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Abstract: In this paper, the patterns of the occurrences of fire incidents over sub-Saharan Africa
are studied on the basis of satellite data. Patterns for the whole sub-Saharan Africa are contrasted
with those for northern sub-Saharan Africa and southern-hemisphere Africa. This paper attempts
to unravel linear trends and overriding oscillations using regression and spectral techniques. It
compares fire patterns for aggregated vegetation with those for specific types, which are savannahs,
grasslands, shrublands, croplands, and forests, to identify key trend drivers. The underlying cyclic
trends are interpreted in light of climate change and model projections. Considering sub-Saharan
Africa, northern sub-Saharan Africa, and southern-hemisphere Africa, we found declining linear
trends of wildfires with overriding cyclic patterns that have a period of ∼5 years, seemingly largely
driven by savannahs, grasslands, and croplands.

Keywords: cyclic trends; African wildfires; climate change

1. Introduction

Fire is an integral part of Earth’s biogeochemical processes and has influenced land–
atmosphere interactions for more than 400 million years [1]. Fire influences many aspects
of the global environment, such as the carbon cycle, atmospheric climate, and ecosystem
distribution. Fire-prone ecosystems cover 40% of the land surface, and these ecosystems
include major global biomes such as savannahs, grasslands, boreal forests, and shrublands.
These fire-prone ecosystems are responsible for more than 85% of global fires [2,3].

Savannas are the most fire-prone ecosystems, responsible for 65% of the gross global
mean fire emissions, where total global fire emissions are 8 Pg CO2−e yr−1 [4]. Savannahs
cover about 23–33 million km2, occupying 10% to 25% of Earth’s land surface [5–9]. Of all
the world’s continents, Africa has by far the largest area of savannahs, covering about
40% to 50% (about 15 million km2) of its land surface [5,10–12]. The largest portion of
African savannahs are found in southern Africa, where they cover about 46% of the total
land surface [7]. Other African savanna patches are found in East and West Africa [13].
The second largest global fraction of savannahs are in northern Australia, where they cover
about 2 million km2 [14]. Australia’s savannahs comprise 12% of the global savannah
biome, and they have some of the world’s most extensive and intact eucalyptus stands.
Nearly 75% of Australia’s total burnt land area occurs in the savanna ecosystem [14].
South America has the most diverse types of savanna ecosystems, covering approximately
2.7 million km2, which is about 8–10% of the global savanna biome [15–18].

The Coupled Intercomparison Project Phase 5 (CMIP5) multimodel predicted that
mean annual precipitation (MAP) in arid and semiarid regions, which are part of fire-prone
ecosystems, would decrease by 10–25% and 15–45% under the Representative Concentra-
tion Pathway 4.5 (RCP4.5) and RCP8.5 climatic scenarios, respectively, while mean annual
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temperature (MAT) would increase by 1.5–3 ◦C and more than 4 ◦C under the RCP4.5
and RCP8.5 climate scenarios, respectively, by the end of the century [IPCC 2013] [19–21].
Warmer and drier conditions have potential to alter biogeochemical processes such as car-
bon fixation and sequestration, and soil respiration [22,23]. The predicted climate change
coupled with extreme weather events such as windstorms, lightning, and heat waves
could enhance the accumulation of dry biomass, drier soil conditions, and increased soil
surface temperature, which could, in turn, result in increased fire frequency, severity, and
intensity [21,24–26].

In this study, we assess fire trends in sub-Saharan Africa over a period of two decades.
Africa is ideal to study fire regimes and the interactions between fire and other biogeophys-
ical processes such as vegetation and precipitation because it has the largest proportion
of fire-prone biomes. The equator cuts Africa into two subcontinents with fairly different
vegetation distributions owing to differences in the climate and soil patterns: the northern
and southern region. The northern region (Sahel) covers the area between 10◦ and 20◦ N,
stretching longitudinally from Senegal in West Africa to Sudan/Ethiopia in East Africa [27].
In this region, seasonal rainfall varies significantly in the meridional direction, but less in
the zonal direction [27]. The southern region (southern Africa) is located between 10◦ and
35◦ S. The mean annual precipitation in this region increases steeply in the south–north
direction [28]. This moisture gradient has resulted in a vegetation structure in which the
southern portion of southern Africa is dominated by thin-leaf deciduous shrubs, while
the northern part is dominated by evergreen broad-leaf trees [29]. The meridional and
zonal geographical orientation of Africa’s southern and northern hemispheres, respec-
tively, render Africa a conducive environment to study the interactions between the fire
regime and environmental factors such as precipitation, vegetation structure, and land use
type. Furthermore, Africa accounts for more than 50% of the total global amount of burnt
vegetation annually [2,30–35].

In light of the projected climate change and associated extreme weather events, it is
important to assess the fire regime in Africa under climate change. In this study, we assess
African fires, looking at the burnt area for aggregated and specific vegetation types to char-
acterise their linear trends and overriding oscillations over two decades. We hypothesize
that the frequency of the oscillations might change as climate change continues to take
its toll, but tracking these changes would require much longer observations than those
considered in this study.

2. Materials and Methods

The study was conducted in the savannas, shrublands, croplands, forests, and grass-
lands of sub-Saharan Africa (SSA). The distributions of these vegetation classes over
sub-Saharan Africa are shown in Figure 1. More than 50% of the surface land area in
Africa is covered by savanna vegetation, which translates into more than 1.8× 107 km2 [7].
Southern-hemisphere Africa (SHA) has the largest continuous stretch of savannas, which
cover a land surface area of approximately 1.4× 107 km2, whereas northern sub-Saharan
Africa (NSSA), that is, Africa north of the equator and south of the Sahara, covers about
3× 106 km2 of land surface [7,11,12,36,37]. These geographical regions are depicted in
Figure 1, adopted from [37].

The Moderate Resolution Imaging Spectroradiometer (MODIS) burn product (MCD64A1
V006) was used for this analysis covering the period of 2001–2020. MCD64A1 data have a
spatial resolution of 500 m and a 1-month temporal resolution. This product provides the day
of the year when pixels burn [38]. The data were acquired from NASA’s Earth Observing Data
and Information System (EOSDIS, https://search.earthdata.nasa.gov/search, accessed on
23 January 2022). Monthly burn products were processed following the algorithm provided
in [37]. In this ensuing analysis, the key variable of consideration is the proportion of the
burnt area to the total land surface. We study the trends and cyclic behaviour of this variable
to detect underlying fire patterns.

https://search.earthdata.nasa.gov/search
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Figure 1. Map of the vegetation classes in Africa following International Geosphere–Biosphere
Programme (IGBP) land cover classification. NSSA is northern sub-Saharan Africa, while SHA is
southern-hemisphere Africa. The two regions, separated by the equator (represented by a back dotted
line), together constitute sub-Saharan Africa (SSA). This map was adopted from [37].

2.1. Proportion of Burnt Area

Suppose that the total area of the region under consideration is A, ap is the area of each
pixel, and the total burnt area in a year t is Ab(t). Then, the proportion of the burnt area to
the total land surface in year t is given by pb(t) = Ab(t)/A. The number of pixels in the
burnt area is then given by nb(t) = pb(t)A/ap. Therefore, the linear trend and oscillations
of the proportion of burnt area are reflected in the time series for the corresponding number
of pixels and vice versa. Likewise, the total number of pixels in the area under consideration
is n = A/ap. The quantity, pb(t), changes each year according to changes in the burnt area,
Ab(t). If pb(t) has a linear trend with gradient mb, then the gradient of the linear trend of
Ab(t) is Mb = mb A. Quantity pb(t) is dimensionless, whereas area Ab(t) has area units.
On the other hand, the frequency of the oscillations of burnt area Ab(t) is equal to that of
those for proportion pb(t).

2.2. Regression and Spectral Analysis

Consider a random variable X(t) that is drifting with time, possibly having some
overriding cyclic behaviour. Realisations of this random variable may be the previously
introduced pb(t). We could model the behaviour of this random variable as follows:

X(t) = a + bt + S(t), (1)

where S(t) is the residual (for a comprehensive discussion of linear models, see [39]) that
may be a linear combination of oscillatory and random terms. Methods for fitting the
linear trend are well-established, and there are relevant statistical packages that are readily
available. These methods include the computations of significance values and confidence
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intervals for parameter estimates. In the Results section, we report parameter estimates
with their corresponding estimates of significance levels.

Here, we delve into some details of spectral methods because they are rarely used in
the fire community. The oscillatory term can be written as follows:

S(t) =
m

∑
i=0

ai sin(ωit + αi) + ε(t), (2)

where ai are the Fourier coefficients, ωi are the angular frequencies, each αi is the phase shift,
and ε(t) is the random term. The series can be written in the following alternative form:

S(t) =
m

∑
i=0

Ai cos ωit + Bi sin ωit + ε(t), (3)

where Ai = ai sin αi and Bi = ai cos αi. The essence of spectral analysis is to decompose a
signal into components of different frequencies, and it can be traced as far back as 1974,
when it was applied to economic time series [40]. It is a technique for studying cyclical or
periodic behaviour. In [41], statistical tests for assessing cyclical trends in epidemiological
time series were presented. To some degree, our application of spectral analysis to fire time
series is novel, though the tools are well-known, especially in the mathematical sciences.
Most recently, the authors in [42] presented what they called a multitaper spectral method
that was a Fourier transform tailored to detect a shared frequency in a coupling among fire,
vegetation, and climate.

In order to detect the oscillations of a signal, it is important to first remove the linear
trend, which is a process called detrending. Detrending is a well-studied problem in
econometrics, with the method of differencing being quite popular. Here, we used the
method of fitting a linear trend and removing it from the data, which was chosen because
of its intuitive appeal. Through detrending, a nonstationary signal can be transformed into
one that is stationary. A visual inspection of a plot of the detrended signal can give a rough
indication of the dominant frequencies of the signal. Better still, the Fourier analysis of the
signal can reveal its fundamental and harmonic frequencies [43]. To that end, one can first
compute the autocovariance of the detrended signal via

γ(τ) = lim
T→∞

1
2T

∫ T

−T
S(t)S(t + τ)dt, (4)

where τ is the time delay. Detrending yields a signal of zero mean, that is, E[S(t)] = 0.
As an example, consider a signal that has only one angular frequency ω0. In this case,
we have

S(t) = A cos ω0t + B sin ω0t + ε(t). (5)

The relationship among angular frequency, ω, and signal frequency f is given by
ω = 2π f . Furthermore, the period and frequency of the signal are related via T = 1/ f .
If ε(t) = 0 and A = 0, then the autocovariance of this signal is given by

γ(τ) =
B2

2
cos ω0τ. (6)

It follows that the autocovariance function retains the frequency of the underlying
signal. A visual inspection of a graph of the autocovariance function versus lead time can
reveal the underlying frequency. More generally, if we have A 6= 0, B 6= 0 with ε(t) = 0,
we obtain

γ(τ) =
1
2
(A2 + B2) cos ω0τ. (7)
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If ε(t) is white noise with constant variance E[ε2(t)] = σ2
ε , then its autocovariance is

given by

lim
T→∞

1
T

∫ T

0
ε(t)ε(t + τ)dt =

{
σ2

ε , if τ = 0,
0, if τ 6= 0.

(8)

If we represent the periodic component of the signal as s(t), then we can write

S(t) = s(t) + ε(t). (9)

Taking advantage of the Cauchy–Schwartz inequality, we obtain the following result:

lim
T→T

1
T

∫ T

−T
s(t + τ)ε(t)dt ≤ (A2 + B2)1/2σε, (10)

This helps in obtaining the bound for the autocovariance of the signal encapsulated by

γ(τ) ≤ 1
2
(A2 + B2) cos ω0τ + 2(A2 + B2)1/2σε + σ2

ε δτ , (11)

where δτ = 1 when τ = 0 and δτ = 0 when τ 6= 0. A strict equality holds if and only if the
variance of the noise vanishes. The Fourier transform of γ(τ), which is denoted by Λ(ω),
is given by

Λ(ω) =
1√
2π

∫ ∞

−∞
γ(τ)e−iωτdτ. (12)

In studying recurrence patterns in California wildfires, the authors in [42] applied
the Fourier transform in its most basic mathematical form and not as an integral of the
autocorrelation function, as presented here. The Fourier transform presented here exists
provided that γ(τ) is square integrable, i.e.,

∫ ∞
−∞ |γ(τ)|

2dτ < ∞. It follows from (11) that

Λ(ω) ≤
√

2π
δ(ω−ω0) + δ(ω + ω0)

2
+ 2(A2 + B2)1/2σεδ(ω) +

σ2
ε√
2π

, (13)

where δ(·) is the Dirac delta function [44]. Function Λ(ω) is the power spectrum of the signal,
and its spikes correspond to the fundamental frequency and the respective harmonics.

2.3. Simulation Example

As with all natural signals, observational noise is inevitable in fire data. This was
documented in [45,46], where methods for assessing noise in wildfire data were discussed,
most notably the Kalman filter. In view of the presence of measurement noise in fire
data, it is important to investigate how spectral analysis tools can perform in its presence.
A simulation example is used to illustrate the robustness of the power spectrum and the
autocorrelation function to detect underlying signal frequencies under different levels of
measurement noise. The two signals are shown in Figure 2, and the corresponding power
spectra and autocorrelation function graphs are shown in Figure 3. The equations for the
oscillatory parts of signals on the left and right are given by, respectively,

s1(t) = 2 sin 2π f1t and s2(t) = 2 sin 2π f1t + 3 sin 2π f2t,

where f1 = 50, f2 = 120, so that each signal is given by Si = si + εi, i = 1, 2. The noise
level was selected via the scaling parameter λ2

i = E[ε2
i ]/E[S

2
i ], where λi is represented by

the colour bar on the right of each graph. 1/λ2
i is the signal-to-noise ratio. A high value

of λi corresponds to relatively strong measurement noise. From the graphs, it appears
that the autocorrelation function was more robust to changes in the signal-to-noise ratio
than the power spectrum was. This is understandable, because the power spectrum takes
as input the autocorrelation function. As the signal-to-noise ratio is lowered, the power
spectrum shows more false spikes, while the oscillatory nature of the autocorrelation
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function tends to be maintained. For a signal with a single frequency, the first peak of the
autocorrelation function corresponds to the frequency of the signal. A signal that is the
superposition of two signals with frequencies that are not scalar multiples of each other
has the first two peaks corresponding to the two frequencies. The peaks are repeated at
scalar multiples of the fundamental and harmonic frequencies. In practical situations where
the frequencies are unknown a priori, it is hard to know if the additional peaks are for
more underlying frequencies or just repetitions at multiples of the fundamental frequencies.
The power spectrum may, therefore, have better discriminatory power because it has no
inherent repetitions.
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Figure 2. Graphs of two signals corrupted with noise of varying strength. The signal on the left has a
single frequency, while the one on the right is a superposition of two signals of different frequencies
and amplitudes. The colour bar on the right reflects the proportion of noise added to the signal, λi.
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Figure 3. Graphs to highlight the efficacy of a power spectrum and autocorrelation to detect under-
lying frequencies. The top graphs are power spectra, while bottom graphs are the autocorrelation
function for the two signals in Figure 2. The colour bar on the right is the proportion of noise to
signal, λi.
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3. Numerical Results

This section presents numerical results based on the analysis of satellite data of fires
over sub-Saharan Africa. Figure 4 shows graphs of a number of burns versus latitude
(left) and longitude (right) as a function of time. The period of study spans two decades
from 2001 to 2020. The number of burns is a simple count of the pixels in the burnt area.
In the subsequent analyses, we also study the proportion of burnt area, computing both
the gradient of the linear trend and the period of the underlying oscillations. The period is
essentially the recurrence time of the fire oscillations/cycles. A negative gradient shows
that the burnt area decreases with time, while a positive gradient shows that the burnt area
increases with time.

Figure 4. Graphs of fire trends from 2001 to 2020 for the entirety of sub-Saharan Africa. Positive
latitude values are northward while positive longitude values are eastward. The value of 0◦ latitude
corresponds to the equator, and the value of 0◦ longitude corresponds to the prime meridian line.

3.1. Sub-Saharan Africa: All Vegetation

There was a trend of decreasing fires over the two decades. This trend is more
pronounced on time series plots for sub-Saharan Africa, northern sub-Saharan African,
and southern-hemisphere Africa, as shown in Figure 5. The blue crosses in the graphs
are the actual observations. In each case, a linear trend was fitted and is depicted with a
black dashed line. These graphs show the proportion of the burnt area as a function of
time. The gradient for the linear trend of the sub-Saharan Africa fitting was −0.005, that
for northern sub-Saharan Africa was −0.0049 and that for southern-hemisphere Africa
was −0.0052. This means that the burnt area is decreasing at a rate of ∼36,000 km2 per
annum. These were all significant at a level of 5%. In fact, the largest p-value was for
southern-hemisphere Africa, 2.3%. In all three cases, it is evident that the fires have been
decreasing with time over the past two decades, albeit in an oscillatory manner.

Imputing the actual nature of the oscillations is an intricate process. In order to
enhance the quantification of the oscillations, it is useful to first remove the linear trend
from the time series. In this study, all spectral analysis was performed after the linear
trend had been removed from the original time series. The next aim was to compute the
frequency (or period) of the oscillations. Graphs for the estimated trends and oscillations are
shown in Figure 5, obtained by assuming that there was only one fundamental frequency
(in each case) with no harmonics. Fitting more than one frequency for the particular
signal length is against the principle of parsimony. The corresponding frequency was
obtained via the nonlinear least-squares fitting of Equation (2). The found frequencies
were ω0 ∼ 1.0097, 1.1024, 1.0001 for sub-Saharan Africa, northern sub-Saharan Africa,
and southern-hemisphere Africa, respectively. These results are for all the fires over
sub-Saharan Africa, irrespective of vegetation type. The foregoing frequencies yielded
periods of T0 ∼ 6.22, 5.7, 6.28 years for sub-Saharan Africa, northern sub-Saharan Africa
and southern-hemisphere Africa respectively. These results can be compared with those
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obtained from graphs of the autocorrelation as a function of time lag, shown in Figure 6. All
three graphs manifested the first peak at τ ∼ 5, strongly indicating that the oscillations of
the fires over the three regions of sub-Saharan Africa had periods of around 5 years. Graphs
of the power spectrum showed peaks at frequencies f0 ∼ 0.1667, 0.4167 for fires over all
sub-Saharan Africa. These correspond to periods of T0 ∼ 6.0 and T0 ∼ 2.4 years. The value
of T0 ∼ 6.0 was relatively close to the values obtained with nonlinear least-squares fitting
and the autocorrelation function. The power spectrum for fires over northern sub-Saharan
Africa yielded f0 ∼ 0.08333 and f0 ∼ 0.25, which correspond to periods of 12 and 4 years
per cycle, respectively. On the other hand, the power spectrum for fires over southern-
hemisphere Africa yielded peaks at f0 ∼ 0.08333 and f0 ∼ 0.04167, which correspond
to periods of T0 ∼ 12 and 2.4 years, respectively. The values obtained via the power
spectrum were deemed less reliable because of the earlier indicated robustness issues.
Therefore, the periods obtained via nonlinear fitting and the autocorrelation function are
more reliable estimates.
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Figure 5. Graphs showing the trends of aggregated fires over all sub-Saharan Africa, southern-
hemisphere Africa, and northern sub-Saharan Africa. Plus signs are the actual observation points, dot-
ted lines are the linear regression fits, and the solid line is the fitted oscillatory line using nonlinear
least squares.
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Figure 6. Graphs of the power spectrum as a function of frequency and autocorrelation as a function
of lag time applied to the time series of the proportion of the burnt area for aggregated vegetation
types in sub-Saharan Africa.

3.2. All Sub-Saharan Africa: Vegetation-Specific

Next, we turn our attention to computations relating to fires based on vegetation types.
The considered types were forests, savanna, shrublands, grasslands, croplands, and others,
and the corresponding graphs of the autocorrelation function and power spectrum are
shown in Figure 7. The coefficients of variation for the nonlinear least-squares fits for all
vegetation types were all below 0.2, but a multiplicity of computational approaches gave
some credence to the estimates of periods. The first considered computations were for
savanna fires over all sub-Saharan Africa. On the basis of the autocorrelation function,
the period of savanna fires was 5 years. The power spectrum yielded a period of 6.0 years,
while the least-squares nonlinear fitting yielded a period of 6.1 years. The trend gradient
for savanna fires was −0.0027 with a p-value of 0.0000. This means that the burnt savanna
area is decreasing at a rate of ∼26,000 km2 per annum. The forests yielded a trend of
0.0018 at a p-value of 0.023, while the nonlinear regression of the detrended series and
power spectrum gave periods of 5.26 and 5.99 years, respectively. Thus, the burnt forest
area is increasing at a rate of ∼5000 km2 per annum. The shrublands gave an otherwise
insignificant trend of −0.0004. There were no significant periods for shrublands, with the
autocorrelation function showing no noticeable peak, while the power spectrum gave
3 and 12 years. The grasslands also showed a trend of −0.0008 with a p-value of 0.1.
This corresponds to a decrease in burnt area of ∼2800 km2 per annum. Graphs of the
corresponding autocorrelation function gave periods of 2 and 8 years, while the power
spectrum gave a period of 2.3 years. Nonlinear regression gave a return time of 6.1 years.
Lastly, croplands showed a negative trend, while others showed no trend. Moreover,
croplands yielded return times of 5 and 8 years via the autocorrelation function, while
nonlinear regression gave a 6.4-year period. Other vegetation types gave a period of 4 years
via the power spectrum and autocorrelation function, while nonlinear regression gave a
period of 6.5 years. The linear trend for other vegetation types was zero at a significance
level of 2%.
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Figure 7. Graphs of the power spectrum as a function of frequency and autocorrelation versus lag
time applied to the time series of the proportion of the burnt area for different vegetation types over
all sub-Saharan Africa.

3.3. Northern Sub-Saharan Africa: Vegetation-Specific

Savannas, grasslands, and croplands yielded linear gradient trends of−0.0048,−0.0007,
and −0.0022 for the proportion of the burnt area that were all significant at 5% level. These
trends correspond to decreases in the burnt area of 17,500, 1400, and 6300 km2 per annum
for savannas, grasslands, and croplands, respectively. The forests showed an increasing
linear gradient trend of 0.0002, with a p-value of 0.0104. Graphs of the power spectrum
and autocorrelation for vegetation classes in northern sub-Saharan Africa are shown in
PFigures 8 and 9, respectively. The period for the forests was 5 years via the autocorre-
lation function, 4 years via the power spectrum, and 4.73 years via nonlinear regression.
Savanna fires showed a period of 5 years via both the autocorrelation function and non-
linear regression. Similarly, shrublands showed return times of around 5 years via both
the autocorrelation function and nonlinear regression. On the basis of the autocorrelation
function, grasslands yielded periods of 2.5 and 8 years, and nonlinear regression gave a
period of 6.5 years. Croplands gave 4 years via both the autocorrelation function and power
spectrum. Nonlinear regression gave a period of 5.9 for croplands.
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Figure 8. Graphs of the power spectrum as a function of frequency applied to the time series of the
proportion of the burnt area for different vegetation types in (left) southern-hemisphere Africa and
(right) northern sub-Saharan Africa.
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Figure 9. Graphs of autocorrelation as a function of the time lag applied to the time series of the
proportion of the burnt area for different vegetation types in (left) southern-hemisphere Africa and
(right) northern sub-Saharan Africa.

3.4. Southern Hemisphere Africa: Vegetation-Specific

In southern-hemisphere Africa, significant nonzero linear trends were shown only
for savanna and grasslands at values of −0.0015 and −0.0011, respectively. These trend
values correspond to decreases in the burnt area of approximately 9200 and 700 km2

per annum for savannas and grasslands, respectively. Shrublands, forests, and other
vegetation classes gave nonsignificant/nonzero trends. For the assessment of underlying
oscillations, relevant graphs are shown in Figures 8 and 9. Savannas yielded a period
of 5 years via the autocorrelation function. The nonlinear fit and power spectrum gave
wildly different periods of 7.17 and 2.4 years, respectively. Forests yielded wildly different
periods of 3, 5, 8, and 10 via the autocorrelation function. The nonlinear regression via least
squares gave a period of 5.13 years, while the power spectrum gave a period of 3 years.
For such a short dataset, we consider the longer periods less justifiable and took them to be
numerical artefacts.

4. Discussion

In this paper, we considered the proportion of the burnt area in sub-Saharan Africa
over two decades spanning from 2001 to 2020. At the continental scale, the observed
significant declines in the proportions of the total burnt area were consistent with the
recent results in [47], whose computations were based on the total burnt area during the
period from 1998 to 2015. Assessing global trends, the authors found a blend of increasing
trends in some regions and decreasing trends in others, with areas with declining trends
outnumbering those with increasing trends. For tropical savannas and grasslands, they
found strong contrasting trends in northern sub-Saharan Africa and southern-hemisphere
Africa. Declining trends were found in the north and increasing trends in the south. In our
analysis, in addition to considering all sub-Saharan Africa, we split it into two regions:
north and south of the equator.

Over the whole of sub-Saharan Africa, we found a significant declining trend of
the proportion of the burnt area, with all vegetation types pooled together. Similar re-
sults were found for pooled vegetation types north and south of the equator. Turning
to specific vegetation types over all sub-Saharan Africa, we found savannas, grasslands,
and croplands to have significantly declining trends over the two decades, while forests
showed a significant increasing trend. The negative trends shown by croplands might be
expected if farming is reduced in response to a reduction in rainfall or if other management
techniques are adopted. Some small-scale farming may exist within the primary areas of
fire occurrence, which farming might be undetectable using the current MODIS spatial
resolution (500 m). Moreover, more than 95% of land in savannas is used as rangeland,
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with cropland being less than 5%. In northern sub-Saharan Africa, savannas, grasslands,
and croplands showed significantly declining trends, while forests yielded no significant
trend. In southern-hemisphere Africa, only savannas and grasslands yielded significantly
declining trends, while shrublands and forests gave no significant trends. These results
indicate that the main drivers of the declining trend at the continental scale are savannas
and grasslands. Results for central Africa were presented in [48], finding declining trends
for grasslands and savannas. The results here were at the continental scale, including north
and south of the equator.

The aforementioned trends were observed within overriding oscillations. The periods
of the oscillations were found using alternative approaches, all of which yielded similar
values. The period of oscillation was between 4 and 6 years. This agrees with the theoretical
values found in [49], whose nonlinear, dynamic model yielded oscillations of a period of
around 4 years. Empirical results based on satellite data for California found cyclic patterns
of a period from 5 to 7 years [42], of which the results are comparable to those of this
paper, albeit for a different geographical region. The observed cycles are for aggregated
information, are much more pronounced at the continental scale, and are less pronounced
for specific vegetation classes and at subcontinental scales. However, the per-tree mean fire
return interval can be as high as 17 years [50], while savannas and grasslands fire return
intervals can be far less. For instance, the authors in [51] found savanna return intervals at
Kruger National Park in South Africa between 5.6 and 7.3 years. These values are consistent
with cycle periods in this paper, and affirm that the trends and overriding cycles observed
here are largely driven by the savannas.

Understanding fire trends and their cyclic nature is an important step towards fire
management. It is a necessary step towards developing fire models capable of predicting
fire outbreaks at relevant spatial scales. In order to build such predictive models, one can
explore and exploit teleconnections. Teleconnections were found between fires in different
parts of Earth and the El Nino-Southern Oscillations (ENSO) [50,52]. While ENSO is used
to predict terrestrial precipitation, the relationship between fires and precipitation can be
complex. In particular, fires can increase or decline due to a decrease in precipitation [52].

5. Conclusions

Fires over sub-Saharan Africa show a significantly decreasing trend in an oscillatory
fashion. The most dominant period (or recurrence time) of the oscillations is approximately
5 years; it is most pronounced at the aggregated scale, and less pronounced for individual
vegetation types. The decreasing oscillatory trend appears to be collectively driven by
savannas, grasslands, and croplands, and the found period is consistent with the fire return
intervals for these specific vegetation types. This pattern of decreasing fires can be viewed
to be in accordance with climatic projections that expect precipitation to decline. Less
rainfall is correlated with a decrease in biomass, thus accounting for the decline in the
proportion of the burnt area. Furthermore, declining precipitation may be linked to a
reduction in lightning strikes, which are a contributor to some of the rangeland fires.
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