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Abstract: Terrestrial laser scanning (TLS) data can offer a means to estimate subcanopy fuel charac-
teristics to support site characterization, quantification of treatment or fire effects, and inform fire
modeling. Using field and TLS data within the New Jersey Pinelands National Reserve (PNR), this
study explores the impact of forest phenology and density of shrub height (i.e., shrub fuel bed depth)
measurements on estimating average shrub heights at the plot-level using multiple linear regression
and metrics derived from ground-classified and normalized point clouds. The results highlight the
importance of shrub height sampling density when these data are used to train empirical models
and characterize plot-level characteristics. We document larger prediction intervals (PIs), higher root
mean square error (RMSE), and lower R-squared with reduction in the number of randomly selected
field reference samples available within each plot. At least 10 random shrub heights collected in situ
were needed to produce accurate and precise predictions, while 20 samples were ideal. Additionally,
metrics derived from leaf-on TLS data generally provided more accurate and precise predictions than
those calculated from leaf-off data within the study plots and landscape. This study highlights the
importance of reference data sampling density and design and data characteristics when data will be
used to train empirical models for extrapolation to new sites or plots.

Keywords: forest fires; prescribed forest fires; terrestrial laser scanning; TLS; fire effects; fire fuels;
fuel load; forest understory characterization

1. Introduction

Forest fires have large impacts on ecosystems, economies, infrastructure, and society [1,2].
Climate change and other anthropogenic landscape alterations have and will continue to
impact the spatial variability, intensity, and patterns of fire occurrence and associated effects;
further, urbanization and development within fire-prone areas will put more infrastructure,
property, and individuals at risk [1–3]. Determining appropriate treatments and prescribed
fire practices to meet land management objectives [4–7] and predicting fire behavior and
associated primary and secondary effects using modeling techniques [8–10] require estimation
of site characteristics including wind conditions [11,12], moisture content [13,14], and fuel
availability [15–17]. Accurate estimation of such characteristics is necessary to support
decision making related to when and how to administer management (i.e., thinning or
prescribed fires), to assess the results of prescribed fire and other fuel treatment options
in the context of management goals, and to predict how a fire is likely to progress across
the landscape. This can aid in managing the fire, improving the safety of field crews,
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and containing the event. Quantifying fuels is particularly important since they can be
manipulated and managed via treatment practices, including prescribed fire and stand
thinning, in contrast with moisture content and weather conditions [15,18,19].

In the context of prescribed fire and land management, practitioners often need to
quantify the reduction in the amount of fuels following a prescribed fire or treatment activity,
which requires a means to measure or estimate fuel material characteristics consistently
and repeatedly [18]. Physical process-based fire behavior models must characterize fuels
using a finite set of variables [1]; for example, models that make use of the equations of
Rothermel [20] characterize fuels based on loading (i.e., weight of fuel per unit landscape
area), particle size distributions, and fuel bed depths for multiple strata. However, there
are many characteristics of individual fuel particles (e.g., thermal conductivity, particle
density, thermal diffusion, ash content, moisture content, size, thickness, and shape) and
aggregated fuel beds (e.g., particle size distribution, bulk density (weight per volume
of biomass), packing ratio, porosity, depth, vertical stratification, patch size, and live
vs. dead fractions) that can impact fire behavior. Thus, detailed, accurate, and spatially
explicit characterization of fuels is limited, despite the importance of such information in
management and predictive modeling [9,17,21].

Traditional field-observer methods of collecting basic fuels and fire effects data at the
plot-level have been increasingly foregone for remote sensing approaches, such as multi-
spectral scanning (MSS) and airborne light detection and ranging (LiDAR) systems (ALS),
that gather wall-to-wall information with unmatched speed and repeatability [22,23]. These
remote sensing approaches excel at predicting bulk fuel loading, coarse-scale fire effects on
vegetation and substrates, and detailed changes in forest canopy structure [24]; yet despite
these advantages, there are important fundamental disadvantages compared with field
methods that have not yet been resolved and which drive a continued interest. First, due
to occlusion by canopy vegetation, MSS and ALS predictions are often weak at predicting
understory vegetation conditions that frequently define the objectives and fire behavior
expectations of prescribed fires in forest and woodland settings [25,26]. Simulations via
processed-based fire behavior modeling have illustrated that these understory fuels that are
modified by prescribed burning can play a significant role in driving spread rates during
large wildfires [27]. Lastly, although some MSS and ALS sensors can be tasked for timing
specific to management needs, expense and logistical challenges drive opportunistic use of
data collected for other purposes to dominate instead of planned data collections that are
timed to provide the data that will best match the timing of fire occurrence and associated
plant phenology for fuels and fire effects predictions [28,29].

One way to potentially increase the efficiency and repeatability of plot-scale fuel mate-
rial characterization compared with traditional manual measurement methods is to use
terrestrial laser scanning (TLS) [30,31]. Such instruments use active remote sensing via
laser pulses to generate a dense sample of point measurements to characterize a three-
dimensional space [30,31]. In this study, we specifically explore the prediction of plot-level
mean shrub heights (i.e., shrub fuel bed depth) using a set of single-date, single-location,
single-return TLS point clouds collected using affordable units within the Pinelands Na-
tional Reserve (PNR) region of the state of New Jersey, United States (USA). Our primary
goal is to assess how well shrub heights are empirically predicted using a set of TLS-derived
metrics as predictor variables when (1) varying the number of randomly selected shrub
height measurements within the plot used to approximate the average height to train
models and (2) using metrics derived from leaf-off vs. leaf-on TLS data.

There is a notable lack of research associated with assessing affordable units and
comparing results to traditional field methods. Stovall and Atkins [32] offered a comparison
of two affordable units, but did not compare the results to field reference data. Pokswinski
et al. [33] outlined a field methodology incorporating affordable TLS data, but also did not
provide a comparison to field reference data. Thus, we argue that this study is of value as
it offers comparisons of a key subcanopy fuel load measure, which has been traditionally
estimated with transect- or point-based field methods, with single-scan, single-return TLS
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data, which can be easily and quickly collected to replace or augment existing methods. In
other words, we assess TLS data in the context of operational adoption.

2. Background

It is not possible to directly measure the large set of fuel particle and fuel bed charac-
teristics that may impact fire behavior, especially when such data are needed over large
spatial extents and the fuel characteristics are spatially heterogeneous. As a result, field
sampling methods have been developed to collect key information needed to assess the
efficacy of treatments, as input to fire behavior models, and to generally inform decision
making [34,35]. Further, these field measurements are often combined with statistical
methods and species-specific allometric equations to estimate measures of interest, such as
bulk density or fuel load [1,36].

All field methods have strengths and weaknesses. Sikkink et al. [37] compared the
fixed-area plot, planar transect, photoload, photoload microplot, and photo series methods
for estimating loadings for different fuel components. The planar transect method was
generally suggested to be the best method based on multiple criteria. Keane et al. [38]
compared planar intercept, fixed-area microplot, and photoload methods. They noted the
fixed-area microplot method’s accuracy and the need for intensive sampling to accurately
estimate fuel biomass regardless of the chosen method. There can also be issues of repeata-
bility even when the same field methods are used over time; for example, Westfall and
Woodall [39] assessed the repeatability of large-scale forest fuel sampling conducted as
part of the Forest Inventory and Analysis (FIA) program of the United States Department
of Agriculture (USDA) Forest Service and documented failure to obtain desired levels
of repeatability in more than half of the measured attributes. Further, one-third of the
attributes exhibited measurement bias; however, bias was less problematic when results
were aggregated to the plot-level [39]. It is important to note that field methods are not
standardized or consistently collected, which can limit comparisons across field campaigns
and studies [1,30,40]. Further, different agencies and regions have developed disparate
protocols to meet their specific needs. For example, the Department of Sustainability and
Environment within the Victoria, Australia (AU) government, has developed protocols (see
Hines et al. [35]) that are different from those implemented by the USDA Forest Service
(see Prichard et al. [41]). In summary, collecting accurate, consistent, and spatially explicit
fuel measurements at desired spatial resolutions is a complex and time-consuming task,
which is of concern since fuel characterization is central to management and modeling.

Given the issues associated with field-based methods for characterizing fuels, the need
for spatially explicit, voxelized representations of fuel characteristics consistently across
large spatial extents, and the necessity to capture spatial variability, remote sensing data
and methods have been explored for estimating fuel characteristics. Remote sensing is
attractive for such mapping problems as it allows for estimating parameters at the scale
of individual pixels, or extended into 3D space using voxels, and potentially across large
spatial extents [22]. As an added benefit, collecting and updating remotely sensed data is
generally less costly and time intensive than undertaking multiple field campaigns [42].
For a recent review of remote sensing techniques for characterizing fuels, see Gale et al. [22].
Given that hyperspectral and multispectral data offer limited information regarding the
vertical structure of the forest canopy, light detection and ranging (LiDAR) has been
integrated with spectral data (e.g., [43–45]) or used independently (e.g., [46,47]) to assess
and characterize canopy fuels.

Aerial LiDAR allows for the collection of multiple returns from a single laser pulse,
resulting in some degree of canopy penetration and subcanopy characterization [48]. For
example, Skowronski et al. [49] proposed a consistent method for characterizing hazardous
fuels at the wildland–urban interface in New Jersey, USA based on the integration of aerial
LiDAR, aerial imagery, and cadastral datasets. Erdody and Moskal [45] integrated LiDAR
and high spatial resolution aerial near-infrared (NIR) imagery for estimating canopy height,
base height, bulk density, and available fuels in Washington, USA and documented the
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value of LiDAR. They suggested only slight improvements when combining the imagery
data and LiDAR in comparison with just using the LiDAR data. Other studies have relied
on only LiDAR; for example, Skowronski et al. [50] assessed the characterization of forest
biomass using LiDAR and documented varying correlations between LiDAR-obtained
heights and biomass within forest community types; they found that binning data into
height bins was useful for estimating the presence of ladder fuels [50].

Although LiDAR can aid in characterizing the vertical structure of the tree canopy, due
to a limited number of returns reaching the lower strata and the confounding impacts of
an often heterogeneous canopy, subcanopy vegetation, shrubs, and downed woody debris
are generally not well characterized [17,46,51,52]. Subcanopy fuels occurring in the shrub,
litter, and duff layers and downed woody debris often constitute a large fraction of fuel materials
within forest stands and play a significant role in determining fire behavior [9,21,52]; thus, the
inability to characterize subcanopy fuel loads and spatial patterns is a key knowledge
gap in management and fire behavior modeling. Even for canopy fuels, Skowronski
et al. [46] documented the value of combining downward scanning aerial LiDAR and
upward sensing profiling LiDAR to obtain a better characterization of the three-dimensional
canopy structure in comparison with only using aerial data. Many studies note the need for
better estimating subcanopy fuel loads and spatial patterns and developing more accurate
three-dimensional fuel models (e.g., [9,10,53,54]). Arroyo et al. [42] noted the value of
combining data from multiple remote sensing sources to better characterize fuels.

TLS data offer the ability to collect data beneath the forest canopy at a high spatial
resolution and, thus, can complement aerial- or satellite-based remote sensing for site-level
characterization [51,52,55,56]. Table 1 below summarizes studies that have assessed TLS
for measuring fuels, or biomass more generally. As the table highlights, TLS has been used
to estimate a wide variety of fuel-related parameters, both in the lower strata and in the
tree canopy, and has been compared with a wide range of field methods. Field methods
that have been used for comparison include both destructive methods, such as clip plots
(e.g., Rowell et al. [53,54,57]), and non-destructive point- or planar-intercept methods (e.g.,
Loudermilk et al. [52] and Alonso-Rego et al. [51]). Many studies have focused on the
analysis of TLS data collected using analytical-grade units with sites characterized using
scans from multiple locations to more densely sample the site and minimize the impact
of occlusion (e.g., Garcia et al. [56], Loudermilk et al. [17], and Rowell et al. [53,54,57]).
Few studies have compared pre- and post-event TLS data for assessing biomass loss, fuel
treatment effects, or burn severity. Notable exceptions are Hudak et al. [58], who estimated
changes in occupied voxel density and shrub fuel bulk density, and Gallagher et al. [59],
who compared changes in TLS metrics to the composite burn index (CBI) [60], a field-based
measure of burn severity based on visual site assessment.

Many modeling techniques used to make estimates of landscape characteristics from
remotely sensed data, such as linear regression and many machine learning algorithms,
rely on supervised learning or empirical methods, highlighting the importance of reference
data availability and quality [48]. Reference data quality has been noted to be of partic-
ular importance when estimating forest attributes, such as aboveground biomass, with
the impact of sample size varying between methods and algorithms [61]. Reference data
collection techniques are of specific concern when the goal is the collection of standardized
inventories and mapping over large spatial extents, such as national-level forest invento-
ries [62], since sampling methods and sample placement can impact resulting models [63].
Other than training models, reference data are also required to assess model performance,
and biased or uncertain validation samples can hinder meaningful assessment of model
outputs [64,65]. Thus, there is a need for research that assesses the impact of reference data
density on resulting model performance across spatial scales and for varying mapping or
modeling tasks.
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Table 1. Summary of studies that have compared TLS data to field-based methods for characterizing fuels.

Study TLS Data Ground Data Parameters Landscape

Loudermilk et al. (2009) [52] Multiple scans; ILRIS
Point-intercept; fuel bed and litter depth;
presence/absence of fuel; vegetation type
(non-destructive)

Leaf biomass; leaf area;
point-intercept volume Longleaf pine (Georgia, USA)

Garcia et al. (2011) [56] Multiple scans from the same position
but rotated; Riegl LMS-Z390i

DBH; crown diameter, height, and base
height; planar transects (non-destructive)

Canopy height, cover, and base
height; fuel strata gap

Scots pine, larch, and mixed
oak/birch (Cheshire, UK)

Loudermilk et al. (2012) [17] Multiple scans; ILRIS Point-intercept; forward-looking infrared
(FLIR) thermal imaging

Maximum fire temperature and 90th
quantile fire temperature; residence
time at 300 ◦C and 500 ◦C

Longleaf pine (Georgia, USA)

Olsoy et al. (2014) [66] Multiple scans; Riegl VZ-1000 Point-intercept (non-destructive); harvesting
of sagebrush (destructive) Sagebrush biomass Sagebrush (Idaho, USA)

Calders et al. (2015) [67] Pre- and post-harvest multiple scans;
Riegl VZ-400

Forest inventory (destructive); tree DBH and
height; stem maps; dry weight; AGB Tree DBH and height; AGB Eucalypt open forest (Victoria,

AU)

Rowell et al. (2015) [54] Multiple scans; Optech ILRIS 36D-HD

Clip plots (destructive); max and mean
heights for grass, forbs, shrubs, and litter;
mass and weight by fuel type; planar transect
counts and fuel bed heights

Fuel bed depths; biomass Longleaf pine (Florida, USA)

Rowell et al. (2016) [57] Multiple scans; Optech ILRIS 36D-HD Clip plots (destructive); height; center of mass
height; canopy cover; dry biomass by type Fuel height by type Longleaf pine (Florida, USA)

Cooper et al. [68] Multiple scans; Compact Biomass
LiDAR (CBL)

Disc pasture meter (non-destructive); grass
harvesting (destructive) Grass AGB Grasslands (South Dakota,

USA)

Rowell et al. (2020) [53] Multiple scans; Riegl VZ-2000 Clip plots (destructive) Occupied volume and mass; fuel
mass; total biomass

Old-field pine-grassland
(Georgia, USA)

Hillman et al. (2019) [69] Multiple scans; Trimble TX8 Field plots with sampling frames
(non-destructive) Vegetation height and cover

Eucalypt (Victoria, AU); Dry
sclerophyll eucalypt
(Tasmania, AU)

Alonso-Rego et al. (2020) [55] Single scan; FARO Laser Scanner
Focus 3D X 130 2-by-2 m sampling squares (non-destructive)

Litter depth; shrub cover; mean
shrub height; fuel fractions; fuel
load

Shrublands (Galicia, Spain)
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Table 1. Cont.

Study TLS Data Ground Data Parameters Landscape

Hudak et al. (2020) [58] Pre- and post-fire multiple scans: LMS
511 horizontal line scanner

Clip plots (destructive); fire consumption of
shrubs, grass, and fine downed woody debris;
fuel moisture; tree DBH, height, height of
crown, and crown diameter

Occupied voxel density; shrub fuel
bulk density Pine (South Carolina, USA)

Alonso-Rego et al. (2021) [51] Single scan; FARO Laser Scanner
Focus 3D X 130

DBH; tree height; base of live crown height;
planar transects (non-destructive)

Canopy base height, fuel load, and
bulk density; shrub cover; depth of
litter and duff; shrub height by
species; downed woody debris

Pine (Galicia, Spain)

Gallagher et al. (2021) [59] Pre- and post-fire single scan; Leica
BLK360

CBI by strata; tree height; tree species; DBH
(non-destructive)

Substrate, herbaceous, shrub, tree,
and total CBI

Pine and pine-oak (New Jersey,
USA)

Hillman et al. (2021) [70] Multiple scans; Trimble TX8 Point-intercept; comparison between
multiple sensors

Percent cover; fuel strata
classification; canopy fuel height;
intermediate canopy height;
near-surface fuel height; vertical
structure profiles

Dry sclerophyll eucalypt
(Tasmania, AU)

Pokswinski et al. (2021) [33] Single scan; Leica BLK360 Planar-intercept along transects; duff, litter,
and fuel bed depths; hourly fuel counts

Reported methodology but did not
compare field data and TLS data Not study-site specific

Rodríguez-Lozano et al. (2021)
[71] Multiple scans; Leica ScanStation 2 Plant height and diameter; green biomass;

dry biomass; field spectrometry AGB; green biomass fraction Mediterranean steppes
(Iberian Peninsula, Europe)

Stovall and Atkins (2021) [32] Multiple scans: Leica BLK360 and
Faro Focus 120 3D None (comparison between two sensors) Tree DBH, height and total volume;

PAVD Oak-dominant (Virginia, USA)

Wallace et al. (2022) [31] Multiple scans; Trimble TX-8; Faro
M70

Height and percent cover by strata; followed
methods of Hines et al. [38] Height and percent cover by strata Eucalypt (Victoria, AU)

AGB = above-ground biomass; DBH = diameters at breast height; CBI = composite burn index; PAVD = plant area volume density.
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In summary, traditionally subcanopy, site-level characterization has relied on the
time-consuming field methods discussed above. With the availability of cheap (i.e., sub-
$30,000 USD) and easy to operate units, practical, operational adoption of TLS for fuel
characterization has been suggested and methods have been proposed (see, for example,
Stovall and Atkins [32] and Pokswinski et al. [33]). This highlights the need to compare
TLS-based assessments with those obtained using traditional field methods.

3. Methods
3.1. Study Area

The New Jersey PNR is a 400,000 ha landscape comprising predominantly dense, fire-
adapted forest types. Much of the PNR is owned by the state government or conservation
groups, which has allowed for significant tracts of land to be left undeveloped. The canopy
is often dominated by a mix of Pinus rigida Mill. (pitch pine) and Quercus spp. (oaks), but
pure stands of pine or oak are scattered across the landscape as well. Sub-canopy and
mid-story species include stunted or immature post oak (Quercus stellata Wangenh.), shade
suppressed and immature pitch pine, as well as black jack oak (Quercus marilandica Muenchh)
and mountain laurel (Kalmia latifolia L.). Understory species include sheep laurel
(Kalmia angustifolia L.), shrub oaks such as scrub oak (Quercus ilicifolia Wangenh.), and
various Ericaceous shrubs (Vaccinium spp., Gaylussacia spp., and Lyonia spp.).

A long history of both wild- and prescribed fires of varying severity has created
a mosaic of three-dimensional structure within the forests. Relatively fire bereft areas
are characterized by dense woody vegetation, and tracts that experience more frequent
wildfire or prescribed fire exhibit unique characteristic patterns of vegetation density due
to fire-vegetation feedbacks [72]. Approximately 6000 ha of forest a year are burnt in
dormant season prescribed fires, while wildfires burn 3400 ha a year on average. The
average frequency and magnitude of wildfires, however, has decreased in the PNR from
a peak at the beginning of the 20th century [73,74].

The study area comprised 27 plots of varying fire history scattered among the north–
western and north–central portions of the PNR in Burlington and Ocean counties (Figure 1).
Plots were chosen to represent either recently burned/prescribed burned conditions or
fire excluded conditions. The most frequently burned plots experienced prescribed fire on
an annual basis, while several fire suppressed plots have been without fire for more than
25 years, with the longest time since a burn being 91 years. Canopy tree species among
the plots were predominantly pitch pine, with a single plot dominated by chestnut oak
(Quercus montana Willd.). Mid-canopy and understory species included those mentioned
previously in this section.
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distributions. Following the noise filtering, ground classification was performed using the 
cloth simulation function (CSF) as implemented in the lidR [76] and RCSF [78] packages. 
In order to classify ground returns, the CSF models a rigid cloth surface, which is defined 
by interconnected nodes within a three-dimensional space. In other words, the point cloud 
is inverted, and the cloth surface is modeled above the points. The nodes associated with 
this modeled surface are then used to classify ground return points while honoring rigid-
ness constraints. We used a class threshold of 0.05 and a cloth resolution of 0.05; the class 
threshold specifies the distance threshold to the simulated cloth to classify a point as a 
ground return, while the cloth resolution relates to the distance between nodes making 
up the modeled cloth surface. Rigidness was maintained as the default value of 1 to allow 
for the modeling of rugged terrain, and the time step, which relates to how gravity is sim-
ulated in the model, was set to 0.65. 

Next, lidR [76] and TreeLS [77] were used to normalize the point cloud to convert the 
Z coordinates to height above ground, as represented by the ground point classification 
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Figure 1. Study area in New Jersey Pinelands National Reserve (PNR). (a) Location of field plots.
(b) Location of (a) within New Jersey, USA. Coordinates in (a) are relative to the NAD83 UTM
Zone 17N projection. Both maps are projected to the NAD83 UTM Zone 17N projection. Base
imagery is from the National Agriculture Imagery Program (NAIP) of the United States Department
of Agriculture (USDA) Farm Service Agency.

3.2. TLS and Ground Data

Each of the 27 plots was circular in shape and had a radius of 10 m. This study
specifically used 10 m radius plots since the goal was to characterize local, plot-level
characteristics and because of the limitations of single-position, single-scan TLS data. Due
to issues of occlusion, decreasing point density with radial distance from the scanner, and
beam divergence, Pokswinski et al. [33] suggested that only data within 10 to 15 m of the
Leica BLK 360 TLS model used in this study are usable. To collect field reference data, each
plot was sampled 40 times within the area defined by the 10 m radius from the plot center
and measured using a Lufkin foldable 2 m wood rule. The 40 measurement locations within
each plot were chosen randomly within the 10 m radius by tossing metal flagging and
measuring the height of the tallest woody vegetation, in centimeters, where the flagging
landed. If flagging landed in an area with no woody vegetation, that sample was recorded
as 0 cm. The goal was to collect a total of 40 randomly selected reference data points within
each of the 27 plots in order to generate an unbiased sample of shrub heights within the
10 m radius being characterized.

TLS data were collected using a Leica BLK 360 using a similar approach as Gallagher
et al. [59]. Two single-return scans were conducted at each plot, one scan during the
dormant season and another during the growing season, in order to record scans in both
leaf-off and leaf-on conditions. Scans were taken with the TLS positioned at the plot center.
Unprocessed scans were downloaded using the Leica BLK Data Manager and extracted as
PTX files using the Leica Cyclone Register 360 software.

3.3. Data Preparation

Figure 2 conceptualizes the data preparation, modeling, and assessment and compari-
son methods used in this study. All processing, modeling, and assessment were conducted
within the R [75] data science language and environment. We specifically made use of the
lidR [76] and TreeLS [77] packages, which allow for reading and processing LiDAR and TLS
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data in the R environment. Since all shrub height field measurements were collected within
a 10 m radius of the sensor, returns occurring within this radius were extracted from the
larger dataset. Next, a noise filter was applied based on Z value distributions. Following
the noise filtering, ground classification was performed using the cloth simulation function
(CSF) as implemented in the lidR [76] and RCSF [78] packages. In order to classify ground
returns, the CSF models a rigid cloth surface, which is defined by interconnected nodes
within a three-dimensional space. In other words, the point cloud is inverted, and the
cloth surface is modeled above the points. The nodes associated with this modeled surface
are then used to classify ground return points while honoring rigidness constraints. We
used a class threshold of 0.05 and a cloth resolution of 0.05; the class threshold specifies
the distance threshold to the simulated cloth to classify a point as a ground return, while
the cloth resolution relates to the distance between nodes making up the modeled cloth
surface. Rigidness was maintained as the default value of 1 to allow for the modeling of
rugged terrain, and the time step, which relates to how gravity is simulated in the model,
was set to 0.65.
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Next, lidR [76] and TreeLS [77] were used to normalize the point cloud to convert the
Z coordinates to height above ground, as represented by the ground point classification
created using the CSF method, and minimize the impact of variable topography. This
first required that a triangulated irregular network (TIN) be created from the classified
ground returns, followed by a rasterization of this surface to create a digital terrain model
(DTM) of bare earth surface elevations at a 0.1 m spatial resolution. The ground elevation
measurements from the DTM surface were then subtracted from the returns occurring
above them. Since we were specifically interested in estimating shrub heights, returns
associated with trees were detected then removed from the point cloud using the TreeLS [77]
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package and the methods described by de Conto et al. [77]. This method specifically relies
on a cylinder fitting technique to identify main stems or trunks. Once main stems are
detected, points are assigned to individual trees using a graph theory approach. All points
that are associated with a specific tree are assigned the same unique tree identifier, allowing
for selecting each individual tree, or, as was conducted in this study, filtering out all points
returning from trees and associated stems or leaves. This ground classification followed by
tree segmentation workflow resulted in a ground normalized point cloud containing only
points classified as understory returns.

Once the TLS data were filtered for noise, clipped, and ground classified and trees
were classified and removed, it was assumed that the remaining points represented returns
from the understory. These understory returns were used to extract a set of 54 metrics
to summarize the understory conditions within the plot extent. The metrics generated
are listed in Table 2. For all the non-ground/understory returns, we calculated the mean,
median, standard deviation, skewness, and kurtosis of the Z, or height, values. We also
calculated the Z values associated with all deciles between 1 and 9. The point cloud was
also segmented into height strata as follows: >0 to 0.5 m, 0.5 to 1 m, 1 to 1.5 m, 1.5 to 2 m,
and >2 m. This was accomplished using the normalized Z values, and these bin ranges
were selected since our primary interest was characterizing subcanopy features smaller
than 2 m in height. Within each height strata, we counted the number of returns and
the percentage of all non-ground/understory returns returning in the height strata. We
calculated the mean, median, standard deviation, skewness, and kurtosis of the Z values
within each height bin. Lastly, and in order to summarize the distribution of points relative
to the X/Y plane, we calculated the average nearest neighbor (ANN) index, which offers
a measure of the spatial dispersion or clustering of a point pattern, using the spatialEco
package [79].

Table 2. Metrics calculated from TLS point cloud data following ground classification, height
normalization, and extraction of non-ground/understory returns.

Group Variables Count

All non-ground/understory returns (Z) Z mean, median, standard deviation, skewness, and kurtosis 5
Deciles (1–9) 9

Strata-based Count of returns in strata, percent of all
non-ground/understory returns in strata 10

Strata-based (Z) Mean, median, standard deviation, skewness, and kurtosis 25

Strata-based (X/Y) Average nearest neighbor (ANN) index 5

Total 54

3.4. Regression Modeling

Models were generated using multiple linear regression fitted using the ordinary
least squares (OLS) method [80] as implemented in the stats base R package [75]. Due
to the limited number of samples, it was not possible to partition the data into separate
training and testing sets. Instead, models were trained using all available samples but
withholding one sample. The withheld sample was then predicted using the model trained
using the other samples. This process was repeated such that all samples were held out and
predicted using a model trained with all other available samples. Additionally, due to the
limited sample size relative to the number of predictor variables, the predictor variables
were transformed into eight new and decorrelated predictors using principal component
analysis (PCA) [81]. The first eight principal components were chosen as it was found
that this was adequate to capture 99% of the variance in the original 54 variables. So as
not to cause a data leak, the PCA was performed separately for each model with one
of the samples held out. As a result, the first eight principal component variables were
not consistent between models since they were generated using different training and
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validation partitions. Other than the eight principal component variables, we also included
whether the site was recently burned or fire excluded, represented as a single dummy
variable, as an additional variable in the analysis, resulting in a total of 9 predictor variables
in each model.

In order to assess the impact of reducing the number of shrub height samples collected
within each plot, we randomly selected 2 through 40 with a step size of 2 random samples,
calculated the mean shrub heights in each plot using the subsample, then used this estimate
as the dependent variable in the multiple regression analysis. For the withheld sample in
each model run, the total set of 40 samples was always used to estimate the average shrub
height in the plot. Separate models were also developed using the leaf-off and leaf-on data.
Generating models using sample sizes varying from 2 to 40 with a step size of 2, trained on
all but one sample, and with the leaf-on and leaf-off predictor variables resulted in a total
of 1080 models.

3.5. Assessment and Comparison

Modeling results were assessed and compared using the prediction R-squared and
root mean square error (RMSE) metrics [80], which were calculated using the shrub heights
estimated using all 40 samples available in each plot and the associated prediction for
each sample when it was held out of the modeling process. RMSE was calculated in the
units of the response variable, in this case cm. In order to assess and compare changes
in the precision or uncertainty of the predictions, we also calculated prediction intervals
(PIs) using a 95% confidence interval [82]. Note that precision intervals are different
from confidence intervals, as they are calculated for each prediction as opposed to the
entire model.

4. Results and Discussion
4.1. Distribution of Shrub Heights within Plots

Figure 3 summarizes the central tendency and distribution of the 40 field-based shrub
height measurements collected within each of the 27 plots. Generally, sites that had been
recently burned showed lower average shrub heights in comparison to fire excluded sites.
Measured shrub heights were rarely above 2 m within recently burned sites. Additionally,
shrub heights were generally more variable within fire excluded than in recently burned
plots. Both a one-tailed T-Test with unequal variance (p-value = 0.0001) and a one-tailed
Wilcoxon rank sum exact test (p-value = 0.0002) suggested that the recently burned sites
had a statistically significant lower mean shrub height at the 95% confidence level in com-
parison with the fire excluded sites. Further, a one-tailed T-Test with unequal variance
(p-value = 0.0001) and a one-tailed Wilcoxon rank sum exact test (p-value = 0.001) both
suggest that the recently burned sites had statistically significantly lower variability of
measured heights within the plots in comparison with the fire excluded sites. This high-
lights the value of including the recently burned vs. fire excluded variable in the multiple
regression models.
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4.2. Impact of Number of Shrub Height Measurements and Phenology on Model Performance

Figure 4 shows the predicted shrub heights for each plot when using all 40 field
samples to estimate the mean shrub height. As described above, each site was predicted
using a model trained with all other available plots. Black points represent the mean shrub
height calculated from the 40 field samples, while the colored points represent the predicted
mean shrub height obtained using the multiple linear regression model. The error bars
represent the 95% confidence PIs. The mean PI across all of the sites was 72.9 cm when
using the leaf-off metrics and 54.6 cm when using the leaf-on metrics. When using the
leaf-off metrics, the average prediction interval for recently burned sites was 79.4 cm, while
it was 65.8 for fire excluded sites. When using the leaf-on metrics, the average prediction
interval for recently burned sites was 57.5 cm, while it was 51.4 for fire excluded sites. The
predicted R-squared calculated using the residual for each sample withheld from each
model was 0.78 when using the leaf-off metrics and 0.89 when using the leaf-on metrics.
The RMSE was 12.9 cm and 10.3 cm for the leaf-off and leaf-on models, respectively.

Generally, the results suggest better performance when using the metrics derived using
the leaf-on data in comparison with the metrics derived using the leaf-off data. The reasons
for the differences in performance with phenology are not clear; however, this may relate to
having a greater density of understory returns, and, as a result, a better characterization of
the understory, in the leaf-on data due to the presence of foliage. However, there are some
confounding variables. Specifically, it would be expected to have a less accurate ground
classification and subsequent ground normalization in the leaf-on vs. leaf-off data due to
a lower density of ground returns due to potentially more ground occlusion by vegetation.
The models also generally provided lower prediction intervals for fire excluded vs. recently
burned sites. This may partially be related to differences in mean heights and variability in
heights within plots between the recently burned and fire excluded groups.

These results specifically highlight the value of providing PIs along with each predic-
tion. For example, users can use these values to determine whether predictions are precise
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enough to meet management, reporting, or modeling standards. Additionally, PIs allow
for better quantification and understanding of differences in prediction variability between
sites or groups of sites (i.e., recently burned vs. fire excluded).
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Figure 5 summarizes variability in model performance as the number of samples
within each plot used to estimate the mean shrub height in the plot are varied from
2 to 40 m with a step size of 2 m. Figure 5a shows the mean PI by sample size,
Figure 5b shows the mean RMSE, and Figure 5c shows the mean prediction R-squared. All
three metrics generally suggest stronger performance when using the leaf-on metrics as
opposed to the leaf-off metrics, as noted above for the results obtained when using all
available field samples. These results generally suggest that model performance is sensitive
to the number of field reference samples available in each plot, regardless of whether
leaf-on or leaf-off data are used. Results were notably poorer when less than 10 samples
were collected within each plot. Performance generally stabilized after 20 samples were
used to calculate plot means. We attribute fluctuations in the model performance with
changes in sample size to be partially related to the random samples chosen to train the
models. More specifically, more variability in model performance would be anticipated
with a smaller sample size, since which samples were chosen to train the model would
impact the resulting prediction. With an increase in the number of training samples, it is
anticipated that a more consistent result would be obtained between model runs. Similar
to the results reported by Keane et al. [38] when comparing the planar intercept, fixed-area
microplot, and photoload field methods, our results suggest that intensive sampling is
necessary to accurately estimate fuel conditions. In this study, collecting only a few samples
per plot (i.e., less than 10) was inadequate to provide stable and precise estimates of mean
shrub heights within 10 m radius plots when used as a dependent variable to train multiple
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regression models to estimate this fuel metric from TLS-derived metric sets, both leaf-off
and leaf-on, as measured using mean PIs, RMSE, and R-squared. In other words, field
reference sampling density is an important consideration when these data will be used
to train models to make estimates from remotely sensed data for application to new data
within other plots or extents.
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There are some notable limitations in this study. First, although we had 40 random field
measurements available within each plot, only 27 plots were available. In order to minimize
the impact of a small sample size, we generated multiple models and withheld each sample
for validation so as not to require partitioning the data into separate training and testing sets.
We also relied on multiple linear regression, as opposed to a machine learning modeling
method that may be more likely to overfit to a small dataset. The findings of this study



Fire 2023, 6, 98 15 of 19

may not be applicable to all forested landscapes. This study was conducted within the
New Jersey PNR, and results may not extrapolate to other forest types or landscapes with
disparate community composition, understory and/or overstory characteristics, and/or
burn histories. For example, less field samples may be necessary within forest stands with
more homogeneous understory characteristics or less variable shrub heights. In contrast,
forests with more heterogeneous understory characteristics may require a larger sample
size. The types of species making up the understory and the disturbance or management
histories may also have an impact. Further investigation of the impact of reference data
sampling density on plot-level model performance in other landscapes would be useful.
Lastly, we relied on single-return, single-scan TLS data collected with cheaper units since
our focus was on operational adoption for rapid plot-level assessment. Results may vary
when using other sensors or combining multiple scans to more fully characterize a plot or
minimize occlusion. Even given these limitations, we argue that our results highlight the
importance of field reference sampling density and data phenology when such data will be
used as input to empirical predictive modeling routines.

To improve the mapping and characterization of fuels, especially in the forest under-
story, there is a need for further development of methods for segmenting point clouds
into different types of fuels and mapping or differentiating individual shrubs or trees [83].
Quantitative structure models (QSMs) could be especially useful for such segmentation
work [84–86]. Many factors can impact fire behavior, including abundance and composi-
tion of duff and detritus, abundance and distribution of live and dead woody material,
structural elements and configuration of the canopy and subcanopy, and foliage abundance
and characteristics [1,2]. Adopting methods from other disciplines or areas of research may
be of particular value for improving the characterization of fuels; for example, computer
graphics and porous media theory methods have been proposed to better model the gap
fraction of tree crowns [87]. As noted by White et al. [83], there is a need to develop best
practices for using TLS data to estimate plot-level attributes. Using these data to enhance
forest inventories remains challenging due to lingering technological, methodological, and
operational issues. For example, methods to accurately and consistently measure key forest
inventory attributes, such as number of trees, species, diameter at breast height, and height,
are still lacking [83].

5. Conclusions

This study highlights the importance of field reference data sampling density when
they are used to derive a dependent variable for empirical modeling of plot-level charac-
teristics using remotely sensed data. Specifically, we document reductions in mean PIs,
RMSE, and R-squared with reduction in the number of reference samples available within
each plot for estimating mean plot-level shrub heights using metrics derived from TLS
data. Models were generally less accurate and precise when less than 10 random shrub
heights were collected within each plot, but stabilized after 20 samples were available.
Additionally, metrics derived from leaf-on TLS data generally provided more accurate
and precise predictions than those calculated from leaf-off data within the study plots and
landscape. This study highlights the importance of field reference sampling design and
data characteristics when data will be used to train empirical models for extrapolation to
new sites or plots.
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