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Abstract: With the frequent occurrence of extreme climates around the world, the frequency of
regional wildfires is also on the rise, which poses a serious threat to the safety of human life, property,
and regional ecosystems. To investigate the role of extreme climates in the occurrence and spread of
wildfires, we combined precipitation, evapotranspiration, soil moisture (SM), maximum temperature
(MT), relative humidity, plant canopy water, vapor pressure deficit, and a combined hydrological
drought index based on six Gravity Recovery and Climate Experiment (GRACE) and its follow-
on (GRACE-FO) products to study the relationship between climate change and wildfires across
Australia between 2003 and 2020. The results show that Australia’s wildfires are mainly concentrated
in the northern region, with a small number being distributed along the southeastern coast. The
high burned months are September (2.5941 × 106 ha), October (4.9939 × 106 ha), and November
(3.8781 × 106 ha), while the years with a larger burned area are 2011 (79.95 × 106 ha) and 2012
(78.33 × 106 ha) during the study period. On a seasonal scale, the terrestrial water storage change
and the hydrometeorological factors have the strong correlations with burned area, while for only the
drought index, SM and MT are strongly related to burned area on an interannual scale. By comparing
the data between the high burned and normal years, the impact of droughts on wildfires is achieved
through two aspects: (1) the creation of a dry atmospheric environment, and (2) the accumulation of
natural combustibles. Extreme climates affect wildfires through the occurrence of droughts. Among
them, the El Niño–Southern Oscillation has the greatest impact on drought in Australia, followed by
the Pacific Decadal Oscillation and the Indian Ocean Dipole (correlation coefficients are −0.33, −0.31,
and −0.23, respectively), but there is little difference among the three. The proposed hydrological
drought index in our study has the potential to provide an early warning of regional wildfires.
Our results have a certain reference significance for comprehensively understanding the impact
mechanism of extreme climates on regional wildfires and for establishing an early warning system
for regional wildfires.

Keywords: GRACE/GRACE-FO; wildfires; extreme climate; Australia; droughts

1. Introduction

Wildfire is a devastating natural disaster. Due to global warming, the likelihood of
extreme weather has increased, and continuous high local temperature and drought have
greatly increased the risk of wildfires [1]. Australia is one of the most fire-prone regions in
the world, and its wildfire situation is complex [2,3]. The 2019/2020 Australian wildfire
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is believed to be the largest wildfire in the Australian history, which resulted in serious
socioeconomic, environmental, and ecological impacts [4]. The direct consequence of this
wildfire was the loss of 33 lives, the destruction of over 3000 houses, and more than 800
hectares of burned land [5]. The heavy smoke released by the wildfire lasted for several
weeks, covering many major cities in Australia and bringing adverse effects on people’s
health [6]. The long-term impacts on the local environment and ecology are difficult to
measure. This wildfire generated a heated debate on the impact of climate change on
wildfire risk. Scientific studies indicate that climate change does raise the risk of wildfires
in Australia and the rest of the world [7–9]. Therefore, discussing and analyzing the role of
climate change in wildfires is helpful to understand the formation mechanism of wildfires
and to realize the early warning of regional wildfires.

The effects of climate change on wildfire are reflected on different time scales. On
the long-term scale, climate change will alter regional climate, resulting in a trend of local
aridification, which will lead to the changes in local vegetation types; on the short-term
scale, drastic changes in climate factors will create environmental conditions that are prone
to wildfires and provide sufficient combustibles for wildfires [10]. The scientific research
demonstrating the probability of wildfires shows an increasing trend in several regions
around the globe. This trend may be due to climate change [11]. Williams et al. [12] quanti-
fied the possible impact of climate change on wildfires based on the weather changes during
Australian wildfires and the McArthur Forest Fire Danger Index, and the investigation
showed that global warming does have a significant impact on the rising risk of wildfires
in Australia. Westerling et al. [13] revealed the response of wildfires to climate change
based on the gridded monthly fire-and-burned-area dataset from the U.S. Forest Service,
the Bureau of Land Management, the National Park Service, and the Bureau of Indian
Fire. Liu et al. [14] indicated that global wildfire risk is on the rise due to greenhouse effect
according to the General Circulation Models. Researchers have usually analyzed the rela-
tionship between wildfires and hydroclimate changes mainly by observing and studying
the abnormal signals in hydrometeorological variances before and during wildfires. Most
wildfires are preceded by high temperatures, low relative humidity, and strong winds, and
these factors are conducive to the occurrence and spread of wildfires [15–17]; this view
has become the consensus. In addition to creating an external environment conducive to
wildfires, climate change can also provide sufficient fuel for wildfires by affecting plant
production [18–20]. Soil moisture (SM) has an important impact on the water content in
vegetation. Long-duration droughts cause severe SM deficit, decrease vegetation moisture,
and increase the number of combustibles [21]. Chaparro et al. [22] used SM as a key indica-
tor to measure the impact of climate change on wildfires and combined it with temperature
data to predict wildfires in the Iberian Peninsula. Krueger et al. [23] pointed out that SM
is closely related to the probability of wildfires in Oklahoma, USA, and this impact has
a significant seasonality. Jensen et al. [24] demonstrated that there is a strong correlation
between SM and wildfires in the United States, and this result can be used to assess the
likelihood of wildfire occurrence.

From the above analysis, we can see that hydrological variances have a close rela-
tionship with the occurrence and spread of wildfires. Although ground meteorological
stations can collect high-precision point data, they suffer from insufficient coverage and
uneven distribution, especially in sparsely populated regions. Therefore, they cannot meet
the needs of large-scale regional research [25,26]. Remote sensing technology can obtain
high-resolution gridded data in a large-scale region, but it is limited to surface water and
shallow SM [27]. Therefore, we urgently need a new technique that can monitor all types
of terrestrial water storage change (TWSC) for a comprehensive assessment of the impact
of climate change on terrestrial hydrology.

The Gravity Recovery and Climate Experiment (GRACE) mission, which has been
implemented since 2002, can collect high-precision Earth’s time-variance gravity field infor-
mation. This information can be translated into the total TWSC [28]. Therefore, the GRACE
data have unique advantages in assessing local hydrological conditions. Many scholars
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have applied the GRACE solutions to detect and quantify regional hydrological drought,
for example, in the Amazon River basin [29,30], southwest China [31], Australia [32], and
United States [33]. Due to the great success of the GRACE mission, its follow-on (GRACE-
FO) satellites were launched in May 2018. So far, these two missions have provided nearly
20 years of observational data, which facilitates the study of the long-term changes of
regional climate and hydrology. Some scholars have begun to use the GRACE data to
discuss the connection between hydroclimate variances and regional wildfires. Chen
et al. [34] applied the GRACE TWSC data to study the climate and hydrological anomalies
before and during wildfires in the Amazon River basin from 2002 to 2011. The results
suggested that the GRACE TWSC data hold the potential for wildfire forecasting in the
basin. Jensen et al. [24] estimated the monthly SM data based on the GRACE observations
in the United States during the period between 2003 and 2013, compared them with the
wildfire data of the same period, and found that the wet and dry states of soil have a
significant correlation with wildfire risk. Farahmand et al. [35] used the SM data derived
from the GRACE satellites and vapor pressure deficit (VPD) from the Atmospheric Infrared
Sounder mission to predict fire-prone months and regions and explained that the hydro-
logical information plays a very important role in improving early warning predictions of
wildfire. Cui et al. [36] evaluated the abnormal changes in various hydroclimatic factors
based on the GRACE TWSC data before forest fires in Yunnan, Southwest China, during
the period between 2003 and 2016. The results indicated that the GRACE TWSC data are
more sensitive to the hydrological environment before a forest fire than the PPT. However,
the above studies only used the GRACE data and did not combine the GRACE and the
GRACE-FO data to form a longer-time series of observations for monitoring and discussing
the hydroclimate conditions before and during wildfires. Compared to the TWSC, the
drought index can better reflect the wet and dry conditions of a region [37]. However, to
best of our knowledge, there is currently no literature focusing on the connection between
the GRACE/GRACE-FO-based drought index (GRACE-DSI) and regional wildfires.

Therefore, our research goal is to combine six GRACE and GRACE-FO solutions to
construct a 19-year drought index time series, and this drought index time series is used to
study the connection between extreme climates and wildfires.

2. Study Area

Australia is located in the Oceania, and its area is 7.69 million km2 (Figure 1). It is
the smallest one among the six continents in the world. There are a variety of climate
conditions spread across Mainland Australia, ranging from humid tropical condition to dry
temperate continental condition [38]. Australia has a hot and dry climate and a flat terrain.
The daily average minimum temperature is 280.15 K, the maximum temperature is 288.15
K, and the average annual PPT is 355 mm. There are many hills and few mountains, and the
three species mainly belong to eucalyptus, which contains a lot of oil. It is affected by many
factors. Australia is one of the regions that are most prone to forest fires in the world. Due
to less precipitation (PPT), severe drought events are more prone to occur in Australia. The
climate over Australia is more susceptible to the changes in the temperature and pressure
of the surrounding oceans. Therefore, the influences of the El Niño–Southern Oscillation
(ENSO) and the Indian Ocean Dipole (IOD) on Australia are very significant [39].
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land surface temperature, sea surface temperature, and climate index data by using prin-
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3. Data and Method
3.1. Data
3.1.1. GRACE/GRACE-FO Data

The GRACE/GRACE-FO RL06 spherical harmonic (SH) solutions, which are used
to estimate the monthly gridded TWSC data, are from the Center for Space Research at
the University of Texas at Austin (CSR), the Helmholtz Centre Potsdam–German Research
Centre for Geosciences (GFZ), the Jet Propulsion Laboratory (JPL), and the Institute of
Geodesy at the Graz University of Technology (ITSG), respectively. We need to preprocess
the SH solutions to improve the accuracy of the gridded TWSC data. Firstly, the degree-1
and C20 coefficients of the SH solutions were replaced with the results from Swenson
et al. [40], and the C20 coefficients were estimated by using satellite laser ranging [41].
Then, the combined filtering (300 km Gaussian filter and P3M6 polynomial filter) was used
to weaken the influence of high-frequency and correlated errors in the SH solutions [42].
Finally, we used the scale factor approach to restore the lost signals due to order truncation
and filter smoothing [43]. Aside from the SH solutions, we could also extract the monthly
gridded TWSC data directly from the Mascon solutions without any additional data
processing. The Mascon solutions were provided by the CSR and the JPL for our study.
Therefore, we used the four SH solutions and two Mascon solutions to estimate the monthly
TWSC gridded data in Mainland Australia from January 2003 to December 2020. Because
the GRACE and GRACE-FO data are the same type of data, we unified the GRACE and
GRACE-FO data as the GRACE data. For convenience, the four GRACE SH solutions and
the two Mascon solutions were termed as CSR-SH, GFZ-SH, JPL-SH, ITSG-SH, CSR-M,
and JPL-M.

Due to an 11-month data gap between the GRACE and GRACE-FO missions, we used
the reconstructed TWSC data to fill this gap. The data were estimated based on PPT, land
surface temperature, sea surface temperature, and climate index data by using principal
component analysis, least squares regression, and multiple linear regression methods. The
specific technical details of the PCA-LS-MLR method can be found in Li et al. [44].

3.1.2. Burned Area Data

The monthly burned-area gridded data from the Climate Change Initiative project
of the European Space Agency are based on surface reflectance in the near infrared band
obtained from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument
on board of the Terra satellite, as well as active fire information from the same sensor of
the Terra and Aqua satellites [45,46]. The gridded data with a spatial resolution of 0.25◦

include the sum of the burned area, the standard error, the fraction of the burned area, the
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fraction of the observed area, the number of patches, and the sum of the burned area for
each land cover class.

3.1.3. In Situ Climate Data

In our study, we obtained the PPT, maximum temperature (MT), relative humidity
(RH), and VPD gridded data from the Scientific Information for Land Owners (SILO). This
dataset mainly includes Australian climate data from 1889 to the present, which provides
daily datasets for a range of climate variances. The SILO products include the station time
series and spatial gridded data, which are based on the observation data from the Bureau
of Meteorology database. For point data, interpolated or derived values are used where
observations are missing. The gridded data are spatially interpolated from the observations.
Since the temporal resolution of the data in our study is monthly, we averaged the SILO
products on a monthly basis to maintain uniformity.

3.1.4. Other Hydrometeorological Data

The ET gridded data, with a spatial resolution of 0.25◦ × 0.25◦, were obtained from the
Global Land Evaporation Amsterdam Model (GLEAM) v3.6a. The GLEAM v3.6a provides
various components of land evaporation, including open-water evaporation, bared-soil
evaporation, transpiration, interception loss, sublimation, potential evaporation, surface
and root-zone soil moisture, and evaporative stress conditions [47,48]. The SM and plant
canopy water (PCW) gridded data were obtained from the Global Land Data Assimilation
System (GLDAS) 2.1 model. This model is a hydrological model generated by the Goddard
Space Flight Center at the National Aeronautics and Space Administration and the National
Center for Environmental Prediction at the National Oceanic and Atmospheric [49]. The
monthly SM data with a spatial resolution of 1◦ × 1◦ provide the sum of these 4-layer SM
data in the model. In our study, the monthly ET, SM, and PCW data are from 2003 to 2020.

3.1.5. Standardized Precipitation Evapotranspiration Index Data

The Standardized Precipitation Evapotranspiration Index (SPEI) is estimated based on
the cumulative sum of difference between PPT and potential ET on different time scales,
which calculation approach is the same as the Standardized Precipitation Index (SPI) [50].
The SPEI has three different time scales: 3 months, 6 months, and 12 months. The 3-month
scale is associated with variations in soil moisture and represents agricultural drought;
the 6-month scale is associated with variations in streamflow and represents hydrological
drought; and the 12-month scale is associated with variations in groundwater storage and
represents hydrogeological drought [51]. The monthly SPEI gridded data span the period
from January 2003 to December 2018, which spatial resolution is 1◦ × 1◦ in our study.

3.1.6. Extreme Climate Index Data

The ENSO, the Pacific Decadal Oscillation (POD), and the IOD are extreme climate
phenomena caused by an anomaly in sea surface temperature difference in the Pacific and
Indian Oceans, respectively [52–54]. Since Australia is sandwiched between the Pacific and
Indian Oceans, it is significantly affected by ENSO, the POD, and the IOD. Therefore, we
must consider the impact of the ENSO and the IOD on wildfires in Mainland Australia. The
monthly ENSO, POD, and Indian Ocean Dipole Mode Index (DMI) was provided by the
National Oceanic and Atmospheric Administration. The DMI is defined as the difference in
the average sea surface temperature anomaly between the Tropical Western Indian Ocean
and the Equatorial Southeast Indian Ocean [55]. The above index data in our study are
from 2003 to 2020.

3.2. Method
3.2.1. Data Fusion

Due to the discrepancies in the GRACE solutions from different institutions, it may
lead to inconsistent TWSC results, which can adversely affect our results [56]. Therefore,
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we applied the generalized three-cornered hat (GTCH) and least squares method to fuse the
TWSC results from the six GRACE solutions to improve the reliability of our results. Among
them, the GTCH method was used to determine the uncertainties of different GRACE
solutions, which advantage is that it does not need any prior information [57,58]. The
technical details about the GTCH method can be found in Long et al. [59] and Cui et al. [36].

We fused the TWSC results from the six GRACE solutions by using the least squares
method. The expression is as follows:

X =
N

∑
i=1

pi•Xi(i = 1, 2, · · · , N) (1)

where X is the fused result, Xi is the ith dataset, and pi is the corresponding weight. The
weights are estimated based on the relative variances of each dataset:

pi =
1/σii

N
∑

n=1
1/σnn

(2)

where σii(i = 1, 2, · · · , N) is the relative variance of the ith dataset derived from the GTCH
method. In our study, the different datasets on each grid point were fused.

3.2.2. GRACE-DSI

To obtain the GRACE-DSI data, the time series of the GRACE TWSC results were
standardized [60].

GRACE− DSIi,j =
TWSCi,j − TWSCmean

j

σj
(3)

where TWSCi,j is TWSC in the i year j month. TWSCmean
j and σi are the average and

standard deviation of TWSC in j month, respectively. The missing data in the time series of
the GRACE TWSC results were filled based on the cubic spline interpolation. The drought
events can be classified according to the GRACE-DSI value (Table 1) [31,61].

Table 1. GRACE-DSI drought grade classification.

Type GRACE-DSI Type GRACE-DSI

Exceptional Drought ≤ −2.0 Moderate Drought −1.3~−0.8
Extreme Drought −2.0~−1.6 Light Drought −0.8~−0.5
Severe Drought −1.6~−1.3 No Drought ≥ −0.5

3.2.3. Composite Analysis

In climate change research, composite analysis is used to determine the significant
characteristics of special years. In our study, the time series of burned area was standardized.
Then, the special years were fixed according to the rule of greater than 0.5 times or less than
0.5 times of the standard deviation based on the standardized time series of burned area,
which were marked as high- or low-fire years, respectively. We can compare the average of
meteorological and hydrological variances during these special years with the ones of all
years to discuss the performance of these variances during high- and low-fire years.

3.2.4. The Correlation Analysis and Delay Months

In hydrology research, the response between two climatic variances is not immediate
and usually delayed for a certain period of time. Therefore, to discuss the relationship
between two climatic variances, we do not calculate their correlation coefficient (CC), but
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the maximum CC and delay months. There are two independent time series, x1 and x2,
and the expressions of their CC ρ(τ) and delay months τ are as follows [62,63]:

ρ(τ) =
σ12(τ)√

σ11σ12
(4)

where σ11 and σ22 are the variances of x1 and x2, respectively, and σ12 is the covariance of
x1 and x2. When |ρ(τ)| is maximum (|ρ(τ)| ≤ 1), τ is the corresponding delay months
(|τ| ≤ 12).

3.2.5. Nash–Sutcliffe Efficiency (NSE)

The Nash–Sutcliffe coefficient [64] has been widely applied to evaluate the perfor-
mance of simulated time series against observation series in hydrology research. The
specific expressions can be found in Ref. [65]. Xmean is the mean value of the observa-
tion series, and n is the number of observations. The value range NSE is from −∞ to 1.
NSE = 1 means that the two-time series fits perfectly; 0 < NSE ≤ 1 suggests that the
performance of the simulated series is acceptable; and NSE ≤ 0 explains that the simulated
series is worse [66]. In this study, we used the NSE as an indicator to evaluate the rela-
tionship between the GRACE-DSI (observation series) and the traditional drought indices
(simulated series).

3.2.6. Standard Precipitation Index (SPI)

The SPI is a meteorological drought index, which is based on long-term PPT observa-
tions and is used to characterize the probability of PPT over a period of time [67]. The SPI
is widely used in regional drought monitoring due to its simple calculation and reliable
results. The probability density function of gamma distribution for long-term PPT data is
first calculated and then converted to a normal distribution to have a SPI mean value at 0.
The specific expressions can be found in Ref. [68]. According to different research purposes,
the SPI of different time scales can be calculated. The SPI-3, SPI-6, and SPI-12 represent
meteorological drought, agricultural drought, and hydrological drought, respectively.

4. Results
4.1. GRACE-DSI Construction

Figure 2 shows the spatial distribution of uncertainties in the TWSC results from the six
GRACE solutions in Australia. All the results related to uncertainties show a similar spatial
distribution, that is, larger uncertainties are mainly concentrated in northern Australia. In
this region, the uncertainties of the SH solutions (less than 4 cm) are smaller than those of
the Mascon solutions (between 5 cm and 8 cm). The JPL-SH and the ITSG-SH show larger
uncertainties (4~4.5 cm) than the CSR-SH and the GFZ-SH, while the red region (greater
than 6.5 cm) in Figure 2f (JPL-M) is larger than the one in Figure 2e (CSR-M). We sorted
the grid value of uncertainties in the six TWSC results in Australia in ascending order and
applied the median one to represent the overall uncertainty level of these TWSC results.
According to the ascending order of uncertainties in the TWSC results, the arrangement
of the six GRACE solutions is the CSR-SH (17.5668 mm), the ITSG-SH (18.2371 mm), the
GFZ-SH (19.7522 mm), the JPL-SH (19.9046 mm), the CSR-M (21.1316 mm), and the JPL-M
(26.2787 mm).
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To improve the accuracy of the TWSC results, we fused the TWSC results from the
six GRACE solutions. The spatial distribution map of uncertainties in the fused results is
plotted in Figure 3. All the uncertainties are less than 3 cm in the study region, and the
maximum value appears in north Australia (greater than 2 cm). When comparing Figures 2
and 3, the uncertainties in the fused results are significantly smaller than those of any single
solution. In addition, the level of uncertainties in the fused results (9.4597 mm) is much
smaller than those of the six GRACE solutions.
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We compared the time series of the TWSC results to the six GRACE solutions and the
fused results in Australia during the period between 2003 and 2020 (Figure 4). These time
series have significant seasonal variation and the same change trend. The fused results
have the greatest correlation coefficient with the CSR-SH (0.9824), followed by the ITSG-SH
(0.9786), the GFZ-SH (0.9778), the JPL-SH (0.9775), the CSR-M (0.9722), and the JPL-M
(0.9716). This indicates that the fused results have a good consistency with the TWSC
results from the six single solutions. When comparing Figures 3 and 4, the fused TWSC
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results can better ensure the reliability of our study. Thus, we used them to construct the
GRACE-DSI. Figure 5 shows the time series of the GRACE-DSI and the traditional drought
indices (SPEI-3, SPEI-6, SPEI-12, SPI-3, SPI-6, and SPI-12). The seven drought indices have
a similar change trend. Except for the SPEI-3, the GRACE-DSI has a strong correlation
with the other five drought indices (the correlation coefficients are greater than 0.5). The
GRACE-DSI has the strongest correlation coefficient with the SPI-12 (0.74), followed by the
SPEI-12 (0.68), the SPI-6 (0.65), the SPEI-6 (0.54), the SPI-3 (0.52), and the SPEI-3 (0.40). In
addition, the NSEs between the GRACE-DSI and the SPEI-3, the SPEI-6, the SPEI-12, the
SPI-3, the SPI-6, and the SPI-12 are 0.01, 0.17, 0.32, 0.07, 0.30, and 0.49, respectively, which
indicates that the GRACE-DSI is within the acceptable range. The above results explain
that the GRACE-DSI can be applied to monitor droughts in Australia.
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4.2. Spatiotemporal Distribution of Burned Area

Figure 6 shows the spatial distribution of monthly average burned area from 2003
to 2020 in Australia. In terms of spatial distribution, wildfires in Australia are mainly
concentrated in the northern region, and there are small wildfires in the southeast region.
In terms of temporal distribution, the minimum burned area occurs in autumn (March, 6.94
million ha). From March onwards, the burned area gradually increases until October. The
burned area hits the largest peak in October (spring, 152.33 million ha). Subsequently, the
burned area begins to gradually decrease from October to March. According to Figure 7,
the year with the largest burned area is 2011 (78.95 million ha), followed by 2012 (78.33
million ha), while the year with the smallest one is 2010 (18.33 million ha), followed by 2020
(18.40 million ha). According to the composite analysis (Section 3.2.3), the high burned
years are 2004, 2006, 2011, and 2012, respectively, while the low burned years are 2003, 2005,
2008, 2010, 2013, 2016, 2019, and 2020 (Figure 8).
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Figure 7. Interannual variation of burned area in Australia during 2003–2020. The annual data are
obtained by accumulating the monthly data in the year.
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4.3. The Connection between Hydrometeorological Factors and Wildfires
4.3.1. On a Seasonal Scale

The seasonal variation in burned area, TWSC, and the seven hydrometeorological
factors in Australia during 2003–2020 were calculated by subtracting the average of the
corresponding months for all years from the data for each month (Figure 9). It shows that
TWSC, burned area, and hydrometeorological factors have significant seasonal change. In
Figure 9a, both the maximum of TWSC (3.4 cm) and the minimum of burned area (−3.08 ×
10−6 ha) appear in March, while the minimum of TWSC occurs in November (−1.2 cm),
which is only one month away from the month of maximum of burned area (4.99 × 10−6

ha, October). Additionally, TWSC shows a strong negative correlation (CC = −0.76) with
burned area. The maximum and minimum of PPT appear in January (5.4 cm) and August
(−2.4 cm), respectively (Figure 9b). It shows that PPT has a two-month delay with burned
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area (CC = −0.74). ET has a similar seasonal distribution to PPT (Figure 9c), that is, the
maximum and minimum values occur in January (2.2 cm) and July (−1.5 cm), respectively.
This is attributed to the fact that water consumed by ET mainly comes from PPT. The
response of the burned area to ET lags by two months, and its CC is −0.70. In Figure 9d,
when RH is positive, the burned area is negative, and vice versa. This suggests that low
RH promotes the occurrence of wildfire (CC = −0.77). When comparing Figure 9e,f, VPD
and MT have the same seasonal change, that is, the maximum and minimum values occur
in January (summer) and June (winter), which is consistent with the seasonal distribution
in Australia. However, VPD and MT have no significant relationship with burned area on
a seasonal scale. When comparing Figure 10a,g, SM and TWSC share the same seasonal
change, that is, the maximum and minimum values appear in March and November.
However, SM has a stronger correlation (CC = −0.89) with burned area than TWSC. In
Figure 9h, the maximum and minimum of PCW appear in January (2.93 × 10−3 cm) and
September (−1.60 × 10−3 cm), respectively. In addition, the CC between PCW and burned
area is −0.82, and the response of burned area to PCW is one month.
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According to the above results, a complete interaction process between TWSC, hy-
drometeorological factors, and wildfire in Australia is demonstrated on a seasonal scale.
From January (summer) onwards, PPT and MT begin to decrease or drop from their peaks
(PPT and MT, CC = 0.83), which leads to the weakening of ET and the decrease in PCW
(PPT and ET, CC = 0.95; PPT and PCW, CC = 0.98; and MT and ET, CC = 0.94). However,
due to the replenishment of SM, the decline rate of PCW is not as fast as that of PPT (SM
and PCW, CC = 0.77). Although ET weakens, it continues to inject water vapor into the air,
which causes a decrease in VPD (ET and VPD, CC = 0.86). With PPT continuing to decline,
so do TWSC and SM after peaking in March. At this time, the burned area reaches the
minimum. From June onwards, with TM at its bottom and continuing to grow, RH and
VPD reach the maximum and minimum, respectively, which indicates that air moisture
reaches its peak (TM and RH, CC = −0.41; VPD and TM, CC = 0.98). This leads to a small
increase in PCW. At this time, air moisture begins to decrease (a decrease in RH and an
increase in VPD). However, SM begins to decrease and air moisture continues to decline
(RH and SM, CC = 0.77). The difficulty of obtaining water for vegetation increases, and
PCW shows a downward trend. From September onwards, TWSC, SM, PCW, and RH
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successively reach the minimum, and VPD also reaches the maximum. The reduction in SM
and air moisture creates a powerful external environment for wildfire to occur (burned area
and RH, CC = −0.77), and the reduction in PCW provides a large number of combustibles
for wildfire (burned area and PCW, CC = −0.65). Therefore, from August onwards, the
burned area begins to increase. In October, the burned area reaches its peak. With the
increase in PPT from September onwards, the external environment begins to change from
dry to wet, and PCW increases, which causes a decrease in the burned area. This continues
until January of the following year when a new cycle begins.

4.3.2. On an Interannual Scale

Figure 10 shows the interannual variation of the GRACE-DSI and the anomaly of
burned area and hydrometeorological factors in Australia during 2003~2020. Among
the GRACE-DSI and the seven hydrometeorological factors, burned area is only strongly
correlated with the GRACE-DSI (0.66), MT (−0.72), and SM (0.62). It shows that the GRACE-
DSI has a closer relationship with burned area in Australia than PPT (0.22). In addition, SM
has a strong correlation with burned area, which is due to the close connection between SM
and RH, and between VPD and PCW. On an interannual scale, the GRACE-DSI is more
sensitive to climate change before a wildfire in Australia.

4.3.3. Performance of GRACE-DSI and Hydrometeorological Factors before Wildfire

From the previous analysis, there are strong relationships between the GRACE-DSI,
the hydrometeorological factors, and burned area, and these relationships have certain
time delay. It shows that climate change begins to play a role before a wildfire, and when
this effect accumulates to a certain extent, it leads to a wildfire. We averaged the monthly
GRACE-DSI, burned area, and hydrometeorological factors for a high burned year and its
previous year (blue line in Figure 11). Before the abnormal high burned year, the GRACE-
DSI and hydrometeorological factors all experience abnormal change. In Figure 11i, the
burned area shows an upward trend that is significantly larger than the average level
(green line), starting from July and continuing until October. ET and PPT show significant
downward trends starting in February and March, respectively, and these trends continued
until October. The GRACE-DSI shows a decreasing trend in May, which continues until
December. With PPT and ET changing significantly, there are also significant changes in SM,
VPD, RH, and PCW since March. Among them, the trends of SM, RH, PCW (decreasing),
and VPD (increasing) are just opposite to each other.

Table 2 shows the maximum correlation coefficients and lag months between the
GRACE-DSI, burned area, and hydrometeorological factors during the high burned years
and the average level. The impact of climate change on wildfire in Australia shows a clear
path. A reduction in PPT has a greater impact on SM (CC = 0.67), and the continuous
accumulation of this impact leads to terrestrial water deficit (TWD), which leads to drought
(PPT and GRACE-DSI, CC = 0.52; SM and GRACE-DSI, CC = 0.86). Drought may reduce
ET (GRACE-DSI and ET, CC = 0.90), thereby reducing atmospheric water vapor (ET
and VPD, CC = −0.92; ET and RH, CC = 0.82). Figure 11e,f show that there are clear
decrease and increase in RH and VPD during the high burned years. Insufficient moisture
in the air is conducive to the occurrence and spread of wildfire (burned area and RH,
CC =−0.62; burned area and VPD, CC = 0.59) [17]. On the other hand, a SM deficit changes
the PCW [69], causing the vegetation to become abnormally dry and, thus, preparing
sufficient combustible materials for the occurrence and spread of wildfire (SM and PCW,
CC = 0.67; PCW and burned area, CC = −0.59). A high MT speeds up the above process
(MT and burned area, CC = 0.73).
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Table 2. The maximum correlation coefficients and lag months between different variables in high
burned years and the average level shown in Figure 11 (The correlation coefficient results have passed
the 95% confidence level).

Variables
Correlation Coefficients Lag Months

High Burned Year Average Level High Burned Year Average Level

PPT vs. GRACE-DSI 0.52 0.50 4 1
ET vs. GRACE-DSI 0.90 0.52 4 2

GRACE-DSI vs.
Burned Area −0.50 −0.32 4 2

PPT vs. SM 0.67 0.50 1 1
ET vs. SM 0.87 0.81 2 4

GRACE-DSI vs. SM 0.86 0.71 1 2
ET vs. VPD −0.92 −0.51 0 4
ET vs. RH 0.82 0.79 0 4

SM vs. PCW 0.67 0.62 0 1
GRACE-DSI vs. VPD −0.83 −0.46 4 2
GRACE-DSI vs. RH 0.65 0.49 4 1

GRACE-DSI vs. PCW 0.50 0.49 4 2
GRACE-DSI vs. MT −0.61 −0.36 0 2

VPD vs. Burned Area 0.59 0.74 1 3
RH vs. Burned Area −0.62 −0.51 1 3

PCW vs. Burned Area −0.59 −0.58 1 3
MT vs. Burned Area 0.73 0.10 4 3

When comparing the performance of the GRACE-DSI and the hydrometeorological
factors during the high burned years and the average level (Figure 11 and Table 1), the
burned area has a stronger correlation with the GRACE-DSI, RH, PCW, and MT (−0.50,
−0.62, −0.59, and 0.73) than the ones (−0.32, −0.51, −0.58, and 0.10) in the average level.
In particular, the correlations between the GRACE-DSI, MT, and burned area greatly
improve during the high burned years. It indicates that the GRACE-DSI and MT are more
sensitive to abnormal changes in the burned area. Additionally, the GRACE-DSI has a
closer relationship with SM, RH, VPD, and PCW (0.86, −0.83, 0.65, and 0.50) during the
high burned years. This means that the GRACE-DSI has a positive response to the dry
and wet changes in the study region before wildfires. Therefore, it is feasible to use the
GRACE-DSI to detect the impact of climate change on wildfires, and even this index can be
used to achieve an early warning of wildfires in Australia.

5. Discussion

With the intensification of global warming in recent decades, extreme climates have
occurred frequently around the world. Australia is located between the Pacific and Indian
Oceans; therefore, its climate change is more susceptible to extreme climates associated
with both oceans. When we discuss the impact of climate change on wildfires in Australia,
it is important to consider the role of extreme climates (ENSO, PDO, and IOD). When
combining Figure 12a–c, an El Niño event is prone to less PPT and higher MT, leading to
drought, while a La Niña event is just the opposite. The burned area anomalies all appear
positive during or after an El Niño event. It is due to the fact that an El Niño event creates
a fire-prone climate. However, there is no significant connection between the IOD, PDO,
droughts, and wildfires (Figure 12). From Table 3, the ENSO has a stronger correlation
with PPT and MT (−0.56 and 0.57) in Australia than the DMI and the PDO (−0.42 and
0.47; −0.45 and 0.35). It explains that the ENSO has a greater impact on Australia’s climate,
and the IOD and POD have the same impact on PPT and MT as the ENSO, that is, a
positive event leads to drought. The correlation coefficients results (ENSO and GRACE-DSI,
−0.33; DMI and GRACE-DSI, −0.23; and PDO and GRACE-DSI, −0.31) verify the above
conclusion (Table 3). The correlation coefficients between the burned area and the ENSO,
the DMI, and the PDO (0.13, 0.25, and 0.18) show that the three extreme climates have a
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positive correlation with the burned area. Previous studies indicate that anomalous change
in sea surface temperature is positively correlated with wildfires in adjacent continental
regions [70,71]. An abnormal change in sea surface temperature is a basic element of
extreme climate. Since an extreme climate event does not directly affect wildfire, and it
indirectly affects wildfire by changing the local climate environment (PPT and burned area,
CC = −0.61; MT and burned area, CC = 0.73), the correlation between an extreme climate
event and the burned area is not strong.
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Figure 12. The time series of GRACE-DSI and burned area, PPT, and MT anomaly in Australia during
2003~2020. (a) GRACE-DSI and PPT anomaly. (b) Burned area and MT anomaly. (c) The temporal
distribution of ENSO events. Orange shade: EI Niño; Blue shade: La EI Niña. (d) The temporal
distribution of IOD events. Bright red shade: positive IOD event; Bright blue shade: negative IOD
event. (e) The temporal distribution of PDO events. Dark red shade: positive PDO event; Dark blue
shade: negative PDO event.
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Table 3. The maximum correlation coefficients and lag months between extreme climate and PPT, MT,
burned area, GRACE-DSI (The correlation coefficient results have passed the 95% confidence level).

Variables Correlation Coefficients Lag Months

ENSO vs. PPT −0.56 2
ENSO vs. MT 0.57 4

ENSO vs. GRACE-DSI −0.33 3
ENSO vs. Burned area 0.13 5

DMI vs. PPT −0.42 2
DMI vs. MT 0.47 6

DMI vs. GRACE-DSI −0.23 5
DMI vs. Burned area 0.25 1

POD vs. PPT −0.45 5
POD vs. MT 0.35 4

POD vs. GRACE-DSI −0.31 2
POD vs. Burned area 0.18 5

Previous studies have shown the strong connection between drought caused by ex-
treme climates and extreme fire phenomena on the local scale [17,72]. Chen et al. [34]
indicates that regional TWSC is closely related to the number of wildfires in an active
period, and the correlation between the two is a negative correlation. An extreme climate
event leads to less PPT and higher MT, which causes SM deficit, and drought occurs
(GRACE-DSI) [73]; then, the drought (GRACE-DSI) causes a decrease in ET, thereby reduc-
ing RH and increasing VPD (Figure 11c,e,f). A lower atmospheric humidity level would
create a climate condition that is more favorable for wildfire occurrence and spread [17]. In
addition, there is another way that drought (GRACE-DSI) can affect wildfire behavior, that
is, drought (GRACE-DSI) leads to SM scarcity, and the water source that the vegetation
can absorb is reduced (Figure 11c,d). Due to the impact of the reduction in PCW, the leaf
area of vegetation is greatly reduced, and a large number of leaves fall off, which prepares
sufficient combustible materials for wildfire [21]. Therefore, drought (GRACE-DSI) is a
hydrometeorological factor that causes wildfire occurrence and spread. The GRACE-DSI is
an important indicator to measure the occurrence and severity of droughts, and it has the
characteristics of being simple and easy to understand [37]. When compared to the wildfire
early warning system based on the traditional hydrometeorological factors (PPT, RH, MT,
etc.), the GRACE-DSI can better reflect the overall dry and wet changes in the study region.
Therefore, the GRACE-DSI has certain advantages in monitoring local climate changes
before wildfires and establishing an early warning of wildfires.

6. Conclusions

In our study, we used six GRACE/GRACE-FO solutions, burned area, extreme climate
indices, and seven hydrometeorological factors to investigate the connection between
extreme climates and wildfires in Australia during the period between 2003 and 2020. The
following conclusions can be drawn:

(1) In terms of spatial distribution, Australia’s wildfires are mainly concentrated in the
north, with sporadic wildfires in the southeast. In terms of temporal distribution,
Australia’s wildfires are mainly concentrated in October and November. In 2011 and
2012, two of Australia’s worst wildfires occurred during the 18-year study period.

(2) TWSC and the seven hydrometeorological factors are strongly correlated with burned
area on a seasonal scale. Before the occurrence of wildfires, the regional climate
generally changes abnormally, especially during a high burned year.

(3) Droughts often lead to an increased chance of wildfires, which not only provides
an external environment that is easy for wildfires to occur, but also provides an
accumulation of combustibles for the occurrence and spread of wildfires.

(4) An extreme climate event (ENSO, IOD, and PDO) is an important reason for the
abnormal changes in regional climate, which has a strong influence on PPT and MT
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in Australia. An extreme climate event can lead to less PPT and higher MT, causing
severe droughts.

(5) The GRACE-DSI is a scientifically valid, easy-to-understand indicator of the occur-
rence and severity of droughts. Therefore, it can be used to evaluate the risk of
wildfire occurrence.

However, limited by the mission period of the GRACE/GRACE-FO satellites, our
study only used 18-year data for research. With the accumulation of follow-up data, we can
obtain a longer-time observation series to explore the law of wildfire evolution in future
research. Our results provide a new idea for establishing an early warning of regional
wildfires and also have a great scientific significance for the impact of regional climate
change on local ecological environment.
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