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Abstract: Identifying the regions with urban vulnerability to potential fire hazards is crucial for
designing effective risk mitigation and fire prevention strategies. The present study aims to identify
urban areas at risk of fire using 19 evaluation factors across economic, social, and built environment-
infrastructure, and prior fire rates dimensions. The methods for “multi-criteria decision making”
(MCDM) include the Analytic Hierarchy Process for determining the criteria’s importance and weight
of the criteria. To demonstrate the applicability of this approach, an urban vulnerability index map
of Ardabil city in Iran was created using the Fuzzy-VIKOR approach in a Geographic Informa-
tion System (GIS). According to the findings, about 9.37 km2 (31%) of the city, involving roughly
179,000 people, presents a high or very high level of risk. Together with some neighbourhoods with
low socioeconomic and environmental conditions, the city centre is the area where the level of risk is
more significant. These findings are potentially very meaningful for decision-makers and authorities,
providing information that can be used to support decision-making and the implementation of
fire risk mitigation strategies in Ardabil city. The results of this research can be used to improve
policy, allocate resources, and renew urban areas, including the reconstruction of old, worn-out, and
low-income urban areas.

Keywords: risk analysis; structural fire risk; urban vulnerability index; mapping; GIS-MCDM; city

1. Introduction

Urban fire risk is the possibility of damage to people’s life safety, property loss, and the
threat to public security caused by the interaction between fire accidents and urban vulner-
ability, and the possibility of negative consequences or likely loss such as the breaking up of
economic activities and environmental destruction [1]. Urban fire risk is a tremendous chal-
lenge to sustainable urban development, especially in low-income countries [2,3]. It causes
damage to urban buildings and infrastructure and poses a major hazard to inhabitants’
lives and property. The cost of fire damage is disproportionately high in major cities and
highly inhabited areas [4]. According to the World Health Organization (WHO), around
3 million fires occur worldwide, with approximately 180,000 people dying each year [5].
Furthermore, most of these catastrophes occur in large cities in low-income countries [6,7]
and many economic, social, and environmental conditions in these places raise the risk of
possible fires [8]. While total fire prevention is virtually impossible, damages caused by
potential building fires can be contained [9]. Modelling and predicting fire dangers is a
crucial step in preventing fire damage in urban areas because it employs scientific frame-
works to identify hazards [10] and assists local organisations in implementing appropriate
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geographic data to cope with the damages associated with urban fires [11]. It is critical to
identify the risk of fire in urban environments, particularly for rescue agencies in major
cities [12]. Discovering and presenting high-risk regions for future fires would assist local
organisations in taking effective measures to lower the risk, allocate resources in a more
efficient manner, and distribute fire protection infrastructure throughout the city.

While resilience is the capacity of the system to withstand a major disruption within
acceptable degradation parameters and to recover within an acceptable time, as well as
composite costs and risks, vulnerability is the manifestation of the inherent states of the
system that can be subjected to a natural or human-related hazard or be exploited to
adversely affect that system. Contrarily, risk is based on probability and is determined by
the likelihood and seriousness of unfavourable consequences [13]. In this essay, we take a
closer look at fire risk and urban vulnerability to fire. Urban vulnerability is the result of
the interaction of a number of disadvantages. Usually, the more vulnerable and distressed
areas lack basic services and have a higher number of obsolete buildings, unfavourable
social characteristics, vulnerable people, and more prominent social and environmental
differences [14,15]. Urban vulnerability in this study refers to the possibility of fires in urban
areas where there are poor environmental conditions, disrespect for building engineering
requirements, and inadequate urban planning standards. Areas with poor socioeconomic
conditions are included as well.

Fires are mostly spatial, meaning that they can be modelled and mapped [16], and
that Geographic Information Systems (GIS) can be efficiently used to identify, manage, and
anticipate fire events [17]. In fact, modelling and identifying high-risk and sensitive urban
areas using spatial metrics [18] is an essential step towards reducing the probability of
human and material losses resulting from fire events. Kernel Density Estimation (KDE),
Monte Carlo Simulation models (MCS), geographically weighted regression (GWR), and
other models of spatial analysis (Cluster analysis) have all been employed in recent years
to identify vulnerable urban areas in terms of likely fire outbreaks in urban residential
areas [19]. The framework for analysing the geographical patterns of probable fires is
provided by identifying vulnerable urban areas and high-risk locations.

Over the last few years, a significant amount of research has been conducted on
the spatial analysis and identification of factors impacting the increase of fire danger in
urban areas. In the United States, the onset of research in this field dates back to the
early 1980s [20,21] with studies primarily focusing on the influence of demographic and
socioeconomic characteristics to assess fire risk. According to a Swedish study, the risk of
probable fires rises dramatically in urban areas with larger building complexes, particularly
when associated with other physical and social vulnerability factors, such as degraded
buildings, overcrowded houses, and elderly inhabitants [22].

Some other investigations in Khulna, Bangladesh, found that, along with socioeco-
nomic factors, built environment variables and urban infrastructure such as building quality,
distance from high-voltage power plants, distance from fire stations and infrastructure, type
of land use, and distance from warehouses and fuel storage or distribution centres all play
a role in reducing or increasing the potential risk of fire in urban buildings [23]. According
to a study conducted in Nanjing, China, fire risk is also more significant in downtown
regions with a high concentration of commercial and economic activity [24]. Another study
conducted in Helsinki, Finland, found that although the structure of fire risk distributions is
highly variable, socioeconomic, and physical aspects of the urban neighbourhoods (such as
building age and quality) have a direct influence on the increase or decrease of fire risk [25].
In addition, a study conducted in Nanjing, China, reported that the risk of fire increased
considerably in buildings with mixed land use [26]. Furthermore, a study conducted in
the Romanian city of Ias, i found that the city’s outskirts are substantially more sensitive to
fire than other metropolitan regions, with factors such as poor income, high population
density, and inadequate physical structure all contributing to this urban vulnerability [27].
According to a study conducted in Zanjan, Iran, urban areas with a higher number of
tall and old structures have a higher risk of fire [28]. Furthermore, economic-related as-



Fire 2023, 6, 107 3 of 18

pects, such as low household income and high population density, have a critical and
direct effect on raising the danger of fire in urban buildings, according to the research of
283 Chinese cities [29]. In a similar study conducted in southern Queensland, Australia,
researchers found that in addition to economic and social factors, the distance or proximity
to fire stations impacts the degree of sensitivity to potential fire threats in different urban
regions [30]. Additionally, a study conducted in Seixal, Portugal, showed that the risk of
fire is larger in the old downtowns, which are full of structures with mixed land activities
and uses [31]. Deprivation, ethnicity, and sociocultural characteristics may all play a part
in lowering or increasing the danger of future urban fires, according to a study conducted
in the Midlands of the United Kingdom [32]. Similarly, poverty, population density, and
poor building condition were all determined to be key variables in raising the danger of
fire in a study conducted in Surabaya, Indonesia [33]. According to research conducted in
Melbourne, Australia, while the city’s fire risk has followed a complex pattern, the central
section of the city has a higher risk of fire due to a mix of economic activities, land use, and
property ownership [34]. Moreover, a study conducted in Melbourne, Australia, indicated
that the risk of fire is higher in the suburbs with a higher population density and ethnic
composition [35]. A similar study conducted in Melbourne validated the significance of
high population density in increasing fire rates in urban areas [36]. In recent years, some
studies have used GIS and MCDM methods to analyse the risk of residential and structural
fires [37–39]. Table S1 in Supplementary File S2, in the supplement, lists and summarises
the main findings of some relevant studies addressing fire risk in urban areas.

A review of early research suggests that most of the past research in this field has
focused on space–time patterns or the link between variables that influence fire risk. Fur-
thermore, the majority of research was conducted in developed countries or they employed
fewer criteria to examine and estimate fire risk [17]. The texture and geometry of historic
Middle Eastern cities, particularly in Iran, differ significantly from those of developed
countries. However, no study of urban fire risk modelling and zoning utilising GIS ap-
proaches and a set of factors has been conducted in Iran. Identifying fire risk in urban
areas and GIS-multi-criteria decision making (MCDM) analysis for fire risk mapping are
instrumental in supporting informed decision-making and outlining efficient urban vul-
nerability mitigation strategies [40,41]. Efficient spatial deployment of urban fire stations
and emergency services is highly desired to address the risk of modern urban fires [38].
Simple techniques are unable to predict fire risk in various geographic units due to the
complexity of fire risk in urban environments. Then, the precise techniques for identifying
high-risk locations must be applied. The integrated GIS-MCDA approach provides rapid,
effective, and exclusive explanations to complex spatial complications [42]. In this regard,
some researchers have employed methods based on the GIS-MCDM approach [43,44]. In
this context, the main objective of this study is to apply an integrated GIS-MCDM approach
to model and introduce high-risk urban regions in terms of fire occurrence in Ardabil
city, located in the northeast of Iran. To model the vulnerability level in a GIS setting,
19 socioeconomic sub-criteria, built environment, facilities, and fire records were defined
and applied.

2. Materials and Methods
2.1. Study Area

Over the period between 1990 and 2017, about 20,000 fires were reported in Iran’s
large and medium-sized cities. For example, in 2017, a fire destroyed a 17-storey Plasco
commercial building in central Tehran, killing 25 people, wounding 235 others, and inflict-
ing millions of dollars in damages [45]. Another very relevant Iranian town in terms of
fire occurrences in Ardabil city. Between 2015 and 2020, an average of 300 structural fires
were reported annually in the historical centre of this city [45]. Located in the northwest
area of Iran, the city of Ardabil is the capital of the province with the same name. The
town, used as a case study in this work, covers around 76 km2 and is the house of about
530,000 inhabitants (about 7000 per km2), according to the most recent census data [45].
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Ardabil is divided into 5 administrative districts and 44 neighbourhoods. Regarding fire
safety-related infrastructures, there are seven fire stations in the city, whose location is
illustrated in Figure 1. Due to its physical and sociodemographic characteristics, fire combat
is challenging in this city, particularly in the older parts of the city due to their spatial
arrangement [46]. Figure 1 depicts the spatial density map (heatmap) of fire incidents
(per hectare) as calculated using the KDE technique in QGIS a free and open-source GIS
package [47].
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Figure 1. Map of Ardabil, Iran, showing the administrative divisions, fire stations, and the geograph-
ical distribution of fire incidents in the study area.

2.2. Data

Geodata sets and study criteria: From the combination of a thorough literature review
(summarised in Table S1 of Supplementary File S2) and the objectives defined for the present
study, 19 variables were isolated (outlined in Table S2 of Supplementary File S2) and used
to evaluate the vulnerability of the buildings (about 250,000 building units) included in the
study area. These variables are divided into four categories: (1) socioeconomic, (2) built
environment, (3) infrastructure and urban facilities, and (4) previous fire incidence rates.
The variables for each category are introduced in the following sections.

Socioeconomic: The Statistics Centre of Iran [45] provided raw data on socioeconomic
factors such as population and household, number of elders, children, disabled people, and
number of unemployed and illiterate people; see Table S2 in Supplementary File S2 and
Figure 2 below.
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Figure 2. Spatial distribution map of fuzzy normalised criteria. C1: Population density, C2: House-
hold dimension, C3: Old age ratio, C4: The ratio of the 14-year-old group and lower, C5: Disability
ratio, C6: Illiteracy rate, C7: Unemployment rate, C8: Residential units’ density, C9: The ratio of build-
ings made of non-durable materials, C10: The ratio of older buildings older than 30 years, C11: The
ratio of worn-out and demolishing buildings, C12: Mixed land-use, C13: High-rise buildings ratio,
C14: Buildings density with high fire incidence potential, C15: The ratio of small-sized property parts,
C16: Euclidean distance from the hydrant valves, C17: Euclidean distance from fire stations, C18: The
degree of permeability of the urban texture, C19: Previous fires rate.

Built environment: The type of materials used in the buildings (clay and mud, brick
and iron), building quality (reparative, destructive, desolated), and number of storeys were
taken from the statistical blocks of the most recent general housing census 2016 [45].

Infrastructures and facilities: Ardabil Municipality provided spatial data on the city
road network (including blind roads and roadways less than 6 m wide) and landed seg-
ments, while Ardabil City Fire Department provided data on 46 fire hydrants and 7 fire
stations in the city.

Location of fire incidents: Data on fire incidents from 2015–2020 were obtained from
the files preserved at the Ardabil City Fire Department. The reason for choosing this period
is twofold: the completeness, accuracy, and up-to-dateness of the data in this study area.
Data that were missing, incomplete, or invalid were omitted from the analysis. Finally,
1488 fires in urban buildings (covering all urban land uses) were chosen as the final data
and analysis’ foundation. The Empirical Bayes Smoothing method was then used to obtain
the rate of fire incidence per 100,000 people. Moreover, GeoDa v. 1.20.0.10 software [48]
was used to determine the fire incidence Empirical Bayesian Smoothed (EBS) rates [49].
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Within this study, several data from a variety of resources were taken into account.
Based on the Iranian deviation systems, the urban blocks are considered as the smallest
sector of the urban systems, which covers all information regarding residences, demogra-
phy, and their specific characteristics. Because small geographical divisions such as urban
blocks provide an accurate level for spatial analysis, they were chosen as the spatial basis
of the analysis in the study area titled the highest resolution of urban geographical division.
Point data were collected in a polygonal feature format layer in 6738 statistical blocks while
establishing the UTM-Zone 39N coordinate system. The sub-criteria associated with each
criterion utilised in this study (Supplementary File S2) were aggregated in the descriptive
data table related to the polygon layer of statistical blocks using raw data and ArcGIS
Desktop 10.8, and ArcGIS Pro 3.0.2 packages (ESRI, Redlands, CA, USA, 2022) were used
to visualise our final model results [50].

2.3. Methods, Tools, and Procedure
2.3.1. Criteria Ranking and Weighting

In a GIS context, the maps for each criterion were created as raster maps. Because
each index had a distinct size, the maps of each criterion were standardised using a fuzzy
approach in a GIS environment to overcome this limitation, prepare the data, and execute
MCDM methods. Different functions, such as S-shaped or J-shaped, as well as linear
functions, are utilised in fuzzy standardisation. According to the nature and the linear
relation between our criteria and the probability of fire assurances, the fuzzy S-shaped
function was used to standardise benchmark maps in the present study (see Table 1). The
fuzzy approach changes all raster layer’s values and value rates to the same range of
0 (lowest index value) to 1 (highest index value), in Figure 2. The Fuzzy Overlay function
in a GIS system was used to fuzzify and standardise the criteria for analysis [51]. After
creating standardised fuzzy maps, the importance of each criterion was established using
the numeric pairwise comparison approach by using Thomas L. Saaty’s 1–9 Judgement
Scale [52] and the opinions of ten experts. The final weight of the criteria was then calculated
in the Expert Choice-11 software environment using the Analytic Hierarchy Process (AHP)
method [53,54] (see Table 1). The compatibility ratio of the comparisons was calculated
using Equations (1) and (2):

CR =
CI
RI

(1)

where CI represents the matrix compatibility vector, obtained from the following equation:

CI =
λmax− n

n− 1
(2)

where λmax is the largest matrix eigenvalue, RI is a randomness index for the matrix,
and its value is proportional to the number of criteria in the matrix, with the number
of criteria increasing the value. The pairwise comparison matrix’s compatibility ratio
should be smaller than 0.1. Otherwise, the preference judgments made are incoherent,
and this incoherence should be addressed. Given that the RI ratio was equal to 0.09, the
comparisons conducted to establish the importance of the criterion were confirmed. The
weights obtained by the AHP method are given in the Table 1. According to experts, not
all criteria are equally significant in predicting the likelihood of structural fire incidence,
and some criteria, such as C9 (the ratio of buildings made of non-durable materials),
C11 (the ratio of worn-out and demolished buildings), and C14 (building density with poor
structural quality and a high risk of fire), have a higher importance.
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Table 1. Summary statistics of criteria analysis.

Criteria Statistics

Symbol Criterion Min Max Mean SD AHP
Weights

Fuzzy
Membership

Function

C1 Population density 0 86.1 2.03 2.22 0.032 linear s-shaped
C2 Household dimension 0 10.7 0.24 0.22 0.022 linear s-shaped
C3 Old age ratio 0 50 3.55 4.40 0.031 linear s-shaped
C4 The ratio of the 14-year-old group and lower 0 50 11.81 8.90 0.035 linear s-shaped
C5 Disability ratio 0 91.73 0.98 2.55 0.036 linear s-shaped
C6 Illiteracy rate 0 91.46 8.23 8.49 0.02 linear s-shaped
C7 Unemployment rate 0 0.34 1.48 2.25 0.019 linear s-shaped
C8 Residential units’ density 0 287 58.69 66.59 0.031 linear s-shaped
C9 The ratio of buildings made of non-durable materials 0 100 10.71 19.79 0.069 linear s-shaped

C10 The ratio of older buildings older than 30 years 0 100 13.80 24.12 0.051 linear s-shaped
C11 The ratio of worn-out and demolishing buildings 0 100 19.74 26.85 0.099 linear s-shaped
C12 Mixed land-use 0 0.71 0.04 0.10 0.055 linear s-shaped
C13 High-rise buildings ratio 0 100 2.34 8.48 0.049 linear s-shaped
C14 Buildings density with high fire incidence potential 0.84 4.88 2.88 0.46 0.114 linear s-shaped
C15 The ratio of small-sized property parts 0 100 23.16 30.63 0.033 linear s-shaped
C16 Euclidean distance from the hydrant valves 0 3907.24 949.05 660.7 0.066 linear s-shaped
C17 Euclidean distance from fire stations 0 4091.57 1352.56 686 0.08 linear s-shaped
C18 The degree of permeability of the urban texture 0 100 29.65 38.83 0.079 linear s-shaped
C19 Previous fires rate 0 555 17.87 29.31 0.078 linear s-shaped

2.3.2. Fuzzy-VIKOR Method

VIKOR, as a prevailing MCDM method in the literature, ranks the alternatives based
on the distance to the ideal condition [55]. Let i ∈ ω represent an alternative or raster cell
in the set of alternatives (ω = {1, 2, 3 . . . m}) in which m is the last alternative. All cells in
the study area are considered an alternative and based on cell value; they have the chance
to be evaluated as risk cells for the projected locations. Given that j is a criterion in the set
of criteria in which j is the last criterion, xij, then, is the preference value of alternative i in
relation to criterion j. Let fij be the normalised preference value of alternative i in relation
to criterion j, computable according to Equation (3):

fij =
xij√

∑m
i=1 x2

ij

(3)

Using the fij values, the maps with dissimilar scales and ideal solutions can be con-
verted to the standard maps. The best f ∗j value for the positive and negative criteria is
calculated from the following Equation (4):

f ∗j = Max fij if it is a benefit-based function;
f ∗j = Min

i fij if it is a cost-based function.
(4)

The worst f−j value for the positive and negative criteria is calculated from Equation (5):

f−j = Min
i fij if it is a benefit-based function;

f−j = Max
i fij if it is a cost-based function.

(5)
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Let Si and Ri indicate suitability and regret associated with alternative i, respectively.
Then, related values are computable as Equation (6):

Si =
n

∑
i=1

wi
f ∗j − fij

f ∗j − f−j

Ri = Max
{

wi
f ∗j− fij

f ∗j − f−j

} (6)

where, wi represents the weight of the ith criterion. The weight of each criterion was calcu-
lated through the Delphi method and was applied to each criterion in the GIS environment.
The VIKOR value Qi that represents the maximum group benefits for alternative i can then
be measured by Equation (7) for each alternative i:

Qi = v
[

Si − S−

S∗ − S−

]
+ (1− v)

[
Ri − R−

R∗ − R−

]
(7)

where
R∗ = MaxRi , R− = MinRi, S∗ = MaxSi , S− = MinSi

refers to the weight of criterion that ensures maximum group utility, and (1 − v) refers
to the weight of the minimum regret in dissent. The value of v varies between 0 and 1;
however, it is often taken as 0.5.

For an alternative to be preferable, its preference should be confirmed by the associated
value of Qi addition to either of Si, Ri, Qn, with the smallest value expressed as the best
option among alternatives. In this study, Qn is the location value of each alternative or cell
in GIS. The least-valued alternative (point) is the most appropriate alternative to be selected.
In the VIKOR method, if A1 and A2 are ranked first and second alternatives, respectively, to
specify the value of “Q” (the chance that a fire may occur in each cell), Equation (8) should
be satisfied [55]:

Q(A2)− (A1) ≥
1

n− 1
(8)

In this study, however, the cells have been categorised by the Qi score of each alterna-
tive or cell.

The VIKOR method’s conclusions reveal the degree of risk that urban buildings face
from a potential fire incidence. In the VIKOR method, the greatest value (high risk) in the
output units (cells) is 0 and the lowest value (less risk) is 1. In the final step, we reversed
the values for visualisations in the urban vulnerability index map.

The Natural Breaks (Jenks) classifying method approach was used to prioritise proba-
ble fire risk into five categories: lower (values = 0.74–1), low (values = 0.6–0.74), moderate
(values = 0.48–0.6), high (values = 0.35–0.48), and higher (values = 0.086–0.35) degrees of
urban vulnerability. In the Natural Breaks (Jenks) method, the variance within each class
is minimised while the variance between classes is maximised [51]. With natural breaks
classification, Natural Breaks (Jenks) classes are based on natural groupings inherent in
the data. Class breaks are created in a way that best groups similar values together and
maximises the differences between classes. The features are divided into classes whose
boundaries are set where there are relatively big differences in the data values. Natural
breaks are data-specific classifications and not useful for comparing multiple maps built
from different underlying information [51,56].

Figure 3 illustrates the methodology utilised in the preparation of the urban vulnera-
bility index map in terms of fire risk in the study area.
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2.3.3. Model Validation

To check the efficiency of the utilized GIS-MCDM model, the Spatial Linear Regression
(SLR) approach [57] was used to measure correlation between the urban vulnerability index
(result of our proposed model) and the spatial Kernel density of actual fire incidents in
the study area using the TerrSet software V.19 (see: [57]). The following stage required
mapping two variables using the Bivariate mapping method in ArcGIS Pro in order to
visualise the model findings with real incident data. A bivariate map combines various sets
of symbols and colours to represent two related but dissimilar variables on a map. It serves
as a straightforward approach to depict, graphically and precisely, the link between the
two spatially distributed variables. It is also simple to evaluate how two attributes change
in respect to one another using this map [51].

3. Results
3.1. Urban Vulnerability Index Map

The aim of this study was to provide an urban vulnerability index map in terms of fire
risk using integrated GIS-MCDM methods. The key result of this study is a vulnerability
index map which is provided on the basis of our criteria used to map the risk of structural
fire in the study area. Figure 4 depicts the vulnerability index map of buildings in different
city areas within the urban blocks. Extracting the basic data from the VIKOR model’s
output map (Table 2) reveals that 639 blocks with a total size of 4.11 km2 (13.62%) fall into
the category of highly vulnerable locations, out of a total area of 30.18 km2. These blocks
are often found throughout the city’s northern half, central district, and urban outskirts.
A total of 930 blocks with a total size of 5.26 km2 (17.43%) are classified as very vulnerable
regions on this map. The blocks in this category are found throughout much of the city’s
northern half. As a result, 945 blocks with a total size of 5.31 km2 (17.59%) are classified as
moderately vulnerable. The blocks in this category are still found in most portions of the
city’s northern half (from east to west and from the centre to the north). The blocks in this
category are found throughout much of the city’s northern half. According to the findings,
1282 blocks with a total size of 5.97 km2 (19.78%) fall into the low vulnerability index group.
The blocks that fall into these two categories are frequently found at the city’s outskirts, far
from the downtown area. The blocks in this category are found throughout much of the
city’s northern half. Accordingly, very vulnerable locations include 2941 blocks with a total
size of 9.53 km2 (31.58%). The majority of these blocks are located on the city’s southern
side (from east to west and from the centre to south).

Table 2. Summary statistics of the urban vulnerability choropleth map given in Figure 4 based on
Natural Breaks classifying method.

Vulnerability
Degree

Vulnerability
Score

Number
of Blocks Area (sq.km) Area (%) Population Population (%)

Higher 0.086–0.35 639 4.11 13.62 72,471 13.83
High 0.35–0.48 930 5.26 17.43 106,716 20.37

Moderate 0.48–0.6 945 5.31 17.59 104,254 19.90
Low 0.6–0.74 1282 5.97 19.78 103,797 19.81

Lower 0.74–1 2941 9.53 31.58 136,663 26.09
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the potential structural fires-related risks.

3.2. Model Performance

We used the spatial linear regression correlation test value to compare the urban
vulnerability index values with the spatial distribution of the actual fire incidence Kernel
density (per hectare) in order to validate the model. The coefficient of determination (r2)
was equal to 100%, and the linear regression correlation’s coefficient value was 1 (Figure 5).
This significant outcome demonstrates that, using our criteria, the model used in this study
was successful in determining the likelihood of fire risk over the sample period (2015–2020)
and study area. Furthermore, the small variations between the VIKOR model’s output map
and the actual fire incident density (per hectare) spatial distribution (Figure 6) indicate a
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good agreement between our model’s measured urban vulnerability index values and the
actual fire incident density (per hectare) spatial distribution in terms of the number of fire
occurrences in the study area.
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hectare values (y-axis). The plot generated in TerrSet (By: Clark Labs, Clark University, Worcester,
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maps were generated in ArcGIS Pro 3.0.2 (ESRI, Redlands, CA, USA, 2023).
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4. Discussion

The present study aims to model and prioritise urban regions in terms of their vul-
nerability to potential structural fires-related risks. The Integrated GIS-MCDM approach
and 19 socioeconomic and built environment criteria were utilised to model and prioritise
vulnerable urban regions. This study contains several important findings.

First, our GIS-MCDM Fuzzy-VIKOR model’s output revealed that urban areas with
high and extremely high vulnerabilities were increasingly spread from the city centre to the
outskirts in the north, east, and west in terms of the spatial pattern (see Figure 4). This result
is in line with the findings of Chhetri et al. [26] in southeast Queensland, who have shown
that fires are distributed in a central–peripheral pattern. In addition, high-vulnerability
areas in terms of potential fire risk frequently correspond to urban districts populated by
low-income people (Figure 2 (C1)). The primary features of this portion of the city are the
small-sized property (real state) units (Figure 2 (C15)) and high rates of unemployment
(Figure 2 (C7)) and illiteracy (Figure 2 (C6)). This finding is in line with those obtained
by Chhetri et al. [26,36], who observed that building fires are more common in older
neighbourhoods and low-income residential areas on the outskirts of cities. Moreover, this
finding is consistent with those of Zhang et al. in Nanjing, China. [3], since they observed
a positive, strong, and significant correlation between poor income, unemployment, and
illiteracy rates, as well as growing fire incidence rates in various urban areas. According to
Rahmawati et al., [29] most poor settlements that are developed unintentionally with high
population densities have a higher risk of fire incidence. Additionally, as Ardianto et al. [30]
found, in urban areas, the overall socioeconomic and environmental variables have a
significant effect in boosting fire incidence rates. In addition to socioeconomic situations,
we found that most of the city’s old and worn-out buildings are located in high-risk areas
(Figure 2 (C11)), with non-durable materials utilised in their construction (Figure 2 (C9)).

Second, this study’s results revealed that neighbourhood characteristics can be deter-
minative in lowering or raising the risk of likely structural fire risk, and one component
alone cannot play a role. In most vulnerable areas, the physical condition of buildings is
relatively low (Figure 2 (C10, C11)), and the population in such places is ageing rapidly
(Figure 2 (C3)). Previous studies have found that structural fires are becoming more com-
mon and pose a greater danger in urban areas with a high concentration of old and worn-out
buildings [20,26,58,59].

Furthermore, we found that the city business district, known locally as the Bazar, is
one of the focal points in the category of extremely vulnerable locations, as can be seen in
the urban vulnerability index map presented in Figure 4. This place is at the city’s most
central location and serves a variety of purposes. Previous studies, such as Xia et al. [22],
have found that mixed-used developments and commercial structures, particularly in
central city areas, directly impacts the fire incidence rates.

Last but not least, the results displayed in Figure 4 make apparent the level of urban
vulnerability in the city’s outskirts, where spatial access to hydrant valves (Figure 2 (C16))
and fire stations (Figure 2 (C17)) is more reduced. In prior research conducted in Iran,
Masoumi et al. [24] found that inadequate spatial access to urban amenities suited for
firefighting might increase the probability of fire occurrence in densely populated regions.

Third, the integrated GIS-MCDM approach can be a useful tool for assessing urban
vulnerability against probability fire-related risks in cities, as demonstrated in the model
performance section (Figures 5 and 6). Because of its adaptability and capacity to inter-
act with human inference and data-based processing, the combination of GIS-MCDM
approaches allows for a more accurate prediction of fire risks, as our research revealed.
The methods (such as the Point density or Kernel density methods) that ignore the human
factor do not provide such a possibility. Moreover, by combining GIS with MCDM methods,
it is feasible to combine a number of parameters and obtain more accurate results. In this
study, other variables, such as the number of high-rise buildings, the proportion of children
aged 14 and under, the population disability rate, the mixed land use coefficient, and the
history of previous fires, were included in the integrated GIS-MCDM model as additional
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variables. However, according to the study’s findings based on the opinions of experts,
their importance in the final output was lower; in other words, they were less active on
a large scale in justifying and explaining the increase or decrease of urban vulnerability.
Moreover, although some socioeconomic characteristics, such as population density and
built environment variables, such as building age or impermeability and granularity of
property components, have a significant influence in raising the risk of structural fire in the
study area, as earlier studies [24,26,30] have pointed out, the set of a geographical area’s
circumstances and features can reduce or increase the risk of future structural fires.

4.1. Policy Implications

Firstly, it is proposed that the city council and municipality emphasise the renovation
of ancient buildings, particularly in the downtown area, where the old Bazaar (a local name
for the city business district) is located. Secondly, the buildings in the city’s integrated
villages and worn-out urban textures should be prioritised for rehabilitation. These are
densely populated areas where low-income groups dwell, their buildings are of poor
quality, and their quality of life is poor. Furthermore, it is critical to facilitate and improve
physical access to fire stations for communities that are more vulnerable and have less
access. In high-risk and extremely high-risk locations, new stations should be established.
It appears that establishing dedicated routes for fire vehicles to approach and depart the
city centre can help to lessen the damage caused by potential fires over time.

4.2. Limitations and Futures Research Strategy

The findings of this study have to be seen in the light of some limitations. We were
unable to obtain information on household income and expenditures, as well as the status
of building insurance. To circumvent this constraint, we examined additional social indices,
including illiteracy and unemployment rates, as well as demographic data. The lack of
access to urban banks and databases was another disadvantage of this study. Despite
these limitations, we think this study has several strengths. The information for this study
was gathered from a variety of sources by contacting various organisations. The use of a
collection of socioeconomic data, the built environment, and characteristics linked to urban
amenities in generating a map of urban vulnerability index to the risk of fire incidence were
the study’s strengths. We also prepared the final map using integrated MCDM-GIS hybrid
approaches, which were less widely employed in earlier research for urban fires. Despite
the limitations mentioned, the authors believe the methods utilised in this study will be
valuable to academics and policy-makers working in the field of urban fire management.

5. Conclusions

The most vulnerable zones of the urban area analysed herein were identified by
resorting to the hybrid MCDM-GIS approach and combining a number of characteristics
that determine the fire risk in these areas. The findings revealed that using the hybrid
MCDM-GIS approach to identify vulnerable zones in cities might be a useful tool. Urban
vulnerability index maps concerning potential structural fires-related risks can assist in
identifying elements that enhance fire risk and give useful insights into fire risk estimation
and fire service management. Consequently, officials may utilise these maps to take
preventative actions and allocate resources and infrastructure more effectively. Future
research can look into the spatiotemporal patterns of urban fire phenomena, as well as
more appropriate methods, such as spatial regression methods, to explore the relationship
between different variables and fire rates and gain a better understanding of fire risk and
the factors that influence it in urban areas. To simulate the risk of fire or urban vulnerability,
future studies might employ more complex modelling approaches, such as agent-based
modelling. We conclude that the methodological approach proposed in this study can be
applied successfully to model and map fire risk in urban areas, with the potential to be
applied in different urban contexts worldwide. In addition, the obtained results are of
great importance to local stockholders, such as the municipality of Ardabil, authorities,
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and decision-makers, in determining the spatiotemporal pattern of fire risk in the city and
developing crisis risk programs.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/fire6030107/s1, Table: Supplementary File S1; Supplementary
File S2. Refs. [60–68] are cited in Supplementary Materials.
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9. Ceyhan, E.; Ertuğay, K.; Düzgün, Ş. Exploratory and inferential methods for spatio-temporal analysis of residential fire clustering

in urban areas. Fire Saf. J. 2013, 58, 226–239. [CrossRef]
10. Moshashaei, P.; Alizadeh, S.S. Fire risk assessment: A systematic review of the methodology and functional areas. Iran. J. Health

Saf. Environ. 2017, 4, 654–669.
11. Ziervogel, G.; Pelling, M.; Cartwright, A.; Chu, E.; Deshpande, T.; Harris, L.; Hyams, K.; Kaunda, J.; Klaus, B.; Michael, K.; et al.

Inserting rights and justice into urban resilience: A focus on everyday risk. Environ. Urban 2017, 29, 123–138. [CrossRef]
12. Oliveira, S.; Pereira, J.M.C.; San-Miguel-Ayanz, J.; Lourenço, L. Exploring the spatial patterns of fire density in Southern Europe

using Geographically Weighted Regression. Appl. Geogr. 2014, 51, 143–157. [CrossRef]
13. Aven, T. On Some Recent Definitions and Analysis Frameworks for Risk, Vulnerability, and Resilience. Risk Anal. 2011, 31,

515–522. [CrossRef] [PubMed]
14. Alguacil, J. Instrumentos para el análisis y políticas para la acción. In Proceedings of the Foro de Debates: Ciudad y Territorio

Jornada La Vulnerabilidad Urbana en España, Madrid, Spain, 30 June 2011; Volume 30.
15. Huedo, P.; Ruá, M.J.; Florez-Perez, L.; Agost-Felip, R. Inclusion of Gender Views for the Evaluation and Mitigation of Urban

Vulnerability: A Case Study in Castellón. Sustainability 2021, 13, 10062. [CrossRef]
16. Guldåker, N.; Hallin, P.O. Spatio-temporal patterns of intentional fires, social stress and socio-economic determinants: A case

study of Malmö, Sweden. Fire Saf. J. 2014, 70, 71–80. [CrossRef]
17. Mohammadi, A.; Shahparvari, S.; Kiani, B.; Noori, S.; Chhetri, P. An analysis of Spatio–temporal patterns of fires in an Iranian city.

Indoor Built Environ. 2022, 32, 183–199. [CrossRef]
18. Cicione, A.; Gibson, L.; Wade, C.; Spearpoint, M.; Walls, R.; Rush, D. Towards the Development of a Probabilistic Approach to

Informal Settlement Fire Spread Using Ignition Modelling and Spatial Metrics. Fire 2020, 3, 67. [CrossRef]

https://www.mdpi.com/article/10.3390/fire6030107/s1
http://doi.org/10.1016/j.proeng.2013.02.195
http://doi.org/10.3390/ijgi9040218
http://doi.org/10.1007/s10708-018-9923-y
https://www.who.int/news-room/fact-sheets/detail/burns
https://www.who.int/news-room/fact-sheets/detail/burns
http://doi.org/10.1080/09687599.2011.589198
http://doi.org/10.1016/j.jmrt.2020.06.088
http://doi.org/10.1016/j.firesaf.2013.01.024
http://doi.org/10.1177/0956247816686905
http://doi.org/10.1016/j.apgeog.2014.04.002
http://doi.org/10.1111/j.1539-6924.2010.01528.x
http://www.ncbi.nlm.nih.gov/pubmed/21077926
http://doi.org/10.3390/su131810062
http://doi.org/10.1016/j.firesaf.2014.08.015
http://doi.org/10.1177/1420326X211055782
http://doi.org/10.3390/fire3040067


Fire 2023, 6, 107 17 of 18

19. Runefors, M.; Nilson, F. The Influence of Sociodemographic Factors on the Theoretical Effectiveness of Fire Prevention Interven-
tions on Fatal Residential Fires. Fire Technol. 2021, 57, 2433–2450. [CrossRef]

20. Shama, S.; Shurid, A.S.; Haque, M.N. Risk Assessment of Accidental Fire Breakdown in a Residential Area of Khulna City,
Bangladesh. J. Eng. Sci. 2021, 12, 109–118. [CrossRef]

21. Todorovic, S. Modelling risk factors in urban residential fires in Helsinki. Published online 2020. Available online: https:
//eprints.gla.ac.uk/210971/ (accessed on 1 February 2023).

22. Xia, Z.; Li, H.; Chen, Y.; Yu, W. Detecting urban fire high-risk regions using colocation pattern measures. Sustain. Cities Soc. 2019,
49, 101607. [CrossRef]
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