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Abstract: With climate change and the resulting rise in temperatures, wildfire risk is increasing all
over the world, particularly in the Western United States. Communities in wildland–urban interface
(WUI) areas are at the greatest risk of fire. Such fires cause mass evacuations and can result in
traffic congestion, endangering the lives of both citizens and first responders. While existing wildfire
evacuation research focuses on social science surveys and fire spread modeling, they lack data on
traffic operations during such incidents. Additionally, traditional traffic data collection methods are
unable to gather large sets of data on historical wildfire events. However, the recent availability of
connected vehicle (CV) data containing lane-level precision historical vehicle movement data has
enabled researchers to assess traffic operational performance at the region and timeframe of interest.
To address this gap, this study utilized a CV dataset to analyze traffic operations during a short-notice
evacuation event caused by a wildfire, demonstrating that the CV dataset is an effective tool for
accurately assessing traffic delays and overall traffic operation conditions during the selected fire
incident. The findings also showed that the selected CV dataset provides high temporal coverage and
similar travel time estimates as compared to an alternate method of travel time estimation. The study
thus emphasized the importance of utilizing advanced technologies, such as CV data, to develop
effective evacuation strategies and improve emergency management.

Keywords: connected vehicle; traffic operations; wildfire; evacuation; wildland–urban interface;
disaster

1. Introduction

Natural disasters have become more common and costly in recent years. Extreme
and no-notice disasters, defined as events that occur with little to no official warning, pose
a significant threat to human life, property, and the integrity of the ecosystem. These
catastrophic damages are often caused by wildfires, which are uncontrolled fires that
spread quickly in the presence of extreme weather conditions such as dry vegetative fuel,
severe drought, high wind, and steep topography. Unfortunately, because of climate
change, these conditions are becoming more common, particularly in the Western United
States [1,2]. Large-scale wildfires can cause mass evacuations, which can create social
disruption, long-term infrastructure damage, and injuries or deaths of evacuees and first
responders [3,4].

Additionally, communities living near undeveloped wildland or vegetative fuels,
constituting wildland–urban interface (WUI) zones, are most vulnerable to fire due to prox-
imity to flammable vegetation and limited egress routes [5,6]. Many of these communities
are experiencing rapid population growth, but the traffic infrastructure and the number of
exits are unable to keep up with the rising traffic demand, putting the lives of residents
at risk [7].
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In the event of an emergency evacuation, such as in WUI areas, having a reliable
transportation system is necessary. It gives residents safe passage out of the affected area
and provides essential access for first responders to reach the impacted region in time.
Large-scale hazardous events (such as wildfires, tornadoes, hurricanes, earthquakes, floods,
or chemical spills) often require mandatory evacuation of residents [8]. In these situations,
the amount of time available for evacuation is critically important, especially in the event
of a wildfire, where evacuees must watch out for smoke, flying debris, and burning flames
as well as avoid conflict with emergency services [9,10]. The population density and traffic
infrastructure of the area affected by the fire also have a significant impact on the safe and
well-planned evacuation of people. When there is a sudden evacuation, high-density areas
can result in increased traffic congestion and longer vehicular queues on the exiting routes,
endangering the lives of stranded evacuees [11,12]. The response of the local authorities
and first responders is also considered important in determining the behavior of residents
during an evacuation. Pre-evacuation warnings and explicit instructions from emergency
personnel can help evacuees to make thoughtful decisions about the fire risk and safely
leave the affected area [13,14]. Additionally, the population’s demographics, including the
size of the household, income, level of education, ownership of a car or home, ethnicity, and
previous experience with mass evacuations can have a significant impact on the evacuation
rate [15,16].

Currently, most of the research on wildfire evacuation focuses on conducting hu-
man behavioral studies using social science-based surveys to identify the aforementioned
factors that affect the household’s decision to evacuate or not, with a few focusing on
wait-and-see decisions [17]. Over the years, several evacuation behavior models and tech-
niques have been developed to simulate individuals’ decision-making during emergency
evacuations [18]. These include descriptive analysis, binary choice models, multinomial
logistics models, latent choice models, and logistic regressions analysis evaluating factors
such as demographic characteristics, risk perception, official orders, beliefs, and attitudes
regarding wildfire risk, and waiting behavior during evacuation [19–29]. However, these
studies lack the necessary information regarding evacuation traffic movement and individ-
ual or collective driving behavior during WUI fires.

In addition to studies on human behavior about evacuation decision-making, fire
spread models have been developed to ascertain the location and severity of the fire, and
its impact on evacuation [30]. Rothermel 1972 developed a semi-physical model using
mathematical equations to forecast fire intensity and spread rates based on empirical
wildfire spread data [31]. The elliptical fire shape model has been widely used to simulate
the rates at which fire spread on a two-dimensional plane [32]. Some fire growth models
are used to simulate the spread of fire in landscape areas [33]. Fire spread models are also
combined with geographic information systems (GIS) for the identification of fire trigger
points to derive a buffer around a place based on the shortest path algorithm. This is used
to determine the time needed for the firefighting crew to move to shelter areas [34], plan
staged evacuation of residents [35], and incorporate warning dynamics and fire propagation
into simulation models [36]. However, these models only consider the decision-maker’s
judgment and lack a systematic estimation of evacuation time [37].

Understanding the impact of fire ignition and rate of spread on the residents’ evac-
uation behavior is important, but it is also critical to comprehend the functioning of the
transportation system to aid in the prompt and timely evacuation of people. Existing stud-
ies on assessing the effectiveness of transportation systems and determining evacuation
clearance times integrate behavioral presumptions with fire spread and traffic simulation
models. Beloglazo et al., (2016) estimated wildfire evacuation clearance times using SUMO
traffic simulation software that took into account fire propagation and human response
to various time-based evacuation advisories. However, it failed to incorporate the traffic
demand under different times of the day and the drivers were not permitted to switch
to different routes even during significant traffic delays [36]. Li et al. (2019) calculated
evacuation time in MATSim microscopic traffic simulation model and coupled the results
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with the fire spread model and GIS to determine the location of fire buffers. However,
the travel time estimation was made assuming that all residents would comply with the
evacuation and would be present at their homes at the time of the evacuation [37] Similarly,
Cova et al., 2002 estimated evacuation time in Paramics microsimulation platform con-
sidering Poisson distribution of vehicles which lacked the necessity to consider variation
in travel demand under various times of the day or home occupancy [38]. Thus, existing
research on WUI fires lacks empirical data on traffic movement and clearance time dur-
ing evacuation [17].Therefore, there is a need to obtain historical traffic data on wildfire
evacuation to better prepare for future hazardous events.

Over time, several traffic data collection technologies have been developed that are
able to collect a broad range of traffic flow information such as vehicle type, traffic volumes,
travel time, speed, road user classification, and traffic signal control [39]. Earlier, travel
time data from a subset of vehicles were gathered manually using techniques such as
driving a single vehicle along a corridor, but those methods were expensive and made it
challenging to obtain statistically significant sample sizes [40]. Inductive loop detectors
have been widely used to collect basic traffic information such as traffic volume and spot
speed, but they lack the ability to easily estimate travel time since they mostly collect point
measurement data [41]. Automated vehicle identification (AVI) systems are used at toll
facilities to detect toll tags on vehicles at various locations and estimate travel time based
on the arrival at each location. However, the accuracy of vehicle detection can be affected
by physical obstruction, misleading toll tags, and placement distance from the road [42].

With the advancement in sensing technology, optical cameras are installed at different
locations that capture images of license plates of vehicles and use video image processing
and license plate matching at different locations to calculate travel times. However, they
require a direct line of sight to the license plate to minimize visual obstructions that
can also be impacted by weather conditions [43]. While the aforementioned travel time
data collection methods can produce accurate travel time estimates if the sample size is
sufficiently large and unbiased, they are more expensive and may require the installation
of new types of sensors and hence are not feasible for deployment in urban areas [41].

More recently, Bluetooth and Wi-Fi technologies are becoming popular for gathering
traffic data because they are inexpensive and easy to install. However, due to their limited
detection range and accuracy, these technologies are not considered to be a practical
means to obtain high-fidelity traffic data [44]. The advancement in traffic signal control
operations has introduced the collection of high-resolution traffic signal controller data
using automated traffic signal performance measures (ATSPM) that have been deployed at
traffic signals by state agencies to collect various traffic performance measures [45]. This
system can collect real-time and historical traffic signal data that can be used to improve
traffic signal and corridor operations, and for support and validation of other existing and
emerging traffic data collection technologies [46].

Over the last decade, large sets of data about human mobility, facilitated by exten-
sive use of sensors, such as Global Positioning System (GPS) devices in many modes of
transportation and mobile phones, have become the fundamental component of the new
paradigm of smart cities [47]. Detailed information about a driver’s location, speed, and
other information can be gathered from a person’s mobile device or vehicle by a public or
private entity that can be used to obtain travel times [48]. Many independent third-party
companies compile large amounts of crowdsourced data and provide high-quality real-time
traffic information (such as Waze [49], INRIX [50], TomTom [51], and HERE [52]). Moreover,
modern vehicles called connected vehicles (CV) produced by leading automobile manu-
facturers, are equipped with sensors that record temporal and spatial information about
the vehicle trajectory and the surrounding environment, and transmit it to the cloud com-
puting databases [53]. Several big data companies have also emerged (such as Otonomo
(Otonomo: https://otonomo.io/, accessed on 10 February 2023), Wejo (Wejo data services:
https://www.wejo.com/, accessed on 10 February 2023) who segregate and normalize
historical CV data and share that with vehicle manufacturers, researchers, and technology
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developers for research and development [54]. For instance, Wejo has partnered with
multiple global automobile manufacturers that record vehicle trajectory data from vehicle
onboard sensors. The data are collected at a 3 s interval and each data point is recorded
within a 3 m radius with an accuracy of 95%. Each of these data points includes a unique
identifier, the location of the data point, a timestamp, the speed of the vehicle, and its
direction of movement.

Although this anonymized CV dataset has recently become available to explore histor-
ical traffic patterns at the location of interest, several researchers have already tested Wejo’s
vehicle movement dataset. Li et al., (2021) estimated border crossing time at Paso del Norte
International Bridge in El Paso, TX using Wejo’s connected vehicle dataset and observed a
correlation rate of around 0.8 with the existing Bluetooth-generated border crossing time
information system. They also discovered that the temporal coverage rate of Wejo’s dataset
was around 60–70% for estimating border crossing time at the selected site [55]. In another
study, Desai et al., (2021) used this dataset to study the impact of interstate construction
work zone diversions on traffic signal performance measures [56] Khadka et al., (2022)
identified queue propagation at freeway bottlenecks and arterial traffic intersections using
this CV data [57]. Furthermore, Saldivar-Carranza et al. (2021) estimated operational
performance measures for various traffic signals in Indianapolis, and Abdelraouf et al.,
(2022) developed a sequence-to-sequence deep learning model to forecast traffic volume
and speed on four expressways in Orlando, Florida [58,59].

Hence, given the limited availability of empirical data on WUI fire evacuation clear-
ance times and the inability of existing travel data collection technologies to comprehend
such data, the CV datasets provide an opportunity to evaluate traffic delays in a historical
wildfire event. The travel time information obtained from CV data may provide valuable
insights into improving traffic flow and safety, especially during wildfire-triggered emer-
gency evacuations. Emergency managers may utilize this data to strategize and coordinate
evacuation routes and timings, pinpoint and resolve potential bottlenecks, and communi-
cate accurate estimates of travel time and recommended evacuation routes to the public [60].
Thus, this paper aims to utilize a CV dataset to calculate the actual travel time during a
real-life wildfire incident and compare it with the travel delay information provided by the
State. Additionally, the paper evaluates the temporal coverage and similarity of the CV
dataset by comparing it with an alternative method of travel time estimation employed in
the case study.

2. Materials and Methods
2.1. Case Study

The fire event selected for evaluation was the Knolls Fire 2020 that occurred in Saratoga
Springs, Utah on 28 June 2020. The fire erupted between 2:00 pm and 2:30 pm in the east of
Lake Mountain and south of Saratoga Springs and spread quickly towards the city driven
by 60 mph gusting winds [61]. Saratoga Springs is one of the fastest-growing cities in Utah,
with a population density of around 1625 people/sq. mi. [62]. The city is surrounded by
Utah Lake on the eastern border and Lake Mountain on the western border with State
Route 68 (SR-68) also called “Redwood Road” serving as the main exit corridor for the
city. Following the ignition of the fire, mandatory evacuation orders were issued for more
than 3100 homes or 13,000 residents, i.e., almost one-third of the population of the whole
city [63]. The evacuation began at 2:45 pm, initially in the southern neighborhoods of the
city, and residents were forced to evacuate their homes with very short notice amid high
winds, smoke, and dust. Later in the afternoon, all residents who lived south of Grandview
Boulevard on the west side of Redwood Road were asked to evacuate their homes because
of the rapid spread of the fire as can be seen in Figure 1.
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Figure 1. Knolls Fire 2020 evacuation area [64].

The emergency responders used Redwood Road to redirect the evacuation traffic
northbound (NB) towards Westlake High School, which served as a shelter area for the
affected evacuees. Additionally, due to downed powerlines near the fire perimeter, the road
was closed to southbound traffic [65] The evacuation traffic created heavy traffic congestion
and vehicular queues on the NB SR-68, especially in the evening period, as detailed in
Table 1, which contains operator response notes on the incident obtained from the Utah
Department of Transportation (UDOT).

Table 1. UDOT operator response notes on Knolls Fire 2020.

28 June 2020 3:48:04 pm
Description: A fire has started on the west side of Utah Lake on Lake Mountain. Redwood Road is
being closed in both directions due to the fire. Northbound is being closed at milepost 0 at the
US-6 junction. Southbound is being closed at milepost 28 at Lake View Terrace in Saratoga Springs.
Reason(s) for IPR: Media Attention. Route(s) Affected: Redwood Rd, US-6, I-15, SR-145. On Scene:
UHP, Local PD, Fire. Incident Mgr: TOC. Action(s) Taken: Notified Region 3, Primary PIO, and
TOC Mgmt. Queue Length: None at this time. Delays: To detour around Redwood Road onto I-15
and US-6 adds 10 min of travel time. Estimated Duration: Unknown. Next update in ~60 min.

28 June 2020 4:42:56 pm
The UDOT Maintenance Sheds are setting up hard closures at the closure points. Traffic is
congested throughout the Saratoga Springs area due to evacuations in the southern section of
Saratoga. Delays in the area are 5–10 min at this time.

28 June 2020 5:44:11 pm
NB Redwood Rd is congested for 4 miles in Saratoga Springs. Delays are 10 min.

28 June 2020 6:34:08 pm
NB Redwood Rd in Saratoga is now congested for 4 miles with 20 min delays.
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Table 1. Cont.

28 June 2020 7:49:39 pm
Congestion and delays on Redwood Road have cleared.

28 June 2020 9:06:29 pm
Congestion and delays in the area remain light.

28 June 2020 11:03:39 pm
Traffic and congestion is still light in the area.

2.2. Data Collection and Processing

In this study, Wejo’s vehicle trajectory data were collected for 10 days from 20–29 June
2020, to evaluate the travel time variation between evacuation and non-evacuation time
frames for the selected study area. The definition of key attributes of the dataset is provided
in Table 2.

Table 2. Wejo CV data attributes.

S No. Data Attributes Definitions

1 Datapoint ID Records a unique identifier for an individual captured
data point every 3 seconds.

2 Journey ID Records a unique identifier for an individual vehicle’s
movement through to an ignition off event happening.

3 Timestamp Records the time and date of each data point along with
location time zone offset.

4 Heading Records the heading of each data point with 0 = north
moving clockwise to 359◦.

5 Speed Records the speed of vehicle at each data point.

6 Latitude Provides the north–south positioning of the vehicle on the
Earth’s surface.

7 Longitude Provides the east–west positioning of the vehicle on the
Earth’s surface.

The dataset was delivered in smaller parcels consisting of more than eighty thousand
JSON files to Amazon Web Services (AWS) S3 cloud storage which was stored in the local
storage using the AWS Command Line Interface (CLI). Initially, the stored JSON files were
pre-processed into CSV files and compiled together in MS Excel to create a readable format
for later use. Next, to visualize the processed tabular data, it was imported into the ArcGIS
Pro software and the location attributes of the data (i.e., latitude and longitude) were
utilized to create a feature class of the whole dataset.

The study area for travel time calculation consisted of 5 miles of NB SR-68 roadway
between mile markers (MM) 25–30 to analyze the impact of the Knolls Fire on traffic
conditions on SR-68. This section of SR-68 consisted of several connecting roads and five
traffic signals allowing vehicular traffic to enter and exit the affected neighborhoods. So,
the entire city dataset containing more than eleven million data points for the studied time
frame was segregated to include only data points for the studied section of SR-68, and the
heading attribute of each data point was used to eliminate the traffic heading south.

In this study, the travel time is defined as the hourly average time it takes vehicles to
travel from MM 25-30 on SR-68. The travel time of an individual vehicle in the collected
dataset is determined by matching the Journey ID identifier at two different locations and
taking the difference in the timestamps. Considering that the selected section of SR-68 has
several exit options along the way so a vehicle entering SR-68 at any intersection may not
travel the entire 5-mile length segment of the road to determine the total travel time of
this section. To address this issue, the following process was implemented to obtain more
accurate travel time estimates:
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1. The entire NB segment of the road section under consideration was divided into
several shorter segments by introducing data collection buffers on SR-68 after each
road intersection with the state highway, as illustrated in Figure 2.

2. The diameter of each data collection buffer was assumed to be 500 feet considering
that the maximum speed limit along selected section of SR-68 was 55 mph and the
data points are collected at a 3 s interval, ensuring that the defined data collection
buffers will contain at least one data point for each Journey ID. In case more than one
data point for each Journey ID is collected, the earliest data point is selected.

3. For each shorter segment, unique Journey ID identifiers are matched between the two
immediate data collection buffers at the two ends of the segment, and the difference
in timestamps is calculated for each Journey ID which is then averaged to obtain the
hourly average travel time for each shorter segment.

4. The full-length average travel time for each hour is obtained by summing up the
hourly average travel time for all shorter segments.
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2.3. Assessment of Wejo CV Data
2.3.1. Temporal Coverage Assessment

In this study, the hourly average travel time for all shorter segments in the 10-day
study period was calculated based on the number of Journey IDs available for the one-hour
slots. It was considered that to accurately estimate travel time for each shorter segment, a
sufficient number of Journey IDs for the one-hour slots must be obtained. So, the data’s
temporal coverage was assessed to calculate the percentage of the uncovered one-hour
slots for 24 h of the 10-day study period. It is assumed that a one-hour slot with an average
zero number of Journey IDs for the entire road segment is considered an uncovered one-
hour slot, as assumed in an earlier study [55]. Furthermore, several minimum Journey ID
threshold values were also set to tighten the criteria for calculating the percentage of the
uncovered one-hour slots.
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2.3.2. Similarity Assessment

Utah ATSPM data: In April 2012, UDOT began implementing an ATSPM program
on statewide signalized intersections in collaboration with Purdue University, Federal
Highway Administration (FHWA), and Indiana Department of Transportation (INDOT).
The ATSPM program installed on signalized intersections contains historical and real-
time information on various traffic signal performance metrics, such as approach volume,
turning movement counts, and Purdue coordination diagrams, that can be used to evaluate
the quality of traffic progression along corridors and identify maintenance issues that
affect traffic flow on signalized intersections. This information is collected every 10 to
15 min with high-resolution traffic signal controllers as well as detector data associated
with each equipped intersection. The system is installed at the majority of Utah’s signalized
intersections and historical performance metrics for signalized intersections are accessible
for public use via UDOT ATSPM website (https://udottraffic.utah.gov/atspm/, accessed
on 10 February 2023).

Therefore, the ATSPM system installed at the signalized intersections along the selected
section of SR-68 provides an opportunity to gather historical performance metrics for the
defined time frame in the study area. These performance metrics can be fed into traffic
simulation platforms for modeling historical traffic. The calibrated model can then generate
travel time estimates of the study area which can be compared to CV data travel times. In
this context, the PTV VISSIM microsimulation platform was adopted to develop a model of
the selected study region, the details of which are explained in the following section.

PTV VISSIM modeling: PTV VISSIM is a predominant microsimulation tool developed
by a German company PTV Vision in 1992 that is used to perform complex network
and capacity analysis at signalized intersections, freeways, and merging and diverging
segments [66]. The software consists of several traffic parameters that can be modified with
the help of available performance metrics to develop a calibrated model of the selected
study region such as vehicle input, vehicle routing decision, desired speed decisions,
and signal control program. Furthermore, VISSIM uses a psychophysical car-following
model Wiedemann 74 for urban driving that ensures that the driving behavior of simulated
traffic is naturally distributed in each time step. This means that each driver has different
driving capabilities for perception, reaction, and estimation of the surrounding traffic
environment [67].

For this study, historical imagery of the road network was obtained from Google
Earth and a VISSIM model was created that consisted of 3 miles of SR-68 between MM
27-30, as illustrated in Figure 3. This also contained 5 traffic signals and several roads
interconnecting the selected section of the state highway. The historical performance metrics
at the 5 signalized traffic intersection were obtained from UDOT ATSPM website for a
two-day traffic period, i.e., 21–22 June 2020, since the data for the day of evacuation event
were not available on the system, potentially due to communication loss or power outage
at the selected intersections, as confirmed by the UDOT. The collected data consisted of
approach volume, turning movement counts, and Purdue coordination diagrams that were
used to calibrate the model parameters such as traffic flow and signal phasing. The speed
limits on the study corridor were 50–55 mph over the 3-mile section, so the VISSIM input
volumes were assigned a speed distribution based on the posted speed limit. In addition,
the traffic composition was considered based on vehicle class data obtained from UDOT
Performance Measurement System (PeMS) (https://udot.iteris-pems.com/, accessed on
10 February 2023).

Considering that the travel time obtained from the connected vehicle dataset was
based on hourly average travel time calculated for shorter segments on the NB SR-68, the
3-mile NB simulated section of SR-68 was divided into the same length segments. This is
conducted by placing travel time data collection points at the previously described data
collection buffer locations. A series of one-hour test setups were used to evaluate the
24 h travel time similarity assessment for the selected two-day period. The test setup for
the one-hour travel time estimation consisted of a one and a half hour simulation period

https://udottraffic.utah.gov/atspm/
https://udot.iteris-pems.com/
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with the initial 15 min warm-up and final 15 min cooling-down periods excluded from
the evaluation results. This simulation setting is incorporated by running 10 simulation
runs for each test as the minimum requirement defined by several state departments of
transportation in USA [68].
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Figure 3. PTV VISSIM simulated model.

Similarity assessment measures: To assess the similarity of travel time calculated using
CV dataset and VISSIM modeling for the two-day assessment period, the hourly average
travel times of the shorter segments obtained from the two datasets were compared by
calculating the correlation coefficient, RMSE, and MAPE to quantify their similarities and
differences. The following equations were used to calculate these measures based on the
two datasets with the same sample size as:

Correlation Coe f f icient =
∑n

t=1

(
xi −

−
x
)(

yi −
−
y
)

√
∑n

t=1

(
xi −

−
x
)(

yi −
−
y
) (1)

RMSE =

√
∑n

t=1(xi − yi)
2

n
(2)

MAPE =
1
n∑n

t=1

∣∣∣∣ xi − yi
xi

∣∣∣∣ (3)

where x and y represent two sample groups. Each of them contains n samples, xi and yi

represent the t-th sample in each group, and
−
x and

−
y represent the mean values of these

two groups.
As previously stated, the total 3-mile length hourly average travel time is calculated by

adding the hourly average travel times for the divided shorter segments. It was considered
that more trips collected from the segment may result in a more accurate estimate of the
hourly average travel times. Therefore, different calculation threshold values were used to
tighten the criteria for generating travel times from each segment. The calculation threshold
has a base value of one, so as long as there is one trip captured on the segment, the hourly
average travel times can be generated from it, as applied in an earlier study [55].
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3. Results and Discussion
3.1. Wejo Travel Time Calculation Results

This section presents the hourly average travel time for the 5-mile segment over the
10-day study period for the hours NB SR-68 was impacted by the Knolls Fire 2020, as
illustrated in Figure 4. The comparative analysis showed that the non-evacuation days
observed consistent travel times while a significant increase in the travel time values was
observed on the evacuation day.
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Figure 4. CV travel time calculation results during evacuation time period.

The highest traffic delays were seen during evening peak hours which is further
evident by the observation of slow-moving traffic between MM 26–30 after six o’clock, as
depicted by the speed profile illustrated in Figure 5. These traffic operation conditions were
consistent with the operator response notes provided by UDOT on the incident showing
high traffic delays on the 4-mile section of NB SR-68. This indicates that the evacuees were
forced to spend a considerable amount of time stuck in traffic as their exit options were
limited, putting their lives in danger.
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3.2. Temporal Coverage Assessment

Considering the criterion explained earlier, a high temporal coverage rate of 90.00%
was observed in the base case scenario where only 24 out of 240 slots were marked as
CV-uncovered, as detailed in Figure 6. These uncovered slots mostly occurred during low-
volume early midnight hours. Additionally, the threshold for determining the minimum
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number of Journey IDs to define CV uncovered slots was increased from zero to three
with an interval of one, considering that more trips can result in more accurate travel time
results. Here, we observed a noticeable decrease in CV-covered slots with the increase in the
minimum threshold values, i.e., 81.25% (threshold = 1), 72.50% (threshold = 2), and 67.50%
(threshold = 3). Given the low penetration rate of Wejo CV data in 2020, this evaluation
showed roughly 67–90% of the one-hour slots with enough Wejo samples to estimate travel
times in the studied region. In addition, the test results showed a significant increase in
CV volume on 28 June 2020, during the peak evacuation timeframe when compared to the
same day the week before.
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3.3. Similarity Assessment

This test reports the hourly average travel time of CV and VISSIM for the selected 24 h
evaluation period of 21–22 June 2020. Figure 7a,b show that the CV and VISSIM travel times
appear to be closer in estimating hourly average travel times for most hours of the day.
However, considering that the low-volume midnight hours had the most CV uncovered
slots, as observed in the temporal coverage analysis, the dataset lacked the needed sample
size to estimate travel time for these hours.

To better assess the statistical relationship between the travel times of the two datasets,
the similarity assessment measures were calculated for the two-day period defined in the
earlier section. Table 3 shows that a high correlation was observed between the travel time
calculated using CV and VISSIM modeling at the base calculation threshold which increased
to a maximum of 0.99 for the weekend day and 0.97 for the weekday when tightening the
calculation criteria. The RMSE and MAPE were also estimated to be relatively low at the
base calculation threshold for both days showing a strong relationship between the two
calculated travel times, which further improved with the increase in minimum threshold
values. This validates the earlier assumption that more trips result in more accurate travel
time estimation results. Hence, the CV data were determined to be a valuable data source
that could generate travel time estimates that are comparable to those of the VISSIM results
that simulated historical ATSPM data.
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Table 3. CV data similarity assessment 21–22 June 2020.

Calculation Threshold 1 2 3 4

Sunday, 21 June 2020

Correlation Coefficient 0.97 0.98 0.99 0.99
RMSE (in seconds) 9.85 8.75 7.95 7.54

MAPE (%) 9.63 8.61 7.67 7.08

Monday, 22 June 2020

Correlation Coefficient 0.89 0.94 0.96 0.97
RMSE (seconds) 18.95 17.51 16.44 16.40

MAPE (%) 10.25 9.15 7.93 7.80

4. Conclusions

The current approaches to estimating travel time lack the necessary details to accu-
rately estimate evacuation times for historical hazardous events. To address this gap, this
study utilized a CV dataset containing lane-level precision vehicle trajectory data, collected
at 3 s intervals, to estimate the evacuation duration of a historical short-notice wildfire
evacuation event. Using the CV dataset attributes, the study calculated the evacuation time
during the wildfire event and found a significant increase in traffic delays on the evacuation
route, with evening hours experiencing the highest congestion. The evacuation traffic
operational conditions were consistent with operator response notes from the relevant state
department of transportation on the fire incident.

In addition, temporal coverage assessment and similarity assessment tests were per-
formed to accurately estimate travel time and eliminate any biases in the selected study
period’s data. These assessments were also used to validate the usability of the travel time
estimates and evaluate the dataset’s coverage. The temporal coverage assessment revealed
that the dataset covered about 67–90% of one-hour time slots during the complete study
period, with some low-volume midnight hours having insufficient data. The similarity
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assessment compared travel times estimated using the dataset and the PTV VISSIM mi-
crosimulation tool, which incorporated historical traffic performance measures from the
state-established ATSPM system installed at the traffic signals along the study area. The
results showed a correlation coefficient of 0.89 to 0.99, with a decrease in RMSE and MAPE
when tightening the calculation threshold. Based on these results, it can be inferred that
the CV dataset proved to be a valuable source of data for estimating traffic delays in this
specific case study.

Therefore, given the limited availability of comprehensive data to analyze traffic
operations and estimate travel time during wildfire evacuations, this study recommends
using the CV dataset to estimate travel times for real-world wildfire evacuation events
and prepare for future events. However, this study only evaluated traffic operations
during a single wildfire evacuation event and for a shorter time period primarily due to
licensing restrictions, and thus, may not be representative of general wildfire evacuation
scenarios. Future studies should improve upon this research by adjusting the experimental
conditions and proposing innovative solutions to enhance traffic operations in similar
cases. Furthermore, future studies should assess the most recent CV datasets and examine
longer evaluation periods to determine whether accurate travel time estimates can be
achieved across a wider range of temporal coverage and different types of historical
evacuation events.

Author Contributions: Conceptualization, S.A., Y.H. and A.A.; methodology, S.A. and A.A.; software,
S.A. and A.A.; validation, S.A., A.A. and H.U.A.; formal analysis, S.A. and A.A.; investigation, S.A.
and A.A.; resources, S.A., A.A., Y.H. and P.L.; data curation S.A., A.A. and Y.H.; writing—original
draft preparation, S.A. and H.U.A.; writing—review and editing, A.A., Y.H. and P.L.; visualization,
S.A.; supervision, Y.H. and P.L.; project administration, Y.H. and P.L.; funding acquisition, Y.H. and
P.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the U.S. Department of Transportation under the agreement
of No. 69A3551747108 through MPC project No. 685.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this article is confidential and was purchased from
Wejo.com through purchasing agreement.

Acknowledgments: The authors would like to thank Wejo Data Services for the provided services
along with the data agreement.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, Y.; Stanturf, J.; Goodrick, S. Trends in global wildfire potential in a changing climate. For. Ecol. Manag. 2010, 259, 685–697.

[CrossRef]
2. McKenzie, D.; Gedalof, Z.; Peterson, D.L.; Mote, P. Climatic change, wildfire, and conservation. Conserv. Biol. 2004, 18, 890–902.

[CrossRef]
3. Caton, S.E.; Hakes, R.S.P.; Gorham, D.J.; Zhou, A.; Gollner, M.J. Review of Pathways for Building Fire Spread in the Wildland

Urban Interface Part I: Exposure Conditions. Fire Technol. 2017, 53, 429–473. [CrossRef]
4. Paveglio, T.B.; Moseley, C.; Carroll, M.S.; Williams, D.R.; Davis, E.J.; Fischer, A.P. Categorizing the social context of the wildland

urban interface: Adaptive capacity for wildfire and community ‘Archetypes’. For. Sci. 2015, 61, 298–310. [CrossRef]
5. Calkin, D.E.; Cohen, J.D.; Finney, M.A.; Thompson, M.P. How risk management can prevent future wildfire disasters in the

wildland-urban interface. Proc. Natl. Acad. Sci. USA 2014, 111, 746–751. [CrossRef]
6. Theobald, D.M.; Romme, W.H. Expansion of the US wildland-urban interface. Landsc. Urban Plan. 2007, 83, 340–354. [CrossRef]
7. Mietkiewicz, N.; Balch, J.K.; Schoennagel, T.; Leyk, S.; Denis, L.A.S.; Bradley, B.A. In the line of fire: Consequences of human-

ignited wildfires to homes in the U.S. (1992–2015). Fire 2020, 3, 50. [CrossRef]
8. Chen, C.; Shi, X. Effects of Incorporating Connected Vehicle Technologies Into No-Notice Emergency Evacuation During Winter Weather

(Phase I); University of North Carolina at Charlotte, Center for Advanced Multimodal: Charlotte, NC, USA, 2020.
9. Grajdura, S.; Qian, X.; Niemeier, D. Awareness, departure, and preparation time in no-notice wildfire evacuations. Saf. Sci. 2021,

139, 105258. [CrossRef]

https://doi.org/10.1016/j.foreco.2009.09.002
https://doi.org/10.1111/j.1523-1739.2004.00492.x
https://doi.org/10.1007/s10694-016-0589-z
https://doi.org/10.5849/forsci.14-036
https://doi.org/10.1073/pnas.1315088111
https://doi.org/10.1016/j.landurbplan.2007.06.002
https://doi.org/10.3390/fire3030050
https://doi.org/10.1016/j.ssci.2021.105258


Fire 2023, 6, 184 14 of 16

10. McCaffrey, S.; Wilson, R.; Konar, A. Should I Stay or Should I Go Now? Or Should I Wait and See? Influences on Wildfire
Evacuation Decisions. Risk Anal. 2018, 38, 1390–1404. [CrossRef]

11. Lin, C.; Yu, Y.; Wu, D.; Gong, B. Traffic flow catastrophe border identification for urban high-density area based on cusp
catastrophe theory: A case study under sudden fire disaster. Appl. Sci. 2020, 10, 3197. [CrossRef]

12. Wood, N.; Henry, K.; Peters, J. Influence of demand and capacity in transportation simulations of short-notice, distant-tsunami
evacuations. Transp. Res. Interdiscip. Perspect. 2020, 7, 100211. [CrossRef]

13. Chen, J.; Yu, J.; Wen, J.; Zhang, C.; Yin, Z.E.; Wu, J.; Yao, S. Pre-evacuation time estimation based emergency evacuation simulation
in urban residential communities. Int. J. Environ. Res. Public Health 2019, 16, 4599. [CrossRef] [PubMed]

14. Dulam, R.; Lalith, M.; Hori, M.; Ichimura, T.; Tanaka, S. A study on effectiveness of using officials for reducing pre-evacuation
time in a large area, based on multi agent simulations. In Proceedings of the International Symposium on Engineering Lessons
Learned from the 2011 Great East Japan Earthquake, Tokyo, Japan, 1–4 March 2012; pp. 1658–1665.

15. Auld, J.; Sokolov, V.; Fontes, A.; Bautista, R. Internet-based stated response survey for no-notice emergency evacuations. Transp.
Lett. 2012, 4, 41–53. [CrossRef]

16. Carnegie, J.A.; Deka, D. Using Hypothetical Disaster Scenarios to Predict Evacuation Behavioral Response; The National Academies of
Sciences, Engineering, and Medicine: Washington, DC, USA, 2010.

17. Kuligowski, E. Evacuation decision-making and behavior in wildfires: Past research, current challenges and a future research
agenda. Fire Saf. J. 2021, 120, 103129. [CrossRef]

18. De Iuliis, M.; Battegazzorre, E.; Domaneschi, M.; Cimellaro, G.P.; Bottino, A.G. Large scale simulation of pedestrian seismic
evacuation including panic behavior. Sustain. Cities Soc. 2023, 94, 104527. [CrossRef]

19. Kuligowski, E.D.; Walpole, E.H.; Lovreglio, R.; Mccaffrey, S. Modelling evacuation decision-making in the 2016 Chimney Tops 2
fire in Gatlinburg, TN. Int. J. Wildland Fire 2020, 29, 1120–1132. [CrossRef]

20. Lovreglio, R.; Kuligowski, E.; Gwynne, S.; Strahan, K. A modelling framework for householder decision-making for wildfire
emergencies. Int. J. Disaster Risk Reduct. 2019, 41, 101274. [CrossRef]

21. Toledo, T.; Marom, I.; Grimberg, E.; Bekhor, S. Analysis of evacuation behavior in a wildfire event. Int. J. Disaster Risk Reduct.
2018, 31, 1366–1373. [CrossRef]

22. McCaffrey, S.M.; Winter, G. Understanding homeowner preparation and intended actions when threatened by a wildfire. In
Proceedings of the Second Human Dimensions of Wildland Fire Conference; General Technical Report NRS-P-84; US Department of
Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2011; pp. 88–95.

23. Benight, C.C.; Gruntfest, E.; Sparks, K. Colorado Wildfires 2002. Quick Response Res. Rep. 2004, 167. Available online:
http://www.colorado.edu/hazards/research/qr/qr167/qr167_mod.pdf (accessed on 10 February 2023).

24. McCaffrey, S.; Velez, A.; Briefel, J. Difference in Information Needs for Wildfire Evacuees and Non-Evacuees|Treesearch. U.S For.
Serv. 2013, 31, 4–24. Available online: https://www.fs.usda.gov/treesearch/pubs/44256 (accessed on 10 February 2023).

25. Walpole, H.D.; Wilson, R.S.; McCaffrey, S.M. If you love it, let it go: The role of home attachment in wildfire evacuation decisions.
Environ. Syst. Decis. 2020, 40, 29–40. [CrossRef]

26. Wong, S.D.; Broader, J.C.; Walker, J.L.; Shaheen, S.A. Understanding California wildfire evacuee behavior and joint choice making.
Transportation 2022, 1–47. [CrossRef]

27. McNeill, I.M.; Dunlop, P.D.; Skinner, T.C.; Morrison, D.L. Predicting delay in residents’ decisions on defending v. evacuating
through antecedents of decision avoidance. Int. J. Wildland Fire 2015, 24, 153–161. [CrossRef]

28. Paveglio, T.; Prato, T.; Dalenberg, D.; Venn, T. Understanding evacuation preferences and wildfire mitigations among Northwest
Montana residents. Int. J. Wildland Fire 2014, 23, 435–444. [CrossRef]

29. Lovreglio, R.; Kuligowski, E.; Walpole, E.; Link, E.; Gwynne, S. Calibrating the Wildfire Decision Model using hybrid choice
modelling. Int. J. Disaster Risk Reduct. 2020, 50, 101770. [CrossRef]

30. Cimellaro, G.; Domaneschi, M.; Villa, V.; de Iuliis, M. Numerical Simulation of Fire-Following-Earthquake at Urban Scale; CRC Press:
Boca Raton, FL, USA, 2019.

31. Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels. Intermt. For. Range Exp. Stn. For. Serv. US.
1972, 115. Available online: https://books.google.pt/books?id=AfyMv5NBSjoC (accessed on 10 February 2023).

32. Van Wagner, C.E. A simple fire-growth model. For. Chron. 1969, 45, 103–104. [CrossRef]
33. Finney, M.A. Fire growth using minimum travel time methods. Can. J. For. Res. 2002, 32, 1420–1424. [CrossRef]
34. Li, D.; Cova, T.J.; Dennison, P.E. Using reverse geocoding to identify prominent wildfire evacuation trigger points. Appl. Geogr.

2017, 87, 14–27. [CrossRef]
35. Larsen, J.C.; Dennison, P.E.; Cova, T.J.; Jones, C. Evaluating dynamic wildfire evacuation trigger buffers using the 2003 Cedar Fire.

Appl. Geogr. 2011, 31, 12–19. [CrossRef]
36. Beloglazov, A.; Almashor, M.; Abebe, E.; Richter, J.; Steer, K.C.B. Simulation of wildfire evacuation with dynamic factors and

model composition. Simul. Model. Pract. Theory 2016, 60, 144–159. [CrossRef]
37. Li, D.; Cova, T.J.; Dennison, P.E. Setting Wildfire Evacuation Triggers by Coupling Fire and Traffic Simulation Models: A

Spatiotemporal GIS Approach. Fire Technol. 2019, 55, 617–642. [CrossRef]
38. Cova, T.J.; Johnson, J.P. Microsimulation of neighborhood evacuations in the urban-wildland interface. Environ. Plan A 2002, 34,

2211–2229. [CrossRef]

https://doi.org/10.1111/risa.12944
https://doi.org/10.3390/app10093197
https://doi.org/10.1016/j.trip.2020.100211
https://doi.org/10.3390/ijerph16234599
https://www.ncbi.nlm.nih.gov/pubmed/31756961
https://doi.org/10.3328/TL.2012.04.01.41-53
https://doi.org/10.1016/j.firesaf.2020.103129
https://doi.org/10.1016/j.scs.2023.104527
https://doi.org/10.1071/WF20038
https://doi.org/10.1016/j.ijdrr.2019.101274
https://doi.org/10.1016/j.ijdrr.2018.03.033
http://www.colorado.edu/hazards/research/qr/qr167/qr167_mod.pdf
https://www.fs.usda.gov/treesearch/pubs/44256
https://doi.org/10.1007/s10669-019-09741-3
https://doi.org/10.1007/s11116-022-10275-y
https://doi.org/10.1071/WF12213
https://doi.org/10.1071/WF13057
https://doi.org/10.1016/j.ijdrr.2020.101770
https://books.google.pt/books?id=AfyMv5NBSjoC
https://doi.org/10.5558/tfc45103-2
https://doi.org/10.1139/x02-068
https://doi.org/10.1016/j.apgeog.2017.05.008
https://doi.org/10.1016/j.apgeog.2010.05.003
https://doi.org/10.1016/j.simpat.2015.10.002
https://doi.org/10.1007/s10694-018-0771-6
https://doi.org/10.1068/a34251


Fire 2023, 6, 184 15 of 16

39. Guerrero-Ibáñez, J.; Zeadally, S.; Contreras-Castillo, J. Sensor technologies for intelligent transportation systems. Sensors 2018,
18, 1212. [CrossRef] [PubMed]

40. Quiroga, C.; Bullock, D. Determination of sample sizes for travel time studies. ITE J. Web 1998, 68, 92–98.
41. Vanajakshi, L.D.; Williams, B.M.; Rilett, L.R. Improved flow-based travel time estimation method from point detector data for

freeways. J. Transp. Eng. 2009, 135, 26–36. [CrossRef]
42. Haas, R.; Carter, M.; Perry, E.; Trombly, J.; Bedsole, E.; Margiotta, R. iFlorida Model Deployment; United States Federal Highway

Administration: Washington, DC, USA, 2009. Available online: http://ntl.bts.gov/lib/31000/31000/31051/14480_files/iflorida.pdf
(accessed on 10 February 2023).

43. Xiao, L.; Wang, Z. Internet of things: A new application for intelligent traffic monitoring system. J. Netw. 2011, 6, 887–894.
[CrossRef]

44. Hidayat, A.; Terabe, S.; Yaginuma, H. WiFi Scanner Technologies for Obtaining Travel Data about Circulator Bus Passengers:
Case Study in Obuse, Nagano Prefecture, Japan. Transp. Res. Rec. 2018, 2672, 45–54. [CrossRef]

45. Huang, T.; Poddar, S.; Aguilar, C.; Sharma, A.; Smaglik, E.; Kothuri, S.; Koonce, P. Building intelligence in automated traffic signal
performance measures with advanced data analytics. Transp. Res. Rec. 2018, 2672, 154–166. [CrossRef]

46. Day, C.; O’Brien, P.; Stevanovic, A.; Hale, D.; Matout, N. Evaluating the Benefits and Costs of Implementing Automated Traffic Signal
Performance; United States Federal Highway Administration: Washington, DC, USA, 2020.

47. Ramezani, M.; Geroliminis, N. Queue Profile Estimation in Congested Urban Networks with Probe Data. Comput. -Aided Civ.
Infrastruct. Eng. 2015, 30, 414–432. [CrossRef]

48. SANDAG. Border Wait Time Technologies and Information Systems White Paper. 2017. Available online: https://www.sandag.org/-/
media/SANDAG/Documents/PDF/projects-and-programs/borders-and-interregional-collaboration/binational/economic-
and-air-quality-impacts-of-delays-at-the-border-2017-10-31.pdf (accessed on 29 April 2023).

49. Li, X.; Dadashova, B.; Yu, S.; Zhang, Z. Rethinking highway safety analysis by leveraging crowdsourced waze data. Sustainability
2020, 12, 10127. [CrossRef]

50. Cookson, G.; Pishue, B. INRIX Global Traffic Scorecard—Appendices. INRIX Res. 2017, p. 44. Available online: https://media.bizj.us/
view/img/10360454/inrix2016trafficscorecarden.pdf (accessed on 10 February 2023).

51. Wojnarski, M.; Gora, P.; Szczuka, M.; Nguyen, H.S.; Swietlicka, J.; Zeinalipour, D. IEEE ICDM 2010 Contest: TomTom Traffic
prediction for intelligent GPS Navigation. In Proceedings of the IEEE International Conference on Data Mining, ICDM, Sydney,
Australia, 13–17 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1372–1376. [CrossRef]

52. Kürpick, P. Automated Driving—Networked Safety in Road Traffic. ATZelectronics Worldw. 2019, 14, 50–53. [CrossRef]
53. Massaro, E.; Ahn, C.; Ratti, C.; Santi, P.; Stahlmann, R.; Lamprecht, A.; Roehder, M.; Huber, M. The Car as an Ambient Sensing

Platform. Proc. IEEE 2017, 105, 3–7. [CrossRef]
54. Zanwar, P.; Kim, J.; Kim, J.; Manser, M.; Ham, Y.; Chaspari, T.; Ahn, C.R. Use of Connected Technologies to Assess Barriers and

Stressors for Age and Disability-Friendly Communities. Front. Public Health 2021, 9, 578832. [CrossRef]
55. Li, X.; Martin, M.; Dadashova, B.; Salgado, D.; Samant, S. Exploring Crowdsourced Big Data To Estimate Border Crossing Times; Texas

A & M Transportation Institute: El Paso, TX, USA, 2021.
56. Desai, J.; Saldivar-Carranza, E.; Mathew, J.K.; Li, H.; Platte, T.; Bullock, D. Methodology for Applying Connected Vehicle Data

to Evaluate Impact of Interstate Construction Work Zone Diversions. In Proceedings of the IEEE Conference on Intelligent
Transportation Systems,Proceedings, ITSC, Indianapolis, IN, USA, 19–22 September 2021; IEEE: Piscataway, NJ, USA, 2021;
pp. 4035–4042. [CrossRef]

57. Khadka, S.; Li, P.T.; Wang, Q. Developing Novel Performance Measures for Traffic Congestion Management and Operational
Planning Based on Connected Vehicle Data. J. Urban Plan. Dev. 2022, 148, 4022016. [CrossRef]

58. Abdelraouf, A.; Abdel-Aty, M.; Mahmoud, N. Sequence-to-Sequence Recurrent Graph Convolutional Networks for Traffic
Estimation and Prediction Using Connected Probe Vehicle Data. IEEE Trans. Intell. Transp. Syst. 2022, 24, 1395–1405. [CrossRef]

59. Saldivar-Carranza, E.D.; Hunter, M.; Li, H.; Mathew, J.; Bullock, D.M. Longitudinal Performance Assessment of Traffic Signal
System Impacted by Long-Term Interstate Construction Diversion Using Connected Vehicle Data. J. Transp. Technol. 2021, 11,
644–659. [CrossRef]

60. Bahaaldin, K.; Fries, R.; Bhavsar, P.; Das, P. A Case Study on the Impacts of Connected Vehicle Technology on No-Notice
Evacuation Clearance Time. J. Adv. Transp. 2017, 2017, 6357415. [CrossRef]

61. Tribune, T.S.L. 1 Home Destroyed, 12 Damaged as Knolls Fire Grows to 10,000 Acres; Thousands Still under Evacuation in
Saratoga Springs. 2020. Available online: https://www.sltrib.com/news/2020/06/28/draper-lehi-residents/ (accessed on
10 February 2023).

62. U.S. Census Bureau. 2020 United States Census. Available online: https://www.census.gov/quickfacts/saratogaspringscityutah
(accessed on 29 April 2023).

63. Fox 13, Thousands Evacuated as ‘Knolls Fire’ Threatens Saratoga Springs Homes. 2020. Available online: https://www.fox1
3now.com/news/local-news/knolls-fire-forces-evacuations-in-saratoga-springs (accessed on 10 February 2023).

64. Tribune, T.S.L. Evacuees Return Home in Saratoga Springs, But Knolls Fire Still Could Pose a Threat. 2020. Available online:
https://www.sltrib.com/news/2020/06/29/all-evacuees-can-return/ (accessed on 10 February 2023).

65. Fox 13, Knolls Fire Evacuations Lifted. 2020. Available online: https://www.fox13now.com/news/local-news/knolls-fire-in-
utah-co-reaches-10k-acres-25-percent-containment (accessed on 10 February 2023).

https://doi.org/10.3390/s18041212
https://www.ncbi.nlm.nih.gov/pubmed/29659524
https://doi.org/10.1061/(ASCE)0733-947X(2009)135:1(26)
http://ntl.bts.gov/lib/31000/31000/31051/14480_files/iflorida.pdf
https://doi.org/10.4304/jnw.6.6.887-894
https://doi.org/10.1177/0361198118776153
https://doi.org/10.1177/0361198118791380
https://doi.org/10.1111/mice.12095
https://www.sandag.org/-/media/SANDAG/Documents/PDF/projects-and-programs/borders-and-interregional-collaboration/binational/economic-and-air-quality-impacts-of-delays-at-the-border-2017-10-31.pdf
https://www.sandag.org/-/media/SANDAG/Documents/PDF/projects-and-programs/borders-and-interregional-collaboration/binational/economic-and-air-quality-impacts-of-delays-at-the-border-2017-10-31.pdf
https://www.sandag.org/-/media/SANDAG/Documents/PDF/projects-and-programs/borders-and-interregional-collaboration/binational/economic-and-air-quality-impacts-of-delays-at-the-border-2017-10-31.pdf
https://doi.org/10.3390/su122310127
https://media.bizj.us/view/img/10360454/inrix2016trafficscorecarden.pdf
https://media.bizj.us/view/img/10360454/inrix2016trafficscorecarden.pdf
https://doi.org/10.1109/ICDMW.2010.51
https://doi.org/10.1007/s38314-018-0095-9
https://doi.org/10.1109/JPROC.2016.2634938
https://doi.org/10.3389/fpubh.2021.578832
https://doi.org/10.1109/ITSC48978.2021.9564873
https://doi.org/10.1061/(ASCE)UP.1943-5444.0000835
https://doi.org/10.1109/TITS.2022.3168865
https://doi.org/10.4236/jtts.2021.114040
https://doi.org/10.1155/2017/6357415
https://www.sltrib.com/news/2020/06/28/draper-lehi-residents/
https://www.census.gov/quickfacts/saratogaspringscityutah
https://www.fox13now.com/news/local-news/knolls-fire-forces-evacuations-in-saratoga-springs
https://www.fox13now.com/news/local-news/knolls-fire-forces-evacuations-in-saratoga-springs
https://www.sltrib.com/news/2020/06/29/all-evacuees-can-return/
https://www.fox13now.com/news/local-news/knolls-fire-in-utah-co-reaches-10k-acres-25-percent-containment
https://www.fox13now.com/news/local-news/knolls-fire-in-utah-co-reaches-10k-acres-25-percent-containment


Fire 2023, 6, 184 16 of 16

66. Vissim, P.T.V. 5.30-05 User Manual, 2011; PTV AG: Karlsruhe, Germany, 2020.
67. Wiedemann, R. Simulation des StraBenverkehrsflusses; Institut fur Verkehrswesen, University of Karlsruhe: Karlsruhe,

Germany, 1974.
68. Virginia Department of Transportation. VDOT Vissim User Guide. 2020. Available online: https://www.virginiadot.org/

business/resources/VDOT_Vissim_UserGuide_Version2.0_Final_2020-01-10.pdf (accessed on 10 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.virginiadot.org/business/resources/VDOT_Vissim_UserGuide_Version2.0_Final_2020-01-10.pdf
https://www.virginiadot.org/business/resources/VDOT_Vissim_UserGuide_Version2.0_Final_2020-01-10.pdf

	Introduction 
	Materials and Methods 
	Case Study 
	Data Collection and Processing 
	Assessment of Wejo CV Data 
	Temporal Coverage Assessment 
	Similarity Assessment 


	Results and Discussion 
	Wejo Travel Time Calculation Results 
	Temporal Coverage Assessment 
	Similarity Assessment 

	Conclusions 
	References

