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Abstract: Fuel and wildfire management decisions related to fuel break construction, maintenance,
and use in fire suppression suffer from limited information on fuel break success rates and drivers
of effectiveness. We built a dataset of fuel break encounters with recent large wildfires in Southern
California and their associated biophysical, suppression, weather, and fire behavior characteristics to
develop statistical models of fuel break effectiveness with boosted regression. Our results suggest
that the dominant influences on fuel break effectiveness are suppression, weather, and fire behavior.
Variables related to fuel break placement, design, and maintenance were less important but aligned
with manager expectations for higher success with wider and better maintained fuel breaks, and
prior research findings that fuel break success increases with accessibility. Fuel breaks also held more
often if burned by a wildfire during the previous decade, supporting the idea that fuel breaks may be
most effective if combined with broader fuel reduction efforts.

Keywords: fuel break; suppression effectiveness; fire weather; fuel treatment

1. Introduction

In response to escalating wildfire damage to natural resources and human assets in
the Western US, there is pressure for land and fire managers to increase their investment
in pre-fire fuels reduction, including linear fuel breaks intended to help firefighters safely
control fires at smaller sizes ([1]; Infrastructure Investment and Jobs Act, 117-58 U.S.C.
§ Section 40806, 2021). As with any pre-fire fuels treatment, fuel breaks have uncertain
benefits owing to imperfect knowledge of if, when, and under what conditions they
will be used for fire suppression. Various forms of historical fire frequency analysis and
simulation modeling of fire occurrence and spread already exist to help managers construct
or prioritize the maintenance of fuel breaks in locations with the highest likelihood of
intercepting damaging fires [2–5], but there are few quantitative models to estimate the
probability of an engaged fuel break holding based on characteristics of the fuel break,
fire, and suppression response [2,6–8], making it difficult to assess the potential benefit of
existing and planned fuel breaks and fuel break systems.

Fuel breaks are roughly linear features designed to improve firefighting access, safety,
and effectiveness by reducing fuel loads or altering fuel type or arrangement [7,9]. Fuel
breaks are often associated with fire breaks, which are narrower strips with no fuel, such as a
road or a dozer line specifically maintained for fire control [10,11]. Fuel break construction
and maintenance methods and anticipated benefits to suppression can vary based on
ecosystem and fire management system contexts. The desired effects on fire behavior may
include reduced fire intensity, crown fire potential, spotting, ignition probability, and fire
residence times [7,9]. Commonly sought-after benefits for suppression include: improved
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access, visibility, and safety; reduced resistance to control (greater fireline production);
reduced mop up effort; better aerial retardant function; and improved conditions for
suppression firing [7,9,10,12,13]. Ultimately, the purpose of constructing a fuel break or fire
break is to improve control likelihood, so effectiveness is usually judged by whether the
feature holds when engaged by fire [2,8,14,15].

Our current understanding of fuel break effectiveness comes from a mix of field exper-
iments, physical modeling, and observational studies. Case studies, anecdotal observations,
and professional experience document how fuel breaks improve control potential and
the conditions that may cause them to fail, such as exposure to wind-driven head fires
with spotting [7,9,13,16]. The pioneering fire break experiments of Wilson [6] provide
empirical evidence that increasing fire break width and decreasing fireline intensity and
ember sources in adjacent fuels (i.e., by creating a fuel break) should increase control prob-
ability. Physical modeling of fire propagation across grassland fuel breaks confirms that
the optimal fuel break width increases with fireline intensity [17]. Unplanned observations
of wildfires engaging with fuel treatments are commonly plagued by incomplete data to
characterize the fuel treatment, fire environment, and suppression response [15,18,19], but
they still provide useful insights about the effects of fuel break treatment methods, age,
width, and size inferred from visible indicators of fire intensity [20,21], remotely sensed
burn severity [22,23], or control outcomes [2,8,24].

Here, we build on the fuel break effectiveness research of Syphard et al. [2,8] with
multivariate statistical techniques that are increasingly used to model fire control likelihood
from large observational datasets of fire extents [25–28]. We investigate a variety of predictor
variables including suppression effort and daily fire weather and behavior metrics to
identify key controls on fuel break effectiveness.

2. Materials and Methods

We focused our analysis on the portions of fuel breaks that engaged with wildfires
larger than 200 ha during the period 2017–2020 and within a 1 km buffer around the
administrative boundaries of the Angeles, Cleveland, Los Padres, and San Bernardino
National Forests in Southern California (Figure 1). The 200 ha minimum size was chosen
to concentrate on fires that resisted an initial attack and were mapped with sufficient
accuracy for evaluating if fuel breaks held or burned over. We limited our study to the
period 2017–2020 so that we could account for suppression influences using spatial datasets
of ground and aerial firefighting operations. We focused on fuel breaks associated with
National Forest System lands in Southern California because of fuel break location data
availability and the presence of fuel treatment records to characterize maintenance history.
Southern California is unique among the mountainous regions of the Western US for its
deep history of linear fuel break use [16] and its current fuel break abundance.

The four Southern California National Forests cross three ecoregions, including the
Southern California Mountains, the Southern California/Northern Baja Coast, and the
Central California Foothills and Coastal Mountains (level III ecoregions from [29]). The
climate of the region is Mediterranean with hot dry summers and comparatively cooler
and wetter winters. The region has two distinct fire seasons—a summer fire season char-
acterized by high aridity and many ignitions, and a fall fire season with fewer ignitions
but larger fires driven primarily by downslope gravity winds such as the Santa Ana and
Sundowner winds [30,31]. Vegetation type varies by elevation and aspect with chaparral
dominating the lowest elevations and south facing slopes, grading into mixed oak and
evergreen woodlands at middle elevations, and transitioning into conifer forests at the
highest elevations and north facing slopes (biophysical setting from [32]).
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Figure 1. The study area includes the Angeles, Cleveland, Los Padres, and San Bernardino National 
Forests in Southern California. This map also shows the study wildfires and fuel breaks. 
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NAIP) aerial photography. All 22 fires that were subsequently identified to have fuel 
break interactions (Table 1) came from either GeoMAC or WFDSS, which are typically 
derived from high-resolution aerial infrared mapping or field-based mapping by local 
managers. Start and end dates for each fire were compiled from the previously mentioned 
spatial data sources, incident status summary reports (also known as “ICS-209s”) for all 
years [38], and the Fire Program Analysis Fire Occurrence Dataset [39] for the period of 
overlapping coverage (years 2017–2018). 

Figure 1. The study area includes the Angeles, Cleveland, Los Padres, and San Bernardino National
Forests in Southern California. This map also shows the study wildfires and fuel breaks.

2.1. Wildfires

We compiled a GIS polygon dataset of final fire extents from multiple sources, in-
cluding Monitoring Trends in Burn Severity ([33], years 2017–2018), the Geospatial Multi-
Agency Coordination Group ([34], GeoMAC, years 2017–2019), the Wildland Fire Decision
Support System ([35], WFDSS, years 2017–2020), and Wildland Fire Interagency Geospatial
Services ([36], only 2020). For each fire, we selected the polygon that best aligned with the
burned area visible in post-fire National Agriculture Imagery Program ([37], NAIP) aerial
photography. All 22 fires that were subsequently identified to have fuel break interactions
(Table 1) came from either GeoMAC or WFDSS, which are typically derived from high-
resolution aerial infrared mapping or field-based mapping by local managers. Start and
end dates for each fire were compiled from the previously mentioned spatial data sources,
incident status summary reports (also known as “ICS-209s”) for all years [38], and the Fire
Program Analysis Fire Occurrence Dataset [39] for the period of overlapping coverage
(years 2017–2018).

Table 1. Characteristics of the large wildfires in our analysis of fuel break effectiveness, including
fire year, name, area, the number of point samples of fuel break–wildfire interactions, fuel break
success rate (% of point samples that held), availability of fireline data (see suppression section), and
availability of fire detection data (see fire behavior section).

Year Name Area (ha) Sample Points Success Rate (%) Fireline Fire Detections

2017 Canyon 1 1077 277 0.51 Yes Yes
2017 Creek 6321 2685 0.09 Yes Yes
2017 Holcomb 609 84 0.37 Yes Yes
2017 Lake 297 307 0.74 Yes No
2017 Thomas 114,079 11,802 0.20 Yes Yes
2017 Whittier 7451 971 0.16 Yes Yes
2017 Wildomar 351 100 0.60 Yes Yes
2018 Charlie 1356 1073 0.46 No No
2018 Cranston 5395 2006 0.47 Yes Yes
2018 Holy 9318 935 0.32 Yes Yes
2018 Stone 547 110 0.19 No Yes
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Table 1. Cont.

Year Name Area (ha) Sample Points Success Rate (%) Fireline Fire Detections

2019 Cave 1265 371 0.36 No Yes
2019 Saddle Ridge 3561 493 0.32 Yes Yes
2020 Apple 13,450 1142 0.15 Yes Yes
2020 Bobcat 46,943 6437 0.34 Yes Yes
2020 Bond 2703 868 0.08 Yes Yes
2020 Dolan 50,395 2201 0.17 Yes Yes
2020 El Dorado 9204 1635 0.30 Yes Yes
2020 Lake 12,545 3918 0.31 Yes Yes
2020 Ranch 2 1667 780 0.82 No Yes
2020 Rowher 262 307 0.72 Yes No
2020 Valley 6633 451 0.44 Yes Yes

2.2. Fuel Break Polylines

We developed a GIS polyline dataset representing fuel break centerlines by acquiring
and cleaning a previous fuel break dataset for the entire study area, then intersecting these
fuel break polylines with candidate wildfires, followed by the manual review and editing
of the fuel breaks that interacted with wildfires. The fuel break dataset we started from
represents the approximate centerlines of fuel breaks originally developed by Brennan and
Keeley [40]. It was updated in 2015 by the USDA Forest Service (USFS) for a fuel break
evaluation project [41] to include planned and potential fuel break locations and to remove
legacy features from the original dataset that had not been maintained in recent decades.
Some features added by the USFS did not conform to our spatial data standards or fuel
break definition. We simplified any fuel break perimeters to centerlines and removed lines
associated with the boundaries of several area-wide prescribed fires.

We then iteratively intersected the cleaned fuel break polylines with each candidate
wildfire extent buffered by 400 m to identify fuel breaks with potential wildfire interactions.
Potential fuel break–wildfire interactions were then manually reviewed using the most
recent NAIP aerial photography prior to the wildfire to correct gross spatial alignment
issues and digitize any missing fuel breaks. Fuel breaks were split into segments if the
width, condition, or fire break status varied for more than 800 m in length (see the predictor
variables section for definitions). We removed any features that were not visible in the
pre-fire aerial photography, including legacy fuel breaks from the Brennan and Keeley data
set [40] that reverted to natural vegetation and any potential or planned fuel breaks from
the USFS that were not implemented before the fire.

2.3. Data Model

We used a dense sampling approach to generate observations of fuel break–wildfire
interaction outcomes and associated predictor variables (Figure 2). By fire, the cleaned fuel
break polylines were first rasterized at 30 m resolution to match the scale of our fuel and
topography predictor variables, and then converted to points representing the cell centers.
Fuel break sample points were considered held (success) if they fell within 100 m of the
final fire perimeter plus half the fuel break width. The 100 m distance is to account for
imprecision in the fuel break and fire perimeter mapping. The additional distance of half
the fuel break width is to deal with situations where the fire stopped at the leading edge of
a wide fuel break. The remaining samples that intersected the fire were considered burned
over (failure).

The gridded sampling strategy was chosen to avoid generalizations that are required
to analyze outcomes for the original polylines. Several challenges of working with the
polylines as the observation units include: (1) deciding where one fuel break starts and the
other begins; (2) dealing with length-dependent influences on exposure to fire and outcomes;
(3) deciding how to attribute outcomes for lines that only partially engage with the fire; and
(4) designing appropriate summary metrics for predictor variables that differ along the length
of the fuel break. Our sampling approach captures the diversity of conditions along held and
burned-over fuel breaks while avoiding difficult scale-related decisions necessary to attribute
polylines with outcomes and representative predictor variables.
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Figure 2. Example of fuel break samples and outcomes for the 2019 Saddle Ridge Fire. Samples were
generated by rasterizing the fuel break polylines and converting the cell centers into points. Samples
were considered successfully held if they fell within 100 m plus half the fuel break width of the final
fire perimeter.

2.4. Predictor Variables

We considered a wide range of predictor variables related to fuel break accessibility, fire
behavior, condition and design, suppression, topography, surrounding vegetation/fuels,
and weather (Table 2; Figure S1). Predictor variables were selected to capture key drivers
identified by previous studies [2,8] and to address manager questions about fuel break
placement, design, and maintenance.

Table 2. Predictors of fuel break effectiveness sorted by data category (see text for complete descriptions
and data sources) and specification of models evaluated in this paper (* for inclusion in model).

Model
Category Predictor Variable Units 1 2 3 4 5

Accessibility Road proximity Continuous: 1 on road declining to 0 at 1000 m * * * * *

Fire behavior Daily area burned Hectare (ha) * * * *
Encounter type Categorical: heading, flanking, and backing * * * *
Fire radiative power Megawatt (MW) *

Fuel break Condition Ordinal: 1 for poor to 5 for excellent * * * * *
Fire break Binary: 0/1 for absent/present * * * * *
Width Meters (m) * * * * *

Suppression Aerial drop Binary: 0/1 for absent/present * * * * *
Fireline Binary: 0/1 for absent/present * * * * *

Topography Slope Percent * * * * *
Topographic Position Index Meters (m) above or below neighborhood mean * * * * *

Veg/fuels Canopy cover Percent * * * * *
Fire Behavior Fuel Model Categorical: Anderson 13 + non-burnable * * * * *
Recent wildfire Binary: 0/1 for absent/present in prior 10 years * * * * *
Recent treatment Binary: 0/1 for absent/present in prior 10 years * * * * *

Weather Burning Index Continuous: positively associated with fire *
Energy Release Component Continuous: positively associated with fire *
100 h fuel moisture Percent * * *
Maximum relative humidity Percent * * *
Vapor Pressure Deficit Continuous: positively associated with fire *
Wind speed Meters per second (m/s) * * * *
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2.4.1. Accessibility

An earlier analysis of fuel break outcomes in this same region [2,8] found that fuel
breaks were more likely to hold if accessible to firefighters. We represented accessibility
in our model using a relative metric of road proximity. First, we calculated the Euclidean
distance from the nearest road [42,43] in meters. Second, we converted to a relative
measure of road proximity that declines linearly from a value for 1 on a road to a value
of 0 at a distance of 1000 m. This reflects our expectation that roads will have a stronger
positive influence on probability of control at shorter distances and it prevents models from
identifying spurious statistical relationships at very long road distances.

2.4.2. Fire Behavior

Fire managers understand that fuel break success declines with increasing fire behavior
whether represented by rate of spread, intensity, transition to crown fire, or initiation of
spotting [7,9,16], but quantitative relationships have only been developed experimentally in
limited settings [6]. Given the difficulty of characterizing fire behavior after an event, previous
research used final fire size as a proxy for fire behavior, finding a strong negative relationship
between fire size and fuel break success [2,8]. Here, we make use of satellite fire detections
and final fire perimeters to characterize fire growth, intensity, and spread patterns.

We estimated the daily area burned (ha) by applying the Parks [44] raster interpolation
method at 30 m resolution to fire detection points from MODIS and VIIRS [45] that occurred
within 1000 m and +/− 5 days of the reported date range of each fire (Figure 3a). The
estimated date of burning from this analysis was also extracted to the sample points to
make associations with daily weather data (described in the weather section). Three of our
study fires (2017 Lake, 2018 Charlie, and 2020 Rowher) did not have enough fire detections
to model the date of burning. We assumed that these fires had sparse detections because
most of the area burned quickly, so the final fire sizes (262–1356 ha) were assigned as the
daily area burned for the earliest reported date for each fire.

Fire 2023, 6, x FOR PEER REVIEW 7 of 21 
 

 

satellite fire detections and final fire perimeters to characterize fire growth, intensity, and 
spread patterns. 

We estimated the daily area burned (ha) by applying the Parks [44] raster interpola-
tion method at 30 m resolution to fire detection points from MODIS and VIIRS [45] that 
occurred within 1000 m and +/− 5 days of the reported date range of each fire (Figure 3a). 
The estimated date of burning from this analysis was also extracted to the sample points 
to make associations with daily weather data (described in the weather section). Three of 
our study fires (2017 Lake, 2018 Charlie, and 2020 Rowher) did not have enough fire de-
tections to model the date of burning. We assumed that these fires had sparse detections 
because most of the area burned quickly, so the final fire sizes (262–1356 ha) were assigned 
as the daily area burned for the earliest reported date for each fire. 

We also attributed each sample point with the total fire radiative power (FRP) in MW 
from MODIS and VIIRS fire detections summed within a 1 km radius neighborhood of 
the point over the entire duration of the incident (Figure 3b). FRP represents the rate of 
radiative energy release detected within each satellite pixel extent. The 1 km neighbor-
hood size allowed us to attribute most of our samples with FRP values (94.1%) while pre-
serving much of the spatial variability in FRP across the larger fires. 

Finally, we estimated the spread type associated with the fuel break encounters in 
categories of backing, flanking, and heading by first approximating the final fire shape as 
an ellipse and then dividing the ellipse into fireline intensity zones using Scott’s propor-
tion of head fireline intensity equation [46] based on [47]. To accomplish this, we first 
identified the centroid of the fire detections from the first day of each fire to approximate 
the ignition point. If this ignition point fell outside the final fire extent, it was moved to 
the closest point along the perimeter. We then identified the centroid of the final fire ex-
tent. A minimum bounding rectangle of the final fire extent was then developed in align-
ment with the axis between the ignition point and final centroid. The ellipse major and 
minor axis lengths in Scott’s equation were estimated as one half the minimum bounding 
rectangle’s length and width, respectively. We then divided the ellipse into zones of back-
ing (<25% of head fire intensity), flanking (25–50% of head fire intensity), and heading 
(≥50% of head fire intensity) radiating from the ignition point (Figure 3c).  

  
Figure 3. Example fire behavior variables for the 2018 Cranston Fire showing: (a) estimated date of 
burning in day of the year, (b) FRP from MODIS and VIIRS, and (c) spread encounter type. 

  

Figure 3. Example fire behavior variables for the 2018 Cranston Fire showing: (a) estimated date of
burning in day of the year, (b) FRP from MODIS and VIIRS, and (c) spread encounter type.

We also attributed each sample point with the total fire radiative power (FRP) in MW
from MODIS and VIIRS fire detections summed within a 1 km radius neighborhood of
the point over the entire duration of the incident (Figure 3b). FRP represents the rate of
radiative energy release detected within each satellite pixel extent. The 1 km neighborhood
size allowed us to attribute most of our samples with FRP values (94.1%) while preserving
much of the spatial variability in FRP across the larger fires.

Finally, we estimated the spread type associated with the fuel break encounters in
categories of backing, flanking, and heading by first approximating the final fire shape as
an ellipse and then dividing the ellipse into fireline intensity zones using Scott’s proportion
of head fireline intensity equation [46] based on [47]. To accomplish this, we first identified
the centroid of the fire detections from the first day of each fire to approximate the ignition
point. If this ignition point fell outside the final fire extent, it was moved to the closest point
along the perimeter. We then identified the centroid of the final fire extent. A minimum
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bounding rectangle of the final fire extent was then developed in alignment with the axis
between the ignition point and final centroid. The ellipse major and minor axis lengths
in Scott’s equation were estimated as one half the minimum bounding rectangle’s length
and width, respectively. We then divided the ellipse into zones of backing (<25% of head
fire intensity), flanking (25–50% of head fire intensity), and heading (≥50% of head fire
intensity) radiating from the ignition point (Figure 3c).

2.4.3. Condition and Design

We manually attributed fuel break condition and design attributes based on the most
recent NAIP aerial photography prior to each fire [37]. Fuel break condition was assigned an
ordinal rating in five classes, ranging from one for barely discernable from the surrounding
vegetation to five for freshly cleared. We treated the fuel break condition as a continuous
variable in our statistical analysis. We assigned a separate binary indicator for fuel break
association with a fire break (0 = no, 1 = yes), which we expect to increase fuel break
success (roads were considered fire breaks). Each fuel break was attributed with its average
width in meters in 5 m increments for widths up to 50 m and 10 m increments for widths
greater than 50 m. The increasing width increment beyond 50 m is to reflect the difficulty
of precisely measuring a representative segment width from aerial imagery for fuel breaks
in poor condition or with irregular shapes. Fuel break width includes the width of the fire
break if present. If a fuel break was recently burned by a wildfire, its condition was judged
relative to the pre-fire vegetation, and we referenced earlier imagery for width indicators
if needed; this accounts for the maintenance benefit of wildfire while not overstating the
width of the fuel break. In some cases, the original data sources mapped fuel breaks along
roads without recent evidence of adjacent fuels management. We opted to retain these
roads as fuel breaks because they often serve as important links between maintained fuel
breaks and their inclusion in the earlier datasets implies a perceived importance for fire
management. We attributed these roads as fuel breaks with a high condition rating, narrow
width, and fire break present.

2.4.4. Suppression

Fuel breaks are tools for suppression, not features expected to passively stop wild-
fires [2,9,16]. We captured fuel break use in suppression with operational data on aerial
drop and fireline locations. Aerial drop data representing individual drop paths as polylines
were initially collected and cleaned to support Aviation Use Summaries [48]. Stonesifer [49]
provided us an aggregated dataset that includes all the aerial drops made by the fleet of
federal fixed-wing aircraft during years 2017–2020. This dataset does not include drops
made by state or local aircraft, so we may underestimate the fuel breaks that received
aerial drops on some fires. We attributed a binary indicator for association with an aerial
retardant or water drop (0 = no, 1 = yes) if a sample fell within 100 m of an aerial drop
line during the year of the fire. Fireline data came from the National Incident Feature
Service (NIFS) event line dataset for the years 2017–2020 [50]. The event line dataset was
filtered to feature categories indicating fireline construction or use during the incident.
Data gaps in the 2017 NIFS data were minimized by adding fireline data extracted from
incident geospatial databases on the National Interagency Fire Center (NIFC) server [51].
We attributed a binary indicator for association with a fireline (0 = no, 1 = yes) if a sample
fell within 100 m of a fireline during the year of the fire. The fireline status for samples
from fires without NIFS data were attributed with null values instead of zeros.

2.4.5. Topography

Fuel breaks in Southern California are often located along major ridges or valleys to
take advantage of moderated fire behavior from reduced slope and aspect changes [10,16].
We characterized topography using terrain analysis of the 30 m National Digital Elevation
Model [52] to calculate the percent slope and Topographic Position Index (TPI [53]). TPI is
calculated as the difference in meters between each pixel’s elevation and the neighborhood
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mean elevation. We calculated TPI using a 200 m circular neighborhood based on previous
success characterizing landform influence on control probability at this scale [26]. Highly
positive TPI values indicate ridges and highly negative values indicate valleys.

2.4.6. Vegetation/Fuels

Fuel conditions around fuel breaks may influence the likelihood of control through their
effects on fire behavior and suppression difficulty. We used two LANDFIRE [32] layers to
characterize pre-fire fuel conditions within a 100 m circular neighborhood around each sample.
The first is the mean forest canopy cover in percent. The second is the modal fire behavior fuel
model (hereafter “fuel model”) in the Anderson [54] thirteen class system, which provides
an indication of surface fuel load and type. Samples without a clear mode (i.e., multiple fuel
models tied for most abundant) were assigned a null value. We also assigned each sample a
binary indicator of burning (0 = no, 1 = yes) in a recent wildfire (≤10 yrs) based on spatial
intersection with the same interagency historical records described in the previous wildfire
section (years 2007–2020). Finally, we assigned a binary indicator of recent (≤10 yrs) fuel
treatment (0 = no, 1 = yes) within 100 m of the sample, as reported in the hazardous fuel
treatment polygon layer from the Forest Service Activity Tracking System [55].

2.4.7. Weather

We associated each sample with daily gridded weather estimates from gridMET
([56]; https://www.climatologylab.org/gridmet.html accessed on 10 September 2021) for
the previously described estimated date of burning. The gridMET spatial resolution is
approximately 4 km, and all weather metrics are daily averages except where otherwise
noted. The variables we investigated include the Burning Index (BI), Energy Release
Component (ERC), fuel moisture for the 100 h fuel size class (FM100; percent), maximum
relative humidity (RH; percent), Vapor Pressure Deficit (VPD), and wind speed at 10 m
above ground level (m/s). We considered this wide selection of weather variables because
of varying manager preference for basic and derived weather indices, but several of these
weather variables are highly correlated (e.g., ERC and 100 h fuel moisture, BI and wind
speed, etc.). Instead of constructing models from the best performing subsets, we tested
the performance of three commonly used weather variables sets: (1) the basic variables
including maximum RH, FM100, and wind speed; (2) the National Fire Danger Rating
System [57] components BI and ERC; and (3) the Hot-Dry-Windy Index [58] components
VPD and wind speed.

2.5. Statistical Model of Fuel Break Effectiveness

We used the Elith et al. [59] gbm.step routine with gbm package version 2.1.8 [60] in
R version 4.1.0 [61] to model the relationship between predictor variables and fuel break
outcome (failed or held) with gradient boosted regression trees. The final dataset had
38,953 observations of fuel break pixel encounters with wildfire, consisting of 10,886 held
observations (27.9%) and 28,067 failed observations (72.1%). Our core models were devel-
oped using 3-fold cross-validation, a bagging fraction of 0.5, a learning rate of 0.005, a tree
complexity of 10, and a maximum tree limit of 2500 to standardize comparisons and avoid
excessive overfitting. The tree limit was informed by an additional cross-validation procedure
described below.

We tested five models constructed from the full training dataset (Table 2) to evaluate
model performance with different weather variable sets and fire behavior variables that are
difficult to predict and potentially conflated with outcomes (e.g., daily area burned and
FRP). Model 1 includes all fire behavior variables and the three primary weather variables—
100 h fuel moisture, maximum relative humidity, and wind speed. Model 2 includes the
same variables except FRP because it is not currently well known to managers nor easily
predicted. Model 3 also excludes FRP and represents weather with BI and ERC. Model 4
excludes FRP and represents weather with VPD and wind speed. Model 5 excludes all fire
behavior variables and represents weather with the three primary variables.

https://www.climatologylab.org/gridmet.html
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We conducted two additional analyses to characterize Model 2 performance sensitivity to
varied training data. For the first analysis, we iteratively trained Model 2 with the gbm function,
withholding one fire at a time (i.e., cross-validation by fire) for tree numbers of 500 to 10,000. We
used the results to estimate the predictive performance of the model with independent data
and to identify an appropriate tree number to avoid overfitting. For the second analysis, we
trained Model 2 with the gbm function on 20 random subsets of the full training dataset with
minimum spacing distances of 50, 100, 200, and 500 m. Tree number was fixed at 2500. We
used the second analysis to estimate the effect of sample point spacing and sample size on
model performance. For both analyses, performance was evaluated for each model with all
withheld observations using the receiver operating characteristics diagram area under the curve
(AUC) and overall accuracy (classifying probabilities ≥ 0.5 as predicted successes). We also
evaluated model consistency by examining variation in variable importance and the predicted
probabilities between Model 2 trained with the full and subset data.

3. Results

Our five candidate models achieved similarly high levels of predictive performance
(Table 3) with a slight decline in AUC and overall accuracy from Model 1 with all variables to
Model 5 with no fire behavior variables. There were no meaningful differences in performance
among models constructed with the three different weather variable sets (Models 2–4; Table 3)
due to their similar representations of dryness and wind speed. Across all models, the most
important variables were consistently related to suppression, weather, and fire behavior, if
included (Table 3), and most models captured comparable relationships between the predictor
variables and the probability of control (Figures 4 and S2–S5). We focus on Model 2 as the
preferred model for the remainder of the paper because it performed almost as well as
Model 1 but without the need for managers to estimate FRP to make predictions.

Table 3. Relative variable importance by model for included variables (top). The three most important
variables in each model are in bold. Excluded variables are marked with X. Model performance
metrics (bottom). * denotes accuracy metrics based on success predicted for probabilities ≥ 0.5 with
the full model training data.

Category Predictor Variable Model 1 Model 2 Model 3 Model 4 Model 5

Accessibility Road proximity 3.5 3.7 3.6 3.6 3.9

Fire behavior Daily area burned 8.8 10.6 20.3 20.6 X
Encounter type 1.4 1.3 1.4 2.1 X
Fire radiative power 14.4 X X X X

Fuel break Condition 2.5 3.7 3.4 3.2 4.0
Fire break 0.4 1.2 1.3 1.5 1.4
Width 5.8 6.5 7.9 7.9 8.1

Suppression Aerial drop 5.7 5.8 6.4 6.4 6.5
Fireline 17.3 18.7 18.8 18.9 19.6

Topography Slope 0.4 0.5 0.5 0.6 0.6
Topographic Position Index 2.1 2.6 2.9 2.8 2.8

Veg/fuels Canopy cover 1.5 2.0 2.1 2.1 2.4
Fire Behavior Fuel Model 3.0 3.8 3.5 3.1 4.0
Recent wildfire 2.8 4.2 4.2 4.7 4.4
Recent treatment 3.1 3.3 4.3 5.1 3.5

Weather Burning Index X X 7.4 X X
Energy Release Component X X 11.9 X X
100 h fuel moisture 6.4 8.6 X X 11.3
Maximum relative humidity 15.5 17.4 X X 19.4
Vapor Pressure Deficit X X X 7.8 X
Wind speed 5.5 6.1 X 9.5 7.9

Performance AUC (training) 0.976 0.967 0.966 0.965 0.963
metrics AUC (3-fold) 0.971 0.962 0.961 0.960 0.958

Overall accuracy (%) * 92.9 91.9 91.7 91.6 91.5
Obs. failure & Pred. failure (n) * 27,275 27,188 27,191 27,257 27,167
Obs. failure & Pred. success (n) * 792 879 876 810 900
Obs. success & Pred. failure (n) * 1969 2263 2340 2477 2418
Obs. success & Pred. success (n) * 8917 8623 8546 8409 8468
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The most important predictor variables in the preferred model are dynamic charac-
teristics like suppression, weather, and fire behavior (Figure 5). Among the remaining
variables, fuel break width, recent wildfire, fuel model, road proximity, and fuel break
condition are the most important. Partial dependence plots (Figure 4) demonstrate that
the model aligns well with the current understanding of fuel break effectiveness drivers.
Fuel break success is positively associated with fireline and aerial drop indicators of sup-
pression effort. Effectiveness is expected to increase with increasing maximum relative
humidity and 100 h fuel moisture and decrease with increasing wind speed. The likelihood
of control declines with increasing daily area burned. Fuel break success is highest when
fire is backing and much lower with flanking or heading spread. Fuel break width and
condition are both positively associated with control. Both fire break presence and high



Fire 2023, 6, 104 11 of 19

road proximity are associated with improved success. Despite their lesser importance, the
veg/fuel and topography variables align with expectations. Fuel break success is higher if
recently burned or treated, or canopy cover is lower. Fuel break effectiveness is highest at
middle and higher topographic positions and lower slopes.
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in relative variable importance for Model 2 from iteratively withholding each fire from the training
data (boxplots).

The additional cross-validation by fire for Model 2 showed that AUC peaks when
models are fit with between 1500 and 3000 trees and then slowly declines with an increasing
number of trees (indicating overfitting [59]), although the exact response varies based on
the fire withheld from the model (Figure 6). In contrast, the gbm.step procedure suggested
that the optimal number of trees for Model 2 is above 10,000. AUC assessed with the
training data for the full model increases unimodally from 0.913 at 500 trees to 0.993 at
10,000 trees. For the 2500-tree model, the validation AUCs vary between 0.275 and 0.954
with a simple mean of 0.732 and an observation-weighted mean of 0.753. The validation
AUCs are all above 0.7 for the six fires with more than 2000 observations that collectively
account for 74.6% of the total observations. The validation overall accuracies range between
19.1 and 92.0% with a simple mean of 66.1% and an observation-weighted mean of 75.8%.

The models created in the cross-validation by fire procedure retain the core characteris-
tics of the full model. The variable importance measures do not differ drastically from those
of the full model, suggesting that the core drivers of effectiveness are consistent across fires
(Figure 5). The predicted probabilities from the validation models are also close to those of
the full model. The mean difference in the predicted probabilities for the full observation
set vary between less than 0.001 to 0.062, and the Spearman’s rank correlations are all
high, ranging between 0.81 and 0.99. The most influential fire on the final model (highest
mean difference and lowest Spearman rank correlation) is the 2017 Thomas Fire, which
accounts for approximately a third of all the sample points. The predicted probabilities for
the validation models have fair alignment with the spatial patterns of outcomes for the
fires with the most wildfire–fuel break observations (Figure 7).



Fire 2023, 6, 104 12 of 19

Fire 2023, 6, x FOR PEER REVIEW 14 of 21 
 

 

  
Figure 6. Area under the receiver operating characteristics curve (AUC) results from the cross-vali-
dation by fire procedure. A weighted mean was calculated based on the number of observations in 
each validation set. The results for the five fires with the greatest number of observations are also 
shown. 

The models created in the cross-validation by fire procedure retain the core charac-
teristics of the full model. The variable importance measures do not differ drastically from 
those of the full model, suggesting that the core drivers of effectiveness are consistent 
across fires (Figure 5). The predicted probabilities from the validation models are also 
close to those of the full model. The mean difference in the predicted probabilities for the 
full observation set vary between less than 0.001 to 0.062, and the Spearman’s rank corre-
lations are all high, ranging between 0.81 and 0.99. The most influential fire on the final 
model (highest mean difference and lowest Spearman rank correlation) is the 2017 
Thomas Fire, which accounts for approximately a third of all the sample points. The pre-
dicted probabilities for the validation models have fair alignment with the spatial patterns 
of outcomes for the fires with the most wildfire–fuel break observations (Figure 7). 

  

Figure 6. Area under the receiver operating characteristics curve (AUC) results from the cross-validation
by fire procedure. A weighted mean was calculated based on the number of observations in each
validation set. The results for the five fires with the greatest number of observations are also shown.

Fire 2023, 6, x FOR PEER REVIEW 14 of 21 
 

 

  
Figure 6. Area under the receiver operating characteristics curve (AUC) results from the cross-vali-
dation by fire procedure. A weighted mean was calculated based on the number of observations in 
each validation set. The results for the five fires with the greatest number of observations are also 
shown. 

The models created in the cross-validation by fire procedure retain the core charac-
teristics of the full model. The variable importance measures do not differ drastically from 
those of the full model, suggesting that the core drivers of effectiveness are consistent 
across fires (Figure 5). The predicted probabilities from the validation models are also 
close to those of the full model. The mean difference in the predicted probabilities for the 
full observation set vary between less than 0.001 to 0.062, and the Spearman’s rank corre-
lations are all high, ranging between 0.81 and 0.99. The most influential fire on the final 
model (highest mean difference and lowest Spearman rank correlation) is the 2017 
Thomas Fire, which accounts for approximately a third of all the sample points. The pre-
dicted probabilities for the validation models have fair alignment with the spatial patterns 
of outcomes for the fires with the most wildfire–fuel break observations (Figure 7). 
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(a) 2017 Thomas, (b) 2020 Bobcat, and (c) 2020 Lake Fires from Model 2, constructed by iteratively
withholding each fire from the training data (cross-validation by fire).

The predictive performance of Model 2 remained high when trained on subsets of the
full training dataset with minimum spacing distances of 50 to 500 m and sample sizes that
include between 32.1 and 2.9% of the full training dataset (Table 4). Compared to Model
2 trained with the full training dataset, which has a cross validated AUC of 0.962 and an
overall accuracy of 91.9, the subset model performance declines slightly with increasing
minimum spacing and shrinking sample size. Models trained on subsets with 50 and
100 m minimum spacings have the largest sample sizes and perform almost as well as
the full model with AUCs of 0.963 and 0.959 and overall accuracies of 91.2 and 90.7%,
respectively. Subset model structure and predictions are also similar to the full model;
variable importance measures of the subset models are close to those of the full model
(Figure S6) and Spearman rank correlations between the full and subset data predictions
average 0.994 and 0.984 for 50 and 100 m spacings, respectively. Performance declines
more for models trained on the subsets with 200 and 500 m minimum spacing distances
(Table 4), but AUCs are still above 0.9 and overall accuracies are above 87%. The 200 and
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500 m spacing model predictions remain similar to those of the full model (Spearman rank
correlation > 0.9), but the underlying model structure has several differences from the
full model. Suppression, weather, and fire behavior variables are still the most important
predictor variables, but there is a shift towards higher importance of fuels, topography, and
road proximity variables (Figure S6).

Table 4. Mean results for Model 2 trained with 20 random subsets of the full training dataset with
minimum spacing distances of 50 to 500 m. AUC and overall accuracy were calculated with all
samples not used for model training. The Spearman rank correlation is calculated by comparing the
full and subset model predictions for the entire training dataset.

Minimum Spacing (m) Sample Points Percent of Full
Sample Points AUC Overall Accuracy (%) Spearman Corr. with Full

Model Predictions

50 12,500 32.1 0.963 91.2 0.994
100 6152 15.8 0.959 90.7 0.984
200 3114 8.0 0.950 89.7 0.963
500 1146 2.9 0.925 87.2 0.909

4. Discussion

Our analysis reaffirms previous work on fuel break success rates and drivers of
effectiveness. The 27.9% success rate by length for our training data falls in the 22–47%
range reported for these same National Forests by Syphard et al. [2] for the period 1980–2007.
The high importance of suppression, weather, and fire behavior variables in our model
also agrees with the Syphard et al. [2] findings that fuel break accessibility, suppression
resource availability, and fire size (proxy for weather and fire behavior) are key drivers of
fuel break effectiveness. Our accounting of daily weather and fire behavior helps better
define the range of conditions that fuel breaks perform well in (Figure 4) compared to the
more qualitative observations that fuel breaks often fail in dry, windy weather or extreme
fire behavior with spotting [16]. Despite their lesser importance in the model, variables
related to fuel break design and maintenance function as expected; wider fuel breaks kept
in better condition with frequent fuel treatments should improve fuel break outcomes. Our
model approaches the level of realism and predictive performance necessary to inform
suppression decisions, and it can also be used in a pre-fire context to assess the effects of
fuel break design choices.

4.1. Progress, Limitations, and Future Directions for Modeling Fuel Break Effectiveness

Our dense point sampling design and the associated determination of fuel break
outcomes (Figure 2) provides a flexible data model for linking fuel break segments and
their outcomes to predictor variables with different spatial and temporal resolutions. We
opted to generate samples at the resolution of our most detailed spatial data, but the
tight spacing of points may cause pseudo-replication issues as fuel break outcomes and
several of our predictor variables may have dependencies at coarser spatial and temporal
scales, like most observational fire data [23,62]. Higher resolution data streams for dynamic
variables like weather, fire behavior, and suppression should mitigate much of this issue
in the future, but fuel break control outcomes will always suffer from some degree of
spatial autocorrelation. Figures 2 and 7 illustrate representative spatial patterns of fuel
break outcomes on large fires with successes and failures clustering at scales ranging from
several hundred meters to several kilometers (see Supplementary Materials for additional
analysis of spatial autocorrelation). Our sensitivity analysis shows that Model 2 trained
with wider spaced random subsets (minimum 50–500 m) of the full training dataset perform
almost as well as the same model trained with the full training dataset and captured similar
relationships between predictor variables and fuel break outcomes. Future work with
larger datasets could focus on decoupling sample point spacing and sample size impacts
and testing sensitivity to even wider minimum sample spacings. Sampling designs could
also be informed by surveying fuels managers and firefighters on what they view as the
appropriate spatial scale to characterize fuel break attributes and outcomes.
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Despite our accounting of many weather, fire behavior, and suppression factors, the
lower AUC from the cross-validation by fire procedure also suggests that there are unique
fire characteristics that are not accounted for by our predictor variables. Cross-validation
by fire indicates that the actual predictive performance of our model (~0.75 AUC) is sub-
stantially lower than assessed with random fold cross-validation (~0.96; Table 3), but is still
high enough to make useful predictions. We suspect that suppression strategy may further
explain fuel break outcomes across fires, as fuel breaks may lose their strategic purpose,
despite their potential to hold, based on neighboring fire spread that forces managers to
identify a bigger box and use suppression firing to tie distant lines together. Suppression
firing is currently poorly documented, but anecdotal reports from the United States [63]
and reconstructions of its use in Australia suggest it may contribute considerably to the
area burned by large wildfires [64]. Long range spotting may also dramatically alter the
fuel break outcomes on some fires with little to no influence of the fuel break characteristics.
Spotting is likely captured indirectly in our model through its association with weather
variables, daily area burned, and FRP. Our simplified accounting of suppression with binary
indicators of activity does not account for potentially important characteristics like fireline
type, width, quality, timing of construction, and whether it was used for suppression firing
or staffed for holding operations.

Fuel break control outcomes evaluated using the final fire perimeter are relevant for
evaluating fuel break strategies aimed at reducing fire sizes and impacts across broad
landscapes, but there are other relevant fuel break outcomes that we did not consider in this
study. For example, we did not address whether fuel breaks altered fire behavior, delayed
spread, increased suppression efficiency, facilitated access, or provided safer working
environments for firefighters. We also did not address the role of fuel breaks in protecting
community assets or controlling small fires. Presumably, fuel breaks should be more
effective when they are engaged by small fires because they will cover proportionally more
of the fire perimeter. Accounting for the benefits of controlling small fires at fuel breaks is
challenging because the counterfactual outcome is difficult to accurately define (i.e., where
the fire would have spread if not controlled at the fuel break).

Daily area burned (Models 1–4) and FRP (only Model 1) were strong predictors of
fuel break success, but it is important to recognize that both can be conflated with control
outcomes as fuel break failures lead to increased area burned and radiation as fuels behind
the fuel break combust. Conflation between predictor variables and observed outcomes
can lead to overestimated model performance. We think that area burned and FRP are
reasonable to include as predictor variables given that faster spreading and more intense
fires should be more challenging to safely control due to the need to access, prepare, fire,
hold, and mop up more line. We opted to include daily area burned in our preferred model
because most fire organizations are already making the necessary fire growth predictions to
apply the model and it is consistent with previous fuel break effectiveness models for the
region [2,8] except for the improved temporal resolution (daily vs. incident). In contrast,
FRP is a relatively new metric that few managers can translate into practical terms, and it
is not an output of well-established fire models. The real-world application of our model
should also account for uncertainty from the associated fire behavior modeling.

Major issues facing future empirical fuel break research are defining consistent criteria
of what qualifies as a fuel break and maintaining datasets on fuel break location and
characteristics. The Brennan and Keeley [40] fuel break dataset we leveraged in our analysis
includes diverse features that may not all align with the modern vision of a strategic pre-fire
fuel break. Some fuel breaks were constructed opportunistically during fire suppression
and may persist long enough to be useful on subsequent fires, even if they were not planned
land management actions. Similarly, many of the original fuel break features appear to be
roads with varying levels of shoulder maintenance, which may function like fuel breaks
despite different funding sources and motivations. Only 19.6% of our samples had evidence
of hazardous fuel treatment activities in the ten years before engaging with the study fires.
Thus, we considered attributes reflective of treatment in our model to contrast fuel breaks
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of varying qualities. Fuel breaks with recent treatment held 38.5% of the time compared
to 25.4% without recent treatment, confirming that either the maintenance or correlated
characteristics of these fuel breaks boosts effectiveness. Our post hoc evaluation of fuel
break width and condition with aerial imagery seems to have captured useful information
(Figures 4 and 5), but field inventories would improve their accuracy and allow for more
detailed description of fuel type, amount, and arrangement.

4.2. Management Implications

The strong influence of weather and fire behavior factors on our model make it
potentially useful for identifying when and where to allocate suppression effort. Fuel
break effectiveness has a threshold-like response to several of the weather and fire behavior
variables, suggesting that control likelihood substantially declines when fuel breaks are
exposed to fast-growing head fire under dry and windy weather (Figure 4). Staffing fuel
breaks under these conditions also risks firefighter safety [65], so it may make sense to
delay suppression efforts until the weather moderates, or to focus on fuel breaks near
the heel of the fire where lower intensity backing fire improves the likelihood of control
(Figure 4 [10,66]). Suppression greatly increases the odds of fuel break success; the mean
success rate for our observations without fireline and aerial drops was only 12.7% compared
to 68.1% for observations with both fireline and aerial drops. Suppression clearly has strong
effects, but some of this difference is likely due to the strategic use of suppression under
more favorable weather conditions, which is captured through the variable interactions in
our boosted regression model. Still, our estimated success rate for fuel breaks with fireline
and aerial drops is close to the probability of success reported for halting fire advance with
airtanker drops [67].

Wider and better maintained fuel breaks should perform better than narrow and
overgrown ones, but fuel break width, condition, and prior treatment only account for
13.5% of the variable importance in our preferred model (Figure 5), so improved fuel break
design and maintenance are not expected to drastically improve fuel break outcomes on
the types of large fires we studied. The highest success is expected for fuel breaks freshly
cleared of native vegetation to greater than 300 m wide (Figure 4). Firefighters in Southern
California are highly proficient at constructing ridgetop dozer lines, so the pre-fire condition
of the fuel break may not be critical on larger fires as long as firefighters have the time and
resources to improve them during the incident. Like Syphard et al. [2], we found greater
success for fuel breaks close to roads, so it makes sense to prioritize fuel break construction
and maintenance where they are most accessible to firefighters. Additionally, the presence
of a road or other fire break should further improve fuel break effectiveness by aiding
suppression firing [24,64,68]. We also found evidence that fuel breaks are more effective
if associated with areas recently burned by a wildfire (Figures 4 and 5) consistent with
reports from the Whittier Fire of moderated fire behavior in previously burned areas that
improved suppression effectiveness and dramatically reduced suppression needs [13], and
post hoc evaluation of the Las Conchas Fire in New Mexico that found improved fireline
effectiveness in areas previously burned by the Cerro Grande Fire [69]. This finding is in
line with earlier suggestions to maximize the effectiveness of fuel breaks by combining
them with broader landscape fuel treatments, especially prescribed fire [7].

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/fire6030104/s1, Figure S1: Predictor variable distributions for fuel break
failures and successes; Figure S2: Partial dependence plots for Model 1 with the full training data
showing the mean effect of each variable sorted in order of descending relative variable importance;
Figure S3: Partial dependence plots for Model 3 with the full training data showing the mean
effect of each variable sorted in order of descending relative variable importance; Figure S4: Partial
dependence plots for Model 4 with the full training data showing the mean effect of each variable
sorted in order of descending relative variable importance; Figure S5: Partial dependence plots
for Model 5 with the full training data showing the mean effect of each variable sorted in order of
descending relative variable importance; Figure S6: Relative variable importance for Model 2 with the
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full training data (red dots) and variation in relative variable importance for Model 2 from training the
model with 20 random subsets with minimum spacings of 50, 100, 200, and 500 m; Figure S7: Observed
minus expected success-success joins by distance class.
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