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1. Introduction

Increasing global temperatures and variability in the timing, quantity, and intensity of
precipitation and wind have led to longer fire season lengths, greater fuel availability, and
more intense and severe wildfires [1]. These broad-scale shifts have increased the emphasis
on understanding wildland fuel dynamics through fine-scale laboratory experiments [2],
refined fuel sampling strategies [3,4], the characterization of fuel hazards and treatment
longevity [5,6], and operational fuel mapping [7,8]. Many of these efforts seek to enhance
fuel estimation precision, along with the spatial and temporal resolutions of fuel products
available for management decision making. Recent research has emphasized the need to
advance fuel knowledge and management through (1) improving the speed and accuracy
of techniques for characterizing fuel properties, such as fuel moisture and arrangement;
(2) evaluating how fuel properties respond to management and disturbance events; and
(3) integrating these techniques to improve the mapping of fuel characteristics and hazards
across space and time. This Special Issue represents a collection of papers that highlight
the diversity in fuel dynamics, characterization approaches, and mapping strategies from
around the world.

2. Highlights

Recent years have seen an increased emphasis in the fuel management and research
community on improving the speed and reliability of fuel sampling techniques used to
inform fuel hazard assessments [9] and three-dimensional (3D) fire behavior modeling [10].
This collection highlights papers that test both traditional and terrestrial laser scanning
(TLS) methods of fuel sampling for describing 3D fuel loading and arrangement [11,12],
along with a study modeling fuel hazard development [13]. Full parameterization of 3D fire
behavior models can integrate more detailed observations of fuels than classic Rothermel-
based fire models. Although the application of 3D point data for characterizing fuels for
fire behavior modeling is not a new concept [14], a considerable lag was apparent prior to
the widespread assessment of operational studies [15], in part due to a lack of access to
data and analysis tools [16–19]. Advances in data access and tools have improved and led
to the widespread availability of 3D point data for use in mapping fuels and aboveground
biomass over a range of scales [20–22]; however, fully parameterizing and validating these
3D models still requires new ways of sampling fuels. To meet this need, Hiers et al. [11]
demonstrate a 3D quadrat sampling strategy for gathering and modeling vertical gradients
of herbaceous and woody litter fuel bulk density. Via testing rapid TLS characterization
of fuel arrangement, Wallace et al. [12] found the technology was able to reliably describe
the 3D fuel arrangement and that sensors across different price points provided consistent
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results. Other strategies are being developed to understand coarser-scale fuel dynamics.
Marsden-Smedley et al. [13] were able to use time since the previous fire to predict fuel
loading within different surface and ladder fuel strata, with their model providing the
best prediction of fuel hazard when weighing the strata based on their influence on fire
behavior.

Fuel stratum and particle-level fuel chemistry attributes that drive the ignition and
propagation of fire have also received recent attention due to their importance in describing
changes in fuel hazard. Bowman et al. [23] developed a fuel moisture index for fine fuels
in Tasmanian forests from inexpensive humidity and temperature sensors, finding that
1-hour fuel moisture could reliably be predicted but was sensitive to Eucalyptus forest
type, time since disturbance, and understory cover [23]. Working in the grasslands of
Brazil, dos Santos et al. [24] found that species-specific parameterization of fuel moisture
content models provided significant improvements over the existing general Grass Fuel
Moisture Code that is in operational use. Building on these types of field studies, Zhang [25]
used a laboratory experiment to better quantify the impacts of wind velocity and fuel bed
compaction on the drying rates of different litter types. Using a controlled lab setting, the
study was able to quantify the effects of wind and compaction on litter drying and establish
predictive models for both fuel types [25]. Advances in these fields have the potential to
inform the next generation of fuel hazard systems.

Parallel efforts have investigated fuel particle ignition and energy release dynamics
and the potential for different ember sources to ignite fuel beds. New methods of describing
live fuel energy release potential were evaluated by Melnick et al. [26] through “in flame”
testing of fuel interacting with a fire front. Testing of the new method showed improved
sensitivity to moisture content and a reduction in energy release in the oxygen-limited
combustion zone compared to standard methods [26]. Burton et al. [27] compared litter
bed ignitability between laboratory and field tests for successful and sustained ignitions.
Although the results varied between the test sets, their conclusions highlight that laboratory
trials are an effective substitute for field experiments [27]. Other studies have focused on
how ignition sources interact with fuel beds. Recent emphasis on mastication as a fuel
management strategy [28] has raised questions about the ignition potential of masticated
fuel. Matvienko et al. [29] evaluated the potential of using firebrands to ignite wood chips,
finding that increased wind speed was the predominant driver of greater ignition potential.
Similarly, Viegas et al. [30] examined the potential of using cigarettes as ignition sources,
demonstrating that fuel bed and cigarette moisture content, along with wind speed, were
the driving factors behind the probability of and time to ignition. Collective research efforts
into the controls of fuel moisture and ignition potential are refining the ability of managers
to interpret and communicate the hazards of wildfire to the public [31].

While some fuel dynamics can be assessed in a laboratory, others require extended
time periods in natural environments to understand their more complex interactions.
Brown et al. [32] investigated the influence of various forest structures in Australia on
dead fuel moisture content, showing positive and negative feedback of forest structure
(i.e., light penetration index) on moisture content that was best accounted for through an
autoregressive model with time-lagged weather inputs. To understand the cycling and
recovery of shrub fuels following mastication, Pickering et al. [33] tracked 63 treatments
over a 9-year period. This extended study revealed that fine woody fuel loading declined
over time and shrub cover remained low following treatment, but that coarse fuel load
remained high, posing a trade-off where coarse fuels might increase soil heating and
smoke emissions while reduced shrub cover should moderate fire behavior [33]. Others
have been able to draw management implications by integrating treatment data with
postfire observations. Gannon et al. [34] evaluated the drivers of fuel break effectiveness
in California, the United States, showing that fire breaks that were supported with direct
attack efforts and experienced increased relative humidity had a greater chance of stopping
fire progression, while fuel breaks in fires experiencing a greater daily area burned had
reduced effectiveness.
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Operationalizing the knowledge developed through research on fuel properties and
their spatial and temporal dynamics often comes in the form of fuel mapping efforts.
Ongoing advances in machine learning capabilities are making fuel mapping increasingly
reliable. Sabrabadi and Innocente [35] were able to integrate hyper-parameter tuning
along with Bayesian optimization into machine learning algorithms to achieve forest
type classifications with 97% accuracy across the topographically driven landscape of
the Colorado Front Range. Although remote sensing has long been integrated into fuel
mapping [36], continuous advances in sensor resolution and data processing algorithms will
further improve mapping capabilities. Aragoneses and Chuvieco [37] integrated Sentinel-
3 Synergy imagery into a support vector machine algorithm to conduct a supervised
classification of 45 vegetation types across the Iberian Peninsula with 85% overall accuracy.
Among the hardest fuel strata to map are surface fuel conditions; Alipour et al. [38]
employed a multimodal data fusion strategy with a neural network ensemble to predict
27 surface fuel models across California, the United States. By integrating neural networks
with multispectral reflectance, high-resolution imagery, and biophysical climate and terrain
data, they were able to achieve classification accuracies as high as 75% when ignoring the
most minor fuel models (<5%) across the landscape [38].

3. Future Direction

Although considerable progress has been made in advancing the characterization
of fuels using 3D point data for incorporation in fire behavior models, much work re-
mains. Continued advancements in remote sensing resolution and processing, along with
data assimilation strategies capable of incorporating a variety of data structures and re-
lationships, hold the potential to unlock the next generation of fuel maps to support the
operationalization of 3D fire behavior modeling and fuel hazard assessment. One of the
most widely used fuel maps in the United States is the LANDFIRE project, which is now
more than 20 years old, but provides 30 m resolution fuel predictions for landscape fire
simulation. Recently, there have been calls to update the LANDFIRE program to provide
predictions of 3D fuel mapping by combining the existing protocol with advances in ma-
chine learning, geostatistics, and remote sensing [39] to provide discrete predictions of
forest structures capable of populating 3D fire behavior models. Additionally, there have
been proposals to allow local management organizations to “on-ramp” standardized fuels
and forest structure observations to these national modeling efforts to improve local model
accuracy. Although 3D airborne laser altimetry has been widely used to assess individual
tree characteristics, such as heights, stem and crown diameters, and biomass [40–43], other
avenues of data collection need to be considered. Advances in terrestrial and handheld
laser scanning [44,45] and drone-based structure-from-motion photogrammetry [46–48] are
making it possible to infer metrics important for fire behavior models, such as the height
of branches, quantity and type of ladder fuels, fuel strata loads, the distinction between
live and dead fuels, the rates of downed woody debris accumulation and decomposition,
and the assessment of live and dead fuel moisture content [49–51]. Cross-platform inte-
gration of these different data collection strategies may be able to unlock the resolution
and accuracy needed to reliably operationalize the next generation of fire behavior models.
Finally, while not a new concept [52], further research is still needed that improves the
mechanistic integration of remotely sensed and field data that describe the pre-fire fuel
data with both active fire processes (e.g., consumption and emissions) and the myriad of
postfire ecosystem responses [53].
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