. Prapas et al. [155] also applied
U-Net++ as a global wildfire forecasting method. Using the seasFire cube dataset [156],
which includes variables related to fire such as historical burned areas and fire emissions
between 2001 and 2021, climate, vegetation, oceanic indices, and human related data,
U-Net++ reached an F1-score of 50.7%.

Table 4. Deep learning models for fire damage prediction using satellite data.

Ref. Methodology Dataset Results

[114] Simple CNN Climate data, vegetation data, topography data, and historical forest fire
points (2002–2010)

Accuracy = 95.81

[117] ConvLSTM Datacube dataset: burned areas and fire driver information between 2009
and 2020, daily weather data, satellite data, road density, land cover
information, and topography data

Precison = 83.20
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Table 4. Cont.

Ref. Methodology Dataset Results

[119] CNN-2D Daily dynamic fire behaviors, individual fire characteristics, estimated
day of burn information, average temperature, specific humidity, ac-
cumulated precipitation, soil moisture, soil temperature, standardized
precipitation index, LAI, and NDVI

Accuracy = 94.88

[120] Deep-NC 2530 historical fire locations from 2007 to 2016, 2530 non-forest fire data
points, slope, land use, NDWI, aspect, elevation, NDMI, curvature, NDVI,
wind speed, relative humidity, temperature, and rainfall

Accuracy = 81.50

[122] LSTM 536 instances and 12 features including temperature, relative humidity,
rain, wind, ISI, DMC, FWI, FFMC, and BUI

RMSE = 0.021

[123] CNN2D-LSTM Monthly burned area data between 1997 and 2016, monthly maxi-
mum/minimum temperature, average temperature, specific humidity,
accumulated precipitation, soil moisture, soil temperature, standardized
precipitation index, LAI, and NDVI

RMSE = 4.74

[124] Simple CNN Historical fire data from 2001 to 2019 on regions in China, climatic
data (daily maximum temperature, average temperature, daily aver-
age ground surface temperature, average air pressure, maximum wind
speed, sunshine hours, daily average relative humidity, and average
wind speed), vegetation data (fractional vegetation cover), topographic
data (slope, aspect, and elevation), human activities (population, gross
domestic product, special holiday, residential area, and road)

Accuracy = 87.40

[125] 2D/3D CNN FireCube and NDWS datasets Accuracy = 96.48

[127] LSTM Historical wildfire data and burned data from Pakistan Accuracy = 95.00

[128] Deep NN, FbSP, and
risk function

NDVI, slope, precipitation, temperature, land use, elevation, road density,
distance to river, distance to road, wind speed, humidity, annual tem-
perature, and social and physical parameters such as population density,
age, employment rate, housing, high density, high value, etc.

Kappa = 94.30

[133] CNN-GWO Sentinel-1 SAR images from 2016 to 2020, aspect, altitude, slope, plan
curvature, precipitation, maximum temperature, solar radiance, wind
speed, distance to stream, drought index, soil moisture, NDVI, TWI, land
use, distance use, and distance to settlement

RMSE = 0.334

[136] Ensemble learning Fire history data from 2013 to 2019 from the Biobio and Nuble regions;
climatic data (minimum and maximum temperature, precipitation, wind
speed, climatic water deficit, and actual evapotranspiration); anthro-
pogenic data (distance to urban zones and distance to roads); vegetation
data (NDVI, distance to rivers and land cover type); topographic data
(aspect, surface roughness, slope, and elevation)

F1-score = 88.77

[138] Residual U-Net Historical wildfire data, topography data, drought data, vegetation data,
and weather data

Accuracy = 83.00

[144] Double-Step U-Net Burned maps of five regions (Spain, France, Portugal, Sweden, and Italy)
affected by past fires and satellite images collected from Sentinel-2

F1-score = 95.00

[146] Double-Step U-Net Satellite imagery data collected from Sentinel-2 MSE = 0.54

[147] DS-AttU
DS-UNet
DS-UNet++

Satellite imagery and data collected from Sentinel-2 RMSE = 2.42
RMSE = 1.85
RMSE = 1.85

[149] DS-UNet Sentinel-2 data RMSE = 1.08

[150] Attention U-Net MTBS dataset: post-fire and pre-fire Top of Atmosphere Landsat images,
dNBR images, perimeter mask, RdNBR images, thematic burn severity
from 2010 to 2019 (more than 7000 fires)

Kappa = 88.63

[154] WLF-UNet More than 5000 images captured by the Himawari-8 satellite between
November 2019 and February 2020 in the Australian region

Accuracy = 80.00
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Table 4. Cont.

Ref. Methodology Dataset Results

[155] U-Net++ SeasFire cube dataset: historical burned areas and fire emission be-
tween 2001 and 2021, climate, vegetation, oceanic indices, and human
related data

F1-score = 50.70

6. Deep Learning-Based Approaches for Fire Spread Prediction Using Satellite Data

The fire spread approach estimates fire danger by representing the variable and fixed
factors that affect the rate of fire spread, and the difficulty in controlling fires, thereby
predicting how fires move and develop over time. Wildfire risk is mainly influenced by
various factors such as weather (e.g., wind and temperature), fuel information (e.g., fuel
type and fuel moisture), topographic data (e.g., slope, elevation, and aspect), and fire
behaviors. Several systems were developed to estimate fire spread, area, behavior, and
perimeter; for example, the Canadian FFBP (Forest Fire Behavior Prediction) system [157].
Throughout the years, numerous research studies have been proposed to predict fire spread.
In this review, we report only the methods based on deep learning, as presented in Table 5.
Stankevich [158] describes the process of an intelligent system to predict wildfire spread,
avoiding state-of-the-art challenges such as low forecast performance, computational cost
and time, and limited functionality in uncertain and unsteady conditions. Various data
were used as inputs: satellite images collected from several sources: fire propagation data
obtained from the NASA FIRMS resource management system [159]; environment data
including air temperature, window speed, and humidity; forest vegetation data obtained
from the European Space Agency Climate Change Initiative’s global annual Land Cover
Map [160]; and weather data from Ventusky InMeteo [161]. Four CNNs, which consist
of convolutional layers, ReLU activation functions, max pooling layers, and fully con-
nected layers were used. First, a simple CNN was adopted to recognize objects in the
forest fire data. Then, three CNNs were employed to estimate the environmental data, air
temperature 2 m above the ground, wind speed at a height of 10 m above the ground, and
relative air humidity. Finally, an auto-encoder generated the fire forecast. Radke et al. [162]
proposed a novel model, FireCast, which integrates two CNNs to predict fire growth. Each
CNN includes convolutional layers, one average pooling layer, three dropout layers, ReLU
activation functions, two max pooling layers, and a sigmoid function. Given an initial
fire perimeter, atmospheric data, and location characteristics as inputs, FireCast predicts
the areas of the current fires that are expected to burn over the next 24 h. It obtained an
important result (an accuracy of 87.7%), overcoming Farsite simulator [163] and the random
prediction method using geospatial information such as Landsat8 satellite imagery [25],
elevation data, GeoMAC dataset as fire perimeters data, and atmospheric and weather data
collected from NOAA. Bergado et al. [164] proposed a deep learning method, AllConvNet,
which includes convolutional layers, max pooling layers, and downsampling layers to
estimate the probabilities of wildland fire burn over the next seven days. A heterogeneous
dataset [165–168] was used as input, consisting of historical forest fire burn data from the
Victoria Australia region during 2006 and 2017, topography data (slope, elevation, and
aspect), weather data (rainfall, humidity, wind direction, wind speed, temperature, solar
radiation, and lighting flash density), proximity to anthropogenic interface (distance to
the power line and distance to roads), and fuel information (fuel moisture, fuel type, and
emissivity). The experimental study reported that AllConvNet reached an accuracy of
58.23% better than baseline methods such as SegNet (56.03%), logistic regression (51.54%),
and multilayer perceptron (50.48%). Hodges et al. [169] developed a DCIGN (Deep Convo-
lutional Inverse Graphics Network) to determine the spread of wildland fire and to predict
the burned zone up to 24 h. DCIGN consists of two convolutional layers, ReLU activation
functions, two max pooling layers, one fully connected layer followed by TanH (hyperbolic
tangent) activation functions, and one transpose convolutional layer. Various data are
used as input, such as vegetation information (canopy height, canopy cover, and crown
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ratio), fuel model, moisture information (100-h moisture, 10-h moisture, 1-h moisture, live
woody moisture, and live herbaceous moisture), wind information (north wind and east
wind), elevation, and initial burn map. DCIGN was trained to predict homogenous and
heterogeneous fire spread using 9000 and 2215 simulations, respectively, achieving an
F1-score of 93%. Liang et al. [170] proposed an ensemble learning model, which includes a
BPNN (Backpropagation Neural Network), LSTM, and RNN (Recurrent Neural Network)
to predict the scale of forest fire. They used fire data on the Alberta region between 1990
and 2018, obtained from the Canada National Fire Database. They also employed eleven
meteorological data (minimum temperature, mean temperature, maximum temperature,
cooling degree days, total rain, total precipitation, heating degree days, total snow, speed
of maximum wind gust, snow on ground, and direction of maximum wind gust) as input.
The testing result showed that this method is suitable for estimating the size of the burned
area and the duration of the wildfire, with a high accuracy of 90.9%. Khennou et al. [171]
developed a deep learning model based on U-Net and FU-NetCast to determine the wildfire
spread over 24 h, and to predict the newly burned areas. FU-NetCast showed excellent
potential in predicting forest fire spread using satellite images, atmospheric data, digital
elevation models (DEMs) [66], fire perimeter data, and climate data (temperature, humidity,
wind, pressure, etc.) [171]. Khennou and Akhloufi [172] also developed FU-NetCastV2 to
predict the next burnt area after a 24-h scale. Using GeoMAC data (400 fire perimeters)
from 2013 to 2019, FU-NetCastV2 achieved a high accuracy of 94.60%, outperforming
FU-NetCast by 1.87%. Allaire et al. [173] developed a deep learning model to identify fires
and to determine their spread. This model is a deep CNN with two types of inputs that are
the remaining scalar inputs and the spatial fields describing the surrounding landscape.
It consists of four convolutions layers followed by a batch normalization layer, the ReLU
activation function, an average pooling layer, and various dense layers, followed by batch
normalization and the ReLU activation function. A MAPE (Mean Absolute Percentage
Error) of 32.8% is reached using large training data, which includes a data map of Corsica
(land cover field and elevation field) and various environmental data: fuel moisture content
(FMC), wind speed, terrain slope, ignition point coordinates, heat of combustion perturba-
tion, particle density perturbation, fuel load perturbations, fuel height perturbations, and
surface–volume ratio perturbations, confirming the potential of this method in estimating
fire spread in a wide range of environments. McCarthy et al. [174] illustrated a deep learn-
ing model based on U-Net to downscale GEO satellite multispectral imagery, monitor, and
estimate fire progress. An excellent performance (a precision of 90%) is obtained, showing
the effectiveness of this method in determining fire evolution with high spatiotemporal
resolution (375 m) using quasi-static features (terrain, land, and vegetation information)
and dynamic features obtained from GEO satellite imagery.

Table 5. Deep learning models for fire spread prediction using satellite data.

Ref. Methodology Dataset Results (%)

[162] FireCast GeoMAC, Landsat data, and atmospheric and weather data Accuracy = 87.70

[164] AllConvNet Wildfire burn data from the Victoria Australia region during 2006 and 2017,
topography data (slope, elevation, and aspect), weather data (rainfall, humidity,
wind direction, wind speed, temperature, solar radiation, and lighting flash
density), proximity to anthropogenic interface (distance to the power line and
distance to roads), and fuel information (fuel moisture, fuel type, and emissivity)

Accuracy = 58.23

[169] DCIGN Vegetation information (canopy height, canopy cover, and crown ratio), fuel
model, moisture information (100-h moisture, 10-h moisture, 1-h moisture, live
woody moisture, and live herbaceous moisture), wind information (north wind
and east wind), elevation, and initial burn map

F1-score = 93.00
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Table 5. Cont.

Ref. Methodology Dataset Results (%)

[170] BPNN, RNN, and
LSTM

Eleven points of meteorological data: minimum temperature, mean tempera-
ture, maximum temperature, cooling degree days, total rain, total precipitation,
heating degree days, total snow, speed of maximum wind gust, snow on ground,
and direction of maximum wind gust

Accuracy = 90.90

[171] FU-NetCast Fire perimeter, landsat data, DEM, and climate data Accuracy = 92.73

[172] FU-NetCastV2 GeoMAC data: 400 fire perimeters from 2013 to 2019 Accuracy = 94.60

[173] Deep CNN Environmental data, map data of Corsica MAPE = 32.80

[174] U-Net LANDFIRE 2.0.0 database, GEO satellite imagery, and fire perimeters data Precision = 90.00

7. Datasets

Finding a large and reliable dataset for training and testing deep learning models is a
critical challenge, as the dataset is the main factor in helping to build accurate models and
in benchmarking multiple developed methods. However, for fire detection and mapping,
as well as fire severity and spread prediction, there is no baseline dataset, which makes the
comparison of models a critical issue. In this section, we present the most popular datasets
used for fire detection and mapping, and in predicting fire spread and damage severity
(see Tables 6 and 7).

Table 6. Overview of datasets used for wildland fire detection.

Ref. Data Name Data Type Spatial
Resolution

Patch Size

[50,51] USTC_SmokeRS 6225 satellite images 1 km 256 × 256

[69,70] LAFD 8194 satellite images of wildfires collected by Landsat-8 around the
world in August 2020; 146,214 image patches, consisting of 10-band
spectral images and associated results; 9044 image patches extracted
from thirteen Lansdsat-8 images captured in September 2020, as well as
their corresponding masks

30 m
10 m

256 × 256

[42,49] CBERS 04A
WFI

775 RGB images collected by the WFI sensor on board the CBERS
04A satellite between May 2020 and August 2020 in the Brazilian
Pantanal areas

5 m 256 × 256

[62,64] FASDD 310,280 images covering numerous regions: Canada (5764 images),
America (8437 images), Brazil and Bolivia (6977 images), Greece and
Bulgaria (10,725 images), South Africa (9537 images), China (624 im-
ages), Russia (2111 images), and Australia (266,069 images); 5773 labeled
images (format JSON, XML, and text)

10 m
30 m

1000 × 1000
2200 × 2200

Table 7. Overview of datasets used for wildland fire mapping and prediction.

Ref. Data Name Data Type Spatial
Resolution

Labeling
Type

[25] Landsat-8 satel-
lite imagery

Imagery data 15 m
30 m

Mapping

[66] DEM Elevation 20 m Mapping

[102] VIIRS Level 1B Imagery data, fire location 375 m
750 m

Mapping

[58] VIIRS Active
Fire

Imagery data, fire location 375 m Mapping
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Table 7. Cont.

Ref. Data Name Data Type Spatial
Resolution

Labeling
Type

[175] MapBiomas
Fire

Maps of burned areas for Brazil between 1985 and 2020, annual land
cover and land use

30 m Mapping

[94] PlanetScope Images collected from 130 CubeSat 3U satellites 3 m Mapping

[103] MCD64A1 C6 Burn date, quality assurance, burn data uncertainty, and the first and
last days of the year for reliable change detection

500 m Mapping

[94,97] Burned areas in
Indonesia

227 images with a resolution of 512 × 512 pix collected from Indone-
sia’s regions between 2019 and 2021, and their corresponding ground
truth images

30 m Mapping

[66] Weather and at-
mospheric data

Atmospheric pressure, wind direction, temperature, precipitation,
dew point, relative humidity, and wind speed

1 km Mapping
Prediction

[98,99] Satellite burned
area

73 wildfire images collected by Sentinel-2 L2A satellite from 2017 to
2019 in Europe regions, their binary masks, and the annotation of five
severity damage levels

10 m Mapping
Prediction

[176,177] GeoMAC Fire perimeter, fire location NS Prediction

[178] GlobFire Initial date of fire, final date of fire, fire perimeter, and burned area NS Prediction

[179,180] Wildfires Weather data (land surface temperature), ground condition (NDVI),
burned areas, and wildfire indicators (thermal anomalies)

250 m
500 m
1 km

Prediction

[181,182] WildfireDB Historical wildfire occurrence from 2012 to 2017; vegetation data
(the maximum, median, sum, minimum, mode, and count values
of canopy base density, canopy height, canopy cover, canopy base
height, and existing vegetation height and cover); topography data
(slope and elevation); weather data (total precipitation, maximum, av-
erage, and minimum temperature, relative wind speed, and average
atmospheric pressure)

30 m
375 m

Prediction

[147,183] Sentinel-2 Various samples collected in various regions of Europe by Copernicus
EMS with a resolution of 5000 × 5000 × 12 and classified according
to the wildfire damage level

10 to 60 m Prediction

[137,184] TerraClimate Climatic data from 1958 to present, including minimum and maxi-
mum temperature, precipitation, solar radiation, wind speed, climatic
water deficit, vapor pressure, and reference evapotranspiration

<5 km Prediction

[118] Datacube 19 features: max and min 2 m temperature, precipitation, LAI, Fpar,
day and night LST, EVI, NDVI, min and max u-/v-component of
wind, CLC, slope, elevation, aspect, population and road density

1 km Prediction

[165] GEODATA
DEM-9S

Ground level elevation points for all of Australia: slope, elevation,
and aspect data

1 km Prediction

[166,167] Vicmap Distance to anthropogenic interfaces in Victoria: distance to roads
and distance to power lines

250 m Prediction

[168] Dynamic land
cover

Land cover, vegetation cover, and land use information of Australia 250 m Prediction

[107,150] MTBS Post-fire and pre-fire Landsat Top of Atmosphere images, dNBR
images, perimeter mask, RdNBR images, thematic fire severity from
1984 to 2021, and fire location

30 m Prediction
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Table 7. Cont.

Ref. Data Name Data Type Spatial
Resolution

Labeling
Type

[75] CALFIRE Records of perimeters of forest fires collected in the state of California
between the years 1950 and 2019

10 m Prediction

[185] GFEDv4 Estimated monthly burned area, fractional contributions of different
fire types, and monthly emissions, 3-hourly or daily fields, monthly
biosphere fluxes

27.8 km Prediction

[186] LANDFIRE
2.0.0

Fuel data, vegetation data, and landscape disturbances and changes
(wildland fire, storm damage, fuel and vegetation treatments, insects,
disease, and invasive plants)

30 m Prediction

[156] SeasFire Cube Historical burned area and wildfire emissions between 2001 and
2021, meteorological data (humidity, direction of wind, wind speed,
average/max/min temperature, solar radiation, total precipitation,
etc.), human-related variables (population density), oceanic indices,
vegetation data (LAI, land cover, etc.), and drought data

27.8 km Prediction

[79,187] NWDS 18,455 fire samples during 2012–2020, previous fire mask, fire mask,
and 2D fire data with numerous variables such as vegetation (NDVI),
population density, weather (wind direction, wind speed, humid-
ity, precipitation, maximum/minimum temperature), topography
(elevation), drought index, and energy release component

1 km Prediction

[126] FireCube Avg/min/max 2 m dewpoint temperature, avg/max relative humid-
ity, avg/max/min surface pressure, avg/max/min total precipita-
tion, avg/max/min 10 m V wind component, avg/max/min 10 m
U wind component, avg/max/min 2 m temperature, 8 day evapo-
transpiration, FPAR, FWI, rasterized ignition points, LAI, day/night
land surface temperature, wind direction of maw wind, max wind
speed, daily number of fires, soil moisture index, soil moisture index
anomaly, aspect, elevation, population density (2009–2021), distance
from roads, roughness, slope, and distance from waterways

1 km Prediction

NS refers to not specified.

• The GeoMAC (Geospatial Multi-Agency Coordination) database [176,177] illustrates
stored fire perimeters data since August 2000. It is presented via the United States
Geological Survey (USGS) data series product. It contains wildland fire perimeters
information obtained from wildfire accidents, is evaluated for accuracy and complete-
ness, and is collected via intelligence sources such as IR (infrared) imagery and GPS. It
has public access via the GeoMAC Web application [176]. This data are archived by
year and state.

• Landsat8 satellite imagery is used as a visual imagery data collected from GloVis [25]
every few months. Each imagery has a resolution of 30 m, where each pixel corre-
sponds to a 30 × 30 square meter area on the ground.

• Weather and atmospheric data are collected from the National Oceanic and Atmo-
spheric Administration (NOAA) [66]. These include atmospheric pressure, wind
direction, temperature (Celsius), precipitation, dew point, relative humidity, and wind
speed for each wildfire location.

• Digital Elevation Models (DEMs) information [66] represents the zero surface elevation
to which scientists and geodesists refer. It was generated from remotely sensed
data collected by drones, satellites, and planes with spatial resolutions of 20 m or
higher using various remote sensing methods such as SAR interferometry, LiDAR,
Stereo Photogrammetry, and Digitizing contour lines. It was collected from the USGS
National Map [188] for each fire location.

• VIIRS (Visible Infrared Imaging Radiometer Suite) Level 1B [102] data are developed
by NASA (National Aeronautics and Space Administration) and generated using SIPS
(NASA VIIRS Science Investigator-led Processing Systems). VIIRS is on two satellites,
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the JPSS (Joint Polar Satellite System) satellites and the SNPP (Suomi National Polar-
orbiting Partnership). VIIRS Level 1B data contain an array of related information,
calibrated radiance values, and uncertainty indices. These include three products for
image resolution, day–night band, and moderate resolution. They provide geolocation
products and calibrated radiances.

• VIIRS Active Fire [58] is a fire monitoring product generated by FIRMS (Fire Informa-
tion for Resource Management System) from MODIS (Moderate Resolution Imaging
Spectroradiometer ) and VIIRS. It includes near-real-time (within 3 h of satellite obser-
vation) and real-time (only in the US and Canada) fire locations.

• The GlobFire (Gloab wildfire) dataset [178] is a public dataset generated by a data
mining process utilizing MCD64A1 (MODIS burnt area product Collection 6). It
was developed and available under the GWIS (Global Wildfire Information System)
platform. It provides detailed information about each fire, such as the initial date, final
date, perimeter, and burned area, which helps to determine the evolution of the fire.

• The Wildfires dataset [179,180] are public data obtained from the CWFIS (Canadian
Wildland Fire Information System) [189]. It contains diverse data related to weather
(land surface temperature), ground condition (NDVI), burned areas, and wildfire
indicators (thermal anomalies) collected from MODIS. The burned areas represent
various regions that differ in their burning period, size, extent, and burn date. This
dataset contains 804 instances divided into 386 wildfire instances and 418 non-wildfire
instances.

• MCD64A1 (Collection 6) C6 [103] is a burned area data product, which maps and
identifies the approximate date and spatial extent of burning areas, employing a
spatial resolution of 500 m of MODIS Surface Reflectance imagery. It includes the
following data: burn date, quality assurance, burn data uncertainty, and the first and
last days of the year, for reliable change detection.

• The LANDFIRE 2.0.0 database [186] consists of public data for Puerto Rico, Alaska, the
continental United States, and Hawaii. It contains fuel and vegetation data collected
from various existing information resources such as the USGS National Gap Analysis
Program (GAP), NPS Inventory and Monitoring, State Inventory Data, and USFS
Vegetation and Fuel Plot Data. It also includes landscape disturbances and changes
such as wildland fire, storm damage, fuel and vegetation treatments, insects, disease,
and invasive plants.

• The USTC_SmokeRS dataset [50,51] are public data for smoke detection tasks collected
from MODIS satellites. It consists of 6225 satellite images with a spatial resolution
of 1 km, a size resolution of 256 × 256 pix., and saved in “.tif” format. It includes six
classes that are smoke (1016 images), seaside (1007 images), land (1027 images), haze
(1002 images), dust (1009 images), and cloud (1164 images).

• The Sentinel-2 dataset [147,183] includes the data of 73 areas of interest collected in
various regions of Europe by Copernicus EMS, which are used to delineate forest fires
and to predict the damage level. Each area of interest was presented with an image
with a resolution of 5000 × 5000 × 12 (12 illustrates the twelve channels acquired via
satellite remote sensing) and classified according to the wildfire damage level, varying
over 0 (no damage), 1 (negligible damage), 2 (moderate damage), 3 (high damage),
and 4 (completely destroyed).

• The Landsat-8 Active fire detection (LAFD) dataset [69,70] is a public dataset devel-
oped for active fire detection. It contains 8194 satellite images (with a resolution
of 256 × 256 pix.) of wildfires collected by Landsat-8 around the world in August
2020, 146,214 image patches with a resolution of 256 × 256 pix., consisting of 10-band
spectral images, and associated results produced by three hand-crafted active fire
detection methods [71–73], and 9044 image patches extracted from thirteen Landsat-8
images captured in September 2020 as well as their corresponding masks, which were
manually annotated by a human specialist.
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• The WildfireDB dataset [181,182] is an open source data for wildfire propagation
tasks collected from the VIIRS thermal anomalies/active fire database. It presents the
historical wildfire occurrence over 2012–2017, as well as the vegetation (the maximum,
median, sum, minimum, mode, and count values of canopy base density, as well as
canopy height, canopy cover, canopy base height, and existing vegetation height and
cover), topography (slope and elevation), and weather (total precipitation; maximum,
average, and minimum temperatures; relative wind speed; and average atmospheric
pressure). It contains 17,820,835 data points collected from a large area that covers
8,080,464 square kilometers of the continental United States (United States, Brazil, and
Australia).

• The TerraClimate dataset [137,184] is a high-resolution global dataset of monthly
climate and climatic water balance from 1958 to present. It presents monthly the
following climate factors: minimum and maximum temperature, precipitation, solar
radiation, wind speed, climatic water deficit, vapor pressure, and reference evapotran-
spiration.

• The Datacube dataset [118] includes nineteen features collected from MODIS, grouped
into dynamic and static attributes. The dynamic attributes are thirteen features, which
are max and min 2 m temperature, precipitation, LAI, Fpar, day and night LST, EVI,
NDVI, and the min and max u-/v-component of wind. The static attributes introduce
six features, namely CLC (Corine Land Cover), slope, elevation, aspect, population,
and road density.

• The GEODATA DEM-9S dataset [165] refers to Digital Elevation Model Version 3 and
Flow Direction Grid 2008. It is public data, which presents ground level elevation
points for all of Australia with a grid spacing of nine seconds in longitude and latitude,
approximately 250 m in the GDA94 coordinate system. It is resampled to 500 m
resolution using bilinear interpolation to generate the elevation, aspect, slope, sine,
and cosine components of the spectrum.

• The Vicmap data [166,167] show the distance to anthropogenic interfaces in Victoria,
including distance to roads and distance to power lines.

• The dynamic land cover dataset [168] is developed by the Australian Bureau of
Agriculture, and Resource Economics and Sciences and Geoscience Australia. It
reports land cover, vegetation cover, and the land use information of Australia.

• The MTBS (Monitoring Trends in Burn Severity) dataset [107,150] is a large-scale
public database developed to determine trends of burn severity. It describes burn
severity and burn area delineation data for the entire United States land area between
1984 and 2021. It includes fire occurrence data and burned areas boundaries data,
providing various influencing factors of fires such as post-fire and pre-fire Landsat
Top of Atmosphere images, dNBR (delta Normalized Burnt Ratio) images, perimeter
mask, RdNBR (relative dNBR) images, thematic fire severity from 1984 to 2021, and
fire location obtained from various remote sensing satellites such as Landsat OLI,
Landsat TM, Sentinel 2A, Sentinel 2B, Landsat ETM+, and Sentinel 2A.

• The CALFIRE (California Fire Perimeter Database) dataset [75] was developed by the
Fire and Resource Assessment Program. It contains the records of perimeters of forest
fires collected in the state of California between 1950 and 2019.

• The GFED (Global Fire Emissions Database, Version 4.1) dataset [185] includes the
estimated monthly burned area, fractional contributions of different fire types, and
monthly emissions, as well as 3-hourly or daily fields, which allow for scaling the
monthly emissions to higher temporal resolutions. Additionally, it provides data for
monthly biosphere fluxes. The spatial resolution of the data is 0.25 degrees latitude by
0.25 degrees longitude, and the time period covered is between 1995 and 2016. The
emissions data consist of a variety of substances such as carbon, carbon monoxide,
methane, dry matter, nitrogen oxides, total particulate matter, etc. These data are
presented annually by region, globally, and by the source of fire for each area.
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• The MapBiomas Fire dataset [175] is a public dataset of burned areas for Brazil between
1985 and 2020. Maps of the burned area are available in various temporal domains
that are monthly, annual, and accumulated periods, as well as fire frequency. They are
combined with annual land cover and land use to show the zones affected by the fires
over the last 36 years.

• The PlanetScope dataset [94] is developed by the PlanetLabs cooperation. It includes
high-resolution images with a spatial resolution of 3 m per pixels collected from
130 CubeSat 3U satellites, named Dove.

• The burned areas in the Indonesia dataset was developed by Prabowo et al. [94,97]
to train and evaluate deep learning models related to burned area mapping tasks. It
comprises 227 images with a resolution of 512 × 512 pix. (in GeoTIFF format) collected
from the Landsat-8 satellite in regions of Indonesia between 2019 and 2021, as well as
their corresponding ground truth images, which are manually annotated.

• The satellite burned area dataset [98,99] is a public dataset for burned area detection
tasks based on the semantic segmentation method. It includes 73 forest fire images
with a resolution of up to 10 m per pixel collected by the Sentinel-2 L2A satellite from
2017 to 2019 in Europe regions and their binary masks. It also contains the annotation
of five severity damage levels, which range between undamaged and completely
destroyed, generated by the Copernicus emergency management service annotation.

• The FASDD (Flame and Smoke Detection Dataset) [62,64] is a very large public dataset
consisting of flame and smoke images collected from multiple sources such as satellite
and vision camera. It includes 310,280 remote sensing images with resolutions of
between 1000 × 1000 pix. and 2200 × 2200 pix. obtained by Landsat-8 with a 30 m
resolution and Sentinel-2 with a 10 m resolution, covering numerous regions such
as Canada (5764 images), America (8437 images), Brazil and Bolivia (6977 images),
Greece and Bulgaria (10,725 images), South Africa (9537 images), China (624 images),
Russia (2111 images), and Australia (266,069 images). Among these remote sensing
images, 5773 images were labeled via human–computer interaction in four kinds of
formats such as JSON, XML, and text.

• SeasFire Cube [156] is an open access dataset developed under the SeasFire project and
funded by the ESA (European Space Agency). It contains fire data between 2001 and
2021 in 0.25 degree grid resolution and 8 day temporal resolution, including historical
burned areas and wildfire emissions, meteorological data (humidity, direction of wind,
wind speed, average/max/min temperature, solar radiation, total precipitation, etc.),
human-related variables (population density), oceanic indices, vegetation data (LAI,
land cover, etc.), and drought data.

• The NDWS (Next Day Wildfire Spread) dataset [79,187] is a public, large-scale, mul-
tivariate remote sensing dataset over the continental United States during 2012 and
2020. It comprises 2D fire data with numerous variables such as vegetation (NDVI),
population density, weather (wind direction, wind speed, humidity, precipitation,
and maximum/minimum temperature), topography (elevation), drought index, and
an energy release component. It also includes 18,455 fire samples; each represents
64 km × 64 km at 1 km resolution from the time and location of the fire, as well as the
previous fire mask (mask at time t) and fire mask (time at t + 1 day).

• The FireCube dataset [126] is a daily datacube for the modeling and analysis of wild-
fires in Greece. It includes numerous variables during 2009 and 2021 at a daily 1 km
× 1 km grid: average (avg)/ maximum (max)/minimum (min) 2 m dewpoint tem-
perature, avg/max relative humidity, avg/max/min surface pressure, avg/max/min
total precipitation, avg/max/min 10 m V wind component, avg/max/min 10 m U
wind component, avg/max/min 2 m temperature, 8 day evapotranspiration, FPAR
(Fraction of Absorbed Photosynthetically Active Radiation), FWI (Forest Fire Weather
Index), rasterized ignition points, LAI, day/night land surface temperature, wind di-
rection of maw wind, max wind speed, daily number of fires, soil moisture index, soil
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moisture index anomaly, aspect, elevation, population density (2009–2021), distance
from roads, roughness, slope, distance from waterways, etc.

• The CBERS 04A WFI dataset is a public dataset developed by Higa et al. [42,49] to
map active fires. It contains 775 RGB images collected by the Wide Field Imager
(WFI) sensor on board the CBERS 04A remote sensing satellite between May 2020 and
August 2020 in the Brazilian Pantanal areas.

8. Discussion

In this section, we discuss the data preprocessing methods used before training the
deep learning models for fire detection and mapping, as well as for the fire spread and
damage severity prediction tasks. In addition, we analyze the performances of the deep
learning models for each of these tasks.

8.1. Data Preprocessing

The availability of satellite datasets is crucial in developing reliable and accurate DL
models for detecting and mapping wildland fires, as well as for predicting their damage
and spread. However, the sensitivity of wildland fire data is the main reason for the lack of
public access to it, as it often includes sensitive information such as fire location and the
severity of the damage. Moreover, there are several challenges depending on numerous
factors, including the size of the data, the noise in the data, the variability of the weather
and environmental conditions, and the complexity of the images. Table 7 illustrates the
commonly used datasets for wildland fire detection, mapping, and prediction using satellite
remote sensing data. There is no standard dataset for training and testing these models. Nu-
merous datasets were designed for these tasks, such as PlanetScope [94], GFED [185], Map-
Biomas Fire [175], FASDD [62,64], NDWS [79,187], FireCube [126], WildfireDB [181,182],
USTC_SmokeRS [50,51], and Wildfires [179,180]. We can see that the wildland fire data
include a wide range of fire influencing factors, such as vegetation data (canopy height,
canopy cover, NDVI, fuel moisture, fuel type, etc.), topography data (slope, aspect, surface
roughness, and elevation), weather data (precipitation, temperature, wind speed, wind
direction, pressure, solar radiation, vapor pressure, etc.), and proximity to anthropogenic
interfaces (distance to power lines and roads), as well as historical fires and satellite images.
Data preprocessing plays a crucial role in producing a reliable and accurate performance
for wildland fire detection and mapping, as well as for predicting the severity and spread
of fire damage. Many preprocessing steps were employed to remove, clean, and correct
the data to ensure that DL models were trained on compatible and accurate learning data.
These steps include: (1) data filtering to remove information that is not relevant to wildland
fires, (2) data cleaning to remove noise such as cloud cover or smoke, and to correct or
remove data anomalies resulting from sensor malfunction or other errors, and (3) data
normalization to adjust the range of inputs to a similar scale, ensuring that DL models are
trained on comparable and coherent data. On the other hand, data augmentation techniques
were used to increase the size and diversity of wildland fire datasets and to overcome
overfitting, as well as to improve the robustness of DL models for fire detection, mapping,
and prediction, as shown in Table 8. Several augmentation techniques were used for this
task, including mosaic data augmentation, image occlusion methods, photometric transfor-
mations, and geometric transformation. As an example, Zhao et al. [38] employed random
vertical and horizontal flips to diversify the training data. Khryashchev et al. [68] used
multiple techniques such as rotation, mirroring, shifting, and random chromatic distortion
in HSV color format to augment the number of input images, resulting in eight times more
images than the original training and testing data (1850 images). Colomba et al. [98] used
four data augmentation methods during the training phase, including rotation, shear, and
vertical/horizontal flips, to improve the robustness of their proposed model for fire severity
forecasting. In [149], three data augmentation techniques (rotation, vertical/horizontal
flips, and shear) were used to change the data variability, especially for unbalanced classes.
In [80], cropping and horizontal/vertical mirroring methods were used, resulting in 47 mul-
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tispectral smoke images. Hu et al. [90] also employed six data augmentation techniques
(resize, mirror, rotation, aspect, crop, and color jitter) in training their fire mapping model.

Table 8. Overview of data augmentation techniques.

Task Ref. Data Augmentation Techniques

Fire detection

[38] Horizontal/vertical flip
[68] Rotation, shift, flip, mirroring, and random chromatic distortion in HSV color
[76] Horizontal/vertical flip
[80] Crop and horizontal/vertical mirroring
[87] Brightness, rotation, shift, contrast, and scale

Fire mapping

[90] Resize, mirror, rotation, aspect, crop, and color jitter
[93] Rotation, mirror, and horizontal/vertical flip
[97] Rotation
[98] Rotation, shear, and vertical/horizontal flip

Fire damage prediction [144] Horizontal/vertical flip, rotation, and shear
[150] Vertical/horizontal flip

8.2. Discussion of Model Results

The performances of the DL models are measured by their ability to accurately detect
and map fires, as well as in predicting damage severity and fire spread. Evaluating the
performance of a fire detection model depends on assessing its ability to correctly identify
wildland fires. Similarly, in a fire mapping task, the reliability of DL models can be
evaluated based on their success in correctly mapping and detecting burned areas on the
input map. In addition, the performance of DL models in predicting damage severity and
fire spread tasks is evaluated based on their effectiveness in determining the level of fire
damage and estimating fire spread using various influencing factors. Tables 2–5 present
the results obtained from the DL models used for detecting and mapping wildland fires,
and predicting the level of damage and spread caused by the fires. The comparison of the
DL models is challenging due to the use of various metrics and datasets for evaluation. In
general, deep learning models demonstrated remarkable performances in detecting and
mapping wildland fires, as well as in predicting the severity and spread of the fires using
satellite remote sensing data, outperforming traditional machine learning models. In fire
detection and mapping, satellite data were utilized to identify smoke plumes and fires.
Convolutional Neural Networks (CNNs), which are commonly composed of convolutional
layers, pooling layers, and fully connected layers, are frequently used for fire detection.
For instance, in [31], a deep CNN, MiniVGGNet, demonstrated excellent accuracy, at
98.00%. In [56], a 3D CNN was proposed to identify fire using GOE satellite images,
achieving a superior F1-score of 94.0% compared to traditional methods such as GOES-
AFP, AVHRR-FIMMA, and VIIRS-AFP. Additionally, a deep CNN, named FireCNN, was
designed to detect fire in Himawari-8 satellite data, showing excellent performance with
an accuracy of 99.90%, surpassing machine learning methods such as SVM, random forest,
and thresholding methods. The CNN model FireCast showed a high accuracy of 87.7% in
predicting fire spread, which is superior to the Farsite simulator by 24.1% and 19.9% using
dry and wet fuel moisture, respectively [162]. CNN models were also used to predict fire
damage severity, with promising results. For example, a 2D/3D CNN method [125] was
employed to analyze multiple factors that influence fires, such as temperature, day/night
land surface temperature, soil moisture index, relative humidity, wind speed, NDVI, surface
pressure, and precipitation, obtaining an accuracy of 96.48% better than machine learning
methods such as random forest and XGBoost. On the other hand, DL models based on
the encoder–decoder architecture were utilized to detect fire or smoke areas and to map
burned areas as a segmentation task. For instance, in [80], an encoder–decoder model called
Smoke-UNet, was proposed to detect smoke areas using multispectral satellite images,
showing a high accuracy of 92.3%, outperforming existing semantic segmentation methods
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such as UNet, FCN, PSPNet, and SegNet. In [87], UNet was used to detect fire areas,
demonstrating a high accuracy, with 98.0%. In [96], the Burnt-Net, an encoder–decoder
model, was developed to accurately map the extent of burned areas using Sentinel-2 images.
It achieved an accuracy of 98.08%, surpassing U-Net by 1.15%. Numerous multi-class
semantic segmentation techniques based on U-Net architecture, including the Double-Step
U-Net [144,146], WLF-UNet [154], and DS-AttU [147] were also used to predict the severity
of damage. These methods demonstrated their effectiveness in accurately predicting the
level of damage severity.

The transfer learning technique was also employed to reutilize a pretrained DL model
trained on a large dataset, such as ImageNet [37], for detecting and mapping wildfires using
satellite data. The main idea is to adapt and fine-tune the pretrained model’s parameters
to avoid overfitting caused by the limited amount of training data available for these
tasks. Pretrained DL models showed great potential in accurately detecting and mapping
wildfires in satellite data. For instance, in [34], a pretrained MobileNet v2 was employed to
detect wildfires, achieving an accuracy of 73.3%. In [89], a pretrained VGG16 was also used
as a feature extractor to map fires using real-time Sentinel-2 data, achieving an impressive
F1-score of 87.0%.

To predict the severity of fire damage and fire spread, historical fire damage data were
analyzed using an LSTM network, which is a type of RNN designed to capture the temporal
dependencies and patterns in time series data. As an example, in [122], an LSTM was used
to analyze dynamic predictors such as temperature, relative humidity, rain, wind, and
ISI, etc., achieving a good RMSE of 0.021 compared to other methods, including decision
tree, linear regression, SVM, and NN. The LSTM and RNN models also achieved a high
accuracy of 90.9% when used to predict fire spread using historical fire data between 1990
and 2018, and eleven meteorological variables [170]. This suggests that these models were
able to accurately learn the patterns and relationships between historical wildfire data and
fire influencing factors to provide reliable predictions.

Attention mechanism was also used to analyze satellite data and to address the prob-
lem of wildland fires. It allows for the determination of global dependencies and to focus
on relevant features in the input satellite data, thereby improving the performance of
DL models in detecting and mapping wildland fires. In [150], attention U-Net, which
adopts the attention gate mechanism to remove noisy and irrelevant features transmitted
by skip connections, showed promising results (a Kappa coefficient of 88.63%), overcom-
ing several DL models, including U-Net, U2-Net, U-Net++, DeepLab v3, DeepLab v3+,
and FCN by 0.81%, 0.83%, 1.48%, 11.65%, 8.26%, and 7.39%, respectively, in detecting
the burn severity level. AOSVSSNET, which also integrates the attention mechanism in
skip connection, demonstrated a high IoU of 72.84%, outperforming FCN, UNet, and
DeepLab v3+ by 43.21%, 7.17%, and 0.7% in detecting smoke using satellite data [84]. More-
over, the Swin Transformer, which adopts the attention mechanism as a main component,
showed promising results (mAP of 53.01%), better than Yolo v5 (mAP of 41.39%) and
Faster R-CNN (mAP of 32.05%) in detecting flame and smoke using a large satellite dataset
(5773 images) [62].

In summary, the DL models showed interesting performances in detecting and map-
ping wildland fires using satellite remote sensing data as input. They automatically extract
features from the input data, and detect smoke and fires more accurately than classical ML
models. In addition, for predicting the damage and spread of wildland fires, DL models
also showed promising results using various influencing fire factors such as temperature,
wind speed, humidity, topography, etc. However, the comparison of DL models in these
topics is challenging due to the use of various metrics and datasets for training and testing.
Therefore, it is important to develop standard evaluation metrics and datasets for future
research to provide solid comparisons and to facilitate the development of more reliable
fire models.
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9. Conclusions

This paper presented a comprehensive literature review of recent deep learning mod-
els proposed for detecting, mapping, and predicting wildland fires’ damage severity and
spread using satellite remote sensing data. The proposed deep learning models demon-
strated their potential with accurate and reliable performance, even when faced with
challenges such as large data sizes, noisy data, environmental variability, and image com-
plexity. We also illustrated the most commonly used datasets for these tasks. Finally, we
discussed the challenges associated with data preprocessing and model interpretation for
these tasks.

Our discussion reveals that deep learning models outperform traditional methods,
confirming their effectiveness and potential in detecting, mapping, and predicting wildland
fires using satellite data, including numerous fire influencing factors such as vegetation,
topography, weather, and historical fire data. As an example, FireCNN and FCN showed
interesting performances in wildland fire detection, reaching accuracies of 99.90% and
99.50%, respectively. For the wildland fire detection task, Burnt-Net demonstrated a high
performance, with an accuracy of 98.08%. In the wildland fire susceptibility task, 2D/3D
CNN achieved an excellent accuracy of 96.48%. Additionally, FU-NetCastV2 also showed
a great result, with an accuracy of 94.60% in estimating wildland fire spread. However,
several challenges remain for future research, including the scarcity of labeled satellite
datasets, which are essential for training and testing wildfire models. Detection, mapping,
and the forecasting of wildfires require the processing of different types of data such
as satellite imagery, meteorological data, etc. These data can be noisy and may contain
artifacts, which affect the performance of the results. In addition, wildfires progress rapidly,
thus requiring real-time and continuous data processing to accurately detect and map the
wildfires. One potential solution is the use of 3D virtual simulation platforms to generate
satellite wildfire data with their annotations, which can facilitate the training of deep
learning models. In addition, combining terrestrial, aerial (drone), and satellite wildland
fire data with vision Transformer models could provide reliable and real-time information
for wildland fire monitoring and management.
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SWIR Short-Wave Infrared
NIR Near-Infrared
MODIS Moderate Resolution Imaging Spectroradiometer
FCN Fully Convolutional Network
IR Infrared
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GEO Geostationary orbit
LEO Low-earth orbit
SSO Sun-synchronous orbit
MODIS Moderate Resolution Imaging Spectroradiometer
AVHRR Advanced Very-High-Resolution Radiometer
VIIRS Visible Infrared Imaging Radiometer Suite
LAI Leaf Area Index
NDVI Normalized Difference Vegetation Index
Fpar Fraction of Photosynthetically Active Radiation
EVI Enhanced Vegetation Index
LST Land Surface Temperature
SVM Support Vector Machine
NDWI Normalized Difference Water Index
NDMI Normalized Difference Moisture Index
SGD Stochastic Gradient Descent
Adam Adaptive Moment Estimation
RMSProp Root Mean Square Propagation
ISI Initial Spread Index
DMC Duff Moisture Code
FWI Forest Fire Weather Index
FFMC Fine Fuel Moisture Code
BUI Buildup Index
RMSE Root Mean Squared Error
GFED Global Fire Emissions Database
CALFIRE California Fire Perimeter Database
dNBR delta Normalized Burnt Ratio
RdNBR relative dNBR
NN Neural Network
SAR Synthetic Aperture Radar
TWI Topographic Wetness Index
S-NPP Suomi National Polar-Orbiting Partnership
EMS Emergency Management Service
MTBS Monitoring Trends in Burn Severity
NOAA National Oceanic and Atmospheric Administration
LSTM Long Short-Term Memory
RNN Recurrent Neural Network
MAPE Mean Absolute Percentage Error
PRISMA PRecursore IperSpettrale della Missione Applicativa
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