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Abstract: Vegetation structural complexity (VSC) plays an essential role in the functioning and the
stability of fire-prone Mediterranean ecosystems. However, we currently lack knowledge about the
effects of increasing fire severity on the VSC spatial variability, as modulated by the plant community
type in complex post-fire landscapes. Accordingly, this study explored, for the first time, the effect of
fire severity on the VSC of different Mediterranean plant communities one year after fire by leveraging
field inventory and Sentinel-1 C-band synthetic aperture radar (SAR) data. The field-evaluated VSC
retrieved in post-fire scenarios from Sentinel-1 γ0 VV and VH backscatter data featured high fit
(R2 = 0.878) and low predictive error (RMSE = 0.112). Wall-to-wall VSC estimates showed that plant
community types strongly modulated the VSC response to increasing fire severity, with this response
strongly linked to the regenerative strategies of the dominant species in the community. Moderate
and high fire severities had a strong impact, one year after fire, on the VSC of broom shrublands and
Scots pine forests, dominated by facultative and obligate seeder species, respectively. In contrast, the
fire-induced impacts on VSC were not significantly different between low and moderate fire-severity
scenarios in communities dominated by resprouter species, i.e., heathlands and Pyrenean oak forests.

Keywords: C-band; fire impact; Mediterranean Basin; resprouters; seeders; Sentinel-1; Sentinel-2;
synthetic aperture radar; vegetation structure

1. Introduction

Mediterranean ecosystems of southern European countries have been prone to fire
for millennia because of the seasonal climate [1], which promotes high fuel accumulation
rates in mild winters, and favorable conditions for fire ignition and spread in hot, dry sum-
mers [2]. Accordingly, wildfires in this region are deemed an evolutionary force shaping
species adaptation and landscape diversity and thus an integral part of ecosystem dynam-
ics [3,4]. However, wildfires have been traditionally considered hazards with negative
connotations and sometimes socioeconomic disasters because of the associated damage to
human assets and even loss of lives [5]. In addition, wildfires may entail large ecological
effects on plant communities [6–8], soil physicochemical and biological properties [9–12]),
hydrogeological processes [13,14], and wildlife [15,16] in the Mediterranean Basin. This
has led to special concerns since Mediterranean terrestrial ecosystems in this region hold a
large number of endemisms [17] and are considered a biodiversity hotspot [18].

In southern European countries, as in other Mediterranean regions worldwide, there
has been evidence of abrupt changes in the natural fire regime that have led to extreme
wildfire events in recent years [1,5,19], such as in Portugal in 2017, in Greece in 2018 and
2023, or in Spain in 2021 and 2022. This new scenario has been attributed to global change
drivers, such as rural land abandonment and climate change [11,20–22]. Also, forestry
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policies based on reforestation, mainly of flammable pine trees, have promoted landscapes
dominated by pyrophytic vegetation prone to extreme fire behavior [23].

In the Mediterranean ecosystems of southern European countries, natural fire regimes
have contributed to favoring species fire-adaptive traits that facilitate the resilience of
fire-prone ecosystems to fire [24,25]. However, altered disturbance regimes as a conse-
quence of global change drivers, including an increase in extensive high-severity wildfires,
may entail unprecedented consequences for the stability, resilience, and functioning of
Mediterranean fire-prone ecosystems [25–27]. Severe wildfires, defined as those causing a
major ecological change with respect to the pre-fire scenario [28], operationally measured
based on the biomass consumption by the wildfire [29], may significantly alter land surface
energy budgets, leading to a forcing on the feedbacks governing the regional-to-global
climate [30]. Besides high aboveground biomass consumption, severe wildfires may hinder
seedling recruitment during the early post-fire stages and cause failure in the resprouting
response [31,32], thus potentially modifying the structure and composition of post-fire
plant communities [33]. Severe wildfires may also induce significant impacts in soil organic
matter pools, as well as the volatilization, immobilization, or transformation of soil nu-
trients [9,10,34,35]. Altogether, these well-documented impacts may lead to a decrease in
ecosystem functions and services provided by fire-prone ecosystems, as well as diminished
resilience and shifts towards alternative stable ecosystem states [36]. Nevertheless, the
fire-induced impact on vegetation structural complexity (VSC) has not been as well studied,
particularly in Mediterranean ecosystems with varying fire severity degrees, despite the
essential role it plays in absorbing the disturbance before shifting to alternative ecosystem
steady states, i.e., promoting ecosystem resilience to fire [37–39]. VSC is also implicated
in ecosystem stability and functioning in fire-prone landscapes [4,40]. First, the diversity
of plant functional traits is highly related to the vegetation physical arrangement in the
vertical profile [41,42]. Second, greater structural diversity is related to increased plant
primary production and soil nutrient availability [42,43]. Third, VSC is closely connected to
the ecological niche and species habitat [44], including that for avian and insect species in
multiple ecosystems [45,46]. Therefore, it is essential to improve knowledge on the effects
of fire severity on VSC for providing (i) integrated insights on the maintenance of ecosystem
functions and services in post-fire landscapes [4,47] and (ii) scientific-technical advice in
the context of ecosystem restoration [48]. Although field inventories are highly reliable for
assessing VSC on local scales [49–51], this approach is not feasible for making wall-to-wall
assessments in large burned areas and making inferences with sufficient spatial representa-
tiveness and exhaustiveness [52]. This is particularly relevant since whether or not severe
wildfires modify vegetation structure variability may depend on plant community types
and the pre-fire vegetation structure and thus on fire history [25,53]. For instance, Foster
et al. [54] found that variability in the vegetation structure was reduced only by severe
burns in woodlands rather than forests and shrublands because of the legacy effects of
previous wildfires in southeastern Australia. In mixed conifer forests in the Sierra Nevada
of California, Lydersen et al. [55] reported that areas burned at high fire severity had a
significantly lower tree density for all species types and size classes. Conversely, different
post-fire recovery dynamics among forests dominated by seeder or resprouter species
resulted in varying magnitudes of fire effects on the evenness of the cover distribution
between strata in conifer and mixed forests in northwestern Italy [56]. The loss of canopy
cover by strata for a given fire intensity differed for each forest type within the Yosemite
National Park [57]. Accordingly, the development of wall-to-wall products is of utmost
importance to capture the high variability in VSC behavior with respect to the fire severity
inherent to each plant community type in complex burned landscapes.

In this context, remote sensing data from earth observation satellite (EOS) missions
enable wall-to-wall post-fire assessments to be performed in a cost-effective manner over
extensive areas [48,58]. Conventionally, passive optical remote sensing data, such as
spectral indices [59,60], image fractions gathered from pixel unmixing models [48,61], or
biophysical variables retrieved through radiative transfer models [36], have been used as
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resilience indicators depicting the recovery of vegetation top-op-canopy traits. Conversely,
active remote sensors, such as synthetic aperture radar (SAR) and light detection and
ranging (LiDAR), can efficiently estimate the vertical structure attributes of vegetation
canopies [52,62] because they are sensitive to scattering elements in the canopy in terms of
quantity and distribution [63]. LiDAR data are often constrained in post-fire assessments
because of the low availability of on-demand airborne acquisitions [44].

Despite the unlimited availability of open-access SAR data acquired by sensors on-
board EOSs, such as Sentinel-1 (C-band sensor), and the physical sense of SAR backscatter
in burned areas [64], previous studies have seldom considered the use of SAR data to
assess VSC in burned landscapes [65], nor the link between the observed responses in
VSC as modulated by the fire severity and plant community type in complex post-fire
landscapes, although remarkable interactions between those two factors can be expected
not only because of different fire resistance patterns between plant communities, but also
because of different vegetation responses (e.g., seeders vs. resprouters) in the short term
after the fire [36,66]. Accordingly, this study explored, for the first time, the effect of fire
severity on the VSC of different Mediterranean plant communities one year after the fire
by leveraging field inventory and Sentinel-1 C-band SAR backscatter data as a means of
obtaining representative VSC estimates on the entire wildfire scale. Specifically, we selected
as case study site a large burned landscape in the western Mediterranean Basin comprising
typical Mediterranean shrubland and forest communities.

2. Materials and Methods
2.1. Study Site

The study site is was located in the Sierra the Cabrera mountain range (northwestern
Spain, western Mediterranean Basin; Figure 1). The site has a rough topography, dominated
by prominent crests with steep slopes and narrow valleys. The altitude ranges between
836 and 1938 m above sea level. The climate is typically Mediterranean, depicting hot and
dry summers and cold and wet winters [65], with annual mean temperature and annual
mean precipitation ranging between 5 and 15 ◦C and 600 and 1500 mm, respectively, for a
50-year period [1]. The wildfire affected, between 21 August and 27 August 2017, around
9940 ha of shrublands and forest dominated by the facultative seeders Genista hystrix
Lange (gorse community) and Genista florida L. (broom community), the obligate seeder
Pinus sylvestris L. (Scots pine), as well as Erica australis L. (Spanish heath) and Quercus
pyrenaica Willd. (Pyrenean oak) resprouters. The dominant plant communities in the study
site were spatially explicitly mapped using a maximum likelihood algorithm [67] applied
to a pre-fire Sentinel-2 multispectral instrument (MSI) Level-2A image, with an overall
accuracy of 91% and balanced users’ and producers’ accuracy [68]. Extreme meteorological
conditions were recorded during the preceding months of the wildfire, translating into
severe fire weather during fire spread [65].
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Figure 1. Location of the Sierra the Cabrera wildfire in the western Mediterranean Basin, fire severity
classification layer according to the difference of the Normalized Burn Ratio (dNBR) thresholds, and
location of the Composite Burn Index (CBI) and vertical structural complexity (VSC) field plots. The
background image corresponds to a hillshade product computed from a digital elevation model
(DEM) acquired from the Spanish National Plan for Aerial Orthophotography (PNOA).

2.2. Field Inventories

One month after the fire (September 2017), 72 field plots of 20 m × 20 m (19 unburned
control plots) were randomly established in relatively homogeneous areas regarding fire
effects within the wildfire scar (Figure 1) to conduct an initial assessment of fire severity.
The size of the plots is coincident with the spatial resolution of Sentinel-2 MSI data used
to obtain wall-to-wall fire severity estimates. The Composite Burn Index (CBI) [69] was
measured in each plot. The CBI integrates the magnitude of the combined fire effects in
all existing ecosystem strata per plot, including the (i) soil substrate, (ii) herbs, shrubs
and trees less than 1 m tall, and (iii) shrubs and trees 1–4 m tall in the understory, and
(iv) intermediate trees 4–20 m tall, and (v) large trees taller than 20 m in the overstory.
The height strata were slightly modified with respect to the original CBI protocol to better
adapt to the characteristics of the plant communities of the study site. In the soil substrate
stratum, we recorded char attributes and the percent consumption of fine fuel. For the
understory layer (i.e., strata less than 1 m tall and strata 1–4 m tall), we recorded the percent
of foliage consumed. In the overstory layer (i.e., intermediate trees 4–20 m tall and large
trees taller than 20 m), we recorded the bole char height and the percentage of green, black,
and brown foliage.

Following Fernández-García et al. [70], we did not consider CBI attributes related
to extended fire severity assessments (e.g., colonizers or the change in species relative
abundance) or those that are not representative of Mediterranean ecosystems (e.g., substrate
heavy fuel consumption). The attributes were rated in a semiquantitative scale from 0 (no
alteration) to 3 (totally altered) from the consensus of at least two observers. The attributes
were finally averaged into an integrative CBI value for each plot.

Approximately one year after the fire (June–July 2018), VSC was evaluated in the
field using 75 plots of 20 m × 20 m randomly established in relatively homogeneous areas
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regarding fire legacies within the wildfire scar (Figure 1) to calibrate and validate VSC
retrievals through Sentinel-1 backscatter data. The size of the VSC plots is coincident
with the nominal Sentinel-1 resolution. The plots were separated by at least 200 m apart
and equally stratified according to the five dominant plant communities of the study site
(15 plots per community) by using the classified map. We geolocated the plots in the
field through a high-accuracy GPS receiver (RMSEX,Y < 1 m). Four subplots of 2 m × 2 m
(azimuths of 45◦, 135◦, 225◦, and 315◦, located 6.5 m away from the plot center) were
established within each 20 m × 20 m plot to facilitate the vegetation cover estimation as the
vertical projected area occupied by vegetation in several strata using a visual estimation
method in steps of 5%, following the protocol of Fernández-Guisuraga et al. [36]. We
considered the following height strata: (i) herbaceous vegetation (0–0.5 m), low shrubs
(0.5–1 m) and tall shrubs (1–4 m) in the understory layer, and intermediate and large trees
(>4 m) in the overstory layer [71]. Following Fernández-Guisuraga et al. [36,72], a top-down
or a bottom-up procedure was used to estimate vegetation cover depending on the height
stratum. The vegetation cover estimates per stratum in the subplots of 2 m × 2 m were
averaged to obtain a representative vegetation cover estimate for each plot of 20 m × 20 m.
VSC at the plot level was calculated using Shannon’s index with appropriate notation [73]
(Equation (1)).

VSC = −
S

∑
i=1

piln pi (1)

where pi is the proportion of vegetation cover corresponding to the ith height stratum and
S is the total number of strata in the plot.

2.3. Copernicus Program

The Sentinel-1 (C-band SAR satellite) and Sentinel-2 (multispectral satellite) missions
of Copernicus, the joint European Space Agency (ESA)/European Commission Earth
observation program previously known as Global Monitoring for Environment and Security
(GMES), were used to retrieve wall-to-wall VSC and initial fire severity estimates for the
study site, respectively.

2.3.1. Sentinel-1

The Sentinel-1 mission of the Copernicus program comprises a constellation of two
polar-orbiting C-band SAR satellites, operating at a wavelength of 5.6 cm (wavelength
range of 3.75–7.5 cm) and launched in April 2014 (Sentinel-1A) and April 2016 (Sentinel-1B)
for different terrestrial, oceanic, and emergency management applications. The Sentinel-1
twin constellation provides dual polarization capability, a 6-day revisit time at the equator,
and is capable of acquiring images in four acquisition modes with different coverages and
spatial resolutions, down to 5 m [74]. The Sentinel-1 SAR scene for the study site was
acquired from the Copernicus Open Access Hub (https://scihub.copernicus.eu/ accessed
on 14 October 2023) on 21st July 2018 at 18:19:41 UTC. The acquisition date was selected
on the basis of (i) the peak biomass in the Mediterranean plant communities of the study
site, (ii) the closest possible proximity to the end date of the field sampling campaign,
and (iii) the absence of precipitation in the 7 days prior to the SAR image acquisition to
minimize the distorting effect of vegetation moisture and maximize the effect of vegetation
scattering elements on the SAR backscatter [75]. We acquired a SAR Level-1 Ground
Range Detected (GRD) product in interferometric wide swath mode at dual polarization
(VV vertical-vertical + VH vertical-horizontal) [74]. The Sentinel-1 Toolbox (S1TBX) [76]
was used to process the GRD product, including (i) radiometric calibration of VV and VH
digital number values to radar brightness (beta nought; β0), (ii) multi-looking of β0 VV and
VH bands to 20 m, i.e., the nominal Sentinel-1 resolution, (iii) terrain-flattening correction
using the algorithm proposed by Small [77] to remove topographic effects and obtain
gamma nought (γ0) backscatter values for VV and VH bands, and (iv) orthorectification of
γ0 VV and VH bands using the range Doppler method [78]. Finally, γ0 backscatter of VV
and VH bands was log-transformed to dB.

https://scihub.copernicus.eu/
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2.3.2. Sentinel-2

The Sentinel-2 mission for land monitoring and emergency management comprises
a constellation of two polar-orbiting satellites launched in June 2015 (Sentinel-2A) and
March 2017 (Sentinel-2B), which feature a 5-day repeat-cycle at the equator. Sentinel-2
MSI is a push-broom sensor that acquires optical spectral data over 13 bands spanning the
visible (VIS), near-infrared (NIR), and shortwave infrared (SWIR) regions of the spectrum
at different spatial resolutions (four bands at 10 m, six bands at 20 m, and three bands
at 60 m) [79]. The Sentinel-2 MSI pre- and post-fire scenes for the study site were also
acquired from the Copernicus Open Access Hub (https://scihub.copernicus.eu/ accessed
on 14 October 2023) on 13th August 2017 at 11:21:21 UTC (pre-fire) and 2nd September
2017 at 11:21:11 UTC (post-fire). The specific acquisition dates were selected on the basis of
the availability of cloud-free scenes closest to start and end dates of the wildfire, meeting
the requirements of an initial fire severity assessment. The scenes corresponded to a Level-
1C product (top-of-atmosphere reflectance) [79] instead of a Level-2A product already
atmospherically corrected for surface reflectance, since Level-2A products have not been
systematically distributed by ESA until March 2018. Accordingly, the topographic and
atmospheric correction, to obtain a Level-2A product, was implemented through the
ATCOR algorithm [80].

Fire severity estimation, as a proxy for the total amount of aboveground biomass
consumed [29,81], was conducted using the differenced Normalized Burn Ratio index
(dNBR) [82] using band 8A (NIR) and band 12 (SWIR) from the pre and post-fire Sentinel-2
Level-2A scenes (Equations (1) and (3)).

NBR = (Band 8A − Band 12) / (Band 8A + Band 12) (2)

dNBR = 1000
(

NBRpre − NBRpost
)

(3)

The dNBR was selected in this study because (i) it showed a higher correlation with
field-based assessments of fire severity than relativized indices in our study site [83],
as determined by internal testing, and (ii) it is the most widely-used approach and a
methodological reference in the initial assessments of fire severity [84], including in the
Rapid Damage Assessment (RDA) module of the European Forest Fire Information System
(EFFIS) (https://effis.jrc.ec.europa.eu/about-effis/ accessed on 22 October 2023).

2.4. Remote Sensing Data Extraction and Analyses

Sentinel-2 dNBR values were extracted for each CBI plot of 20 m × 20 m by averaging
the values of a systematically sampled grid of 20 points within each plot (2 m spacing and
2 m apart from the plot edge) in order to account for the mismatch between the Sentinel-2
grid and the plot extent [65,85]. Categorized wall-to-wall fire severity estimates were
procured by using the widely-accepted [86–88] CBI thresholds proposed by Miller and
Thode [89]: low (CBI < 1.25), moderate (1.25 ≤ CBI ≤ 2.25), and high (CBI > 2.25), which
provide comparable fire effects across different Mediterranean plant communities [88].
A linear regression model was used (i) to assess the CBI-dNBR relationship through
the coefficient of determination (R2) and (ii) to categorize wall-to-wall estimates with
dNBR fire severity thresholds procured from the model equation. We tested linear and
quadratic relationships.

Sentinel-1 γ0 VV and VH backscatter data were extracted for each VSC field plot of
20 × 20 m following the same approach used for Sentinel-2 dNBR data. Multivariate linear
regression was used to model VSC in burned plots (response variable) using, as predictors,
Sentinel-1 VV and VH backscatter coefficients. We considered linear and quadratic model
terms to account for potential non-linear relationships. Normality and homoscedasticity
assumptions of model residuals were evaluated using model diagnostic plots, even though
previous studies commonly use a Gaussian distribution to fit vegetation structural diversity
models [90]. We assessed the significance of the model from the analysis of variance
(ANOVA) output. Model fit was evaluated through the R2 and the root mean square

https://scihub.copernicus.eu/
https://effis.jrc.ec.europa.eu/about-effis/
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error (RMSE). The univariate relationships between VSC and Sentinel-1 backscatter across
individual VV and VH polarizations were visualized through scatterplots. The fitted linear
model was used to generate wall-to-wall VSC estimates across the study site.

We performed a random stratified sampling of 10,000 points, located at a minimum
distance of 100 m, to avoid duplicate points per Sentinel-2 pixel and spatial autocorrelation
in the study site [36,47]. The plant community type was used as the strata. For each
point, we extracted VSC, categorized fire severity data and the plant community type. A
univariate linear mixed model (LMM) and subsequent Tukey’s HSD test were fitted to
assess whether VSC differs significantly between fire severity scenarios, regardless of the
plant community type. Therefore, the response variable was the VSC, and categorized fire
severity data was the fixed factor. The community type was included in the LMM as a
random factor. Statistical significance was considered at the 0.05 level. Finally, we tested
whether the effect of fire severity on VSC was modulated by the plant community type by
fitting a multivariate regression model, including the interaction term between fire severity
and the plant community type. Tukey’ HSD test was used to assess statistical differences
between each fire severity category. Statistical significance was considered at the 0.05 level.

All statistical analyses were implemented in R [91].

3. Results

The CBI-dNBR linear regression model showed a high overall fit in the study site
(R2 = 0.841). The relationship was strongly linear (Figure 2), and thus, we did not find a
significant improvement in the dNBR fit using a quadratic term (F = 0.256; p-value = 0.614).
The equation of the linear model and CBI thresholds proposed in the literature were used
to establish two dNBR-based fire severity thresholds: low-moderate (dNBR = 384) and
moderate-high (dNBR = 659). Most of the wildfire scar was burned at moderate (38.17% of
the area) and high (34.35% of the area) fire severity (Figure 1). Using the spatially explicit
map of the dominant plant communities in the study site, we determined that Erica australis-
dominated heathlands and Scots pine forests were the most affected plant communities on
the wildfire scale (81% and 80% of their surface area burned at high-severity, respectively).
The rest of the plant communities were remarkably less affected, with less than 53% of the
area affected by high fire severity.

Figure 2. Linear relationship between the difference of the Normalized Burn Ratio index (dNBR)
computed from Sentinel-2 MSI pre- and post-fire imagery and the Composite Burn Index (CBI)
measured in the field.

The relationships between Sentinel-1 γ0 VV and VH backscatter data and the field-
measured VSC were direct and strongly non-linear (Figure 3). Sentinel-1 γ0 VH backscatter
coefficients showed a stronger correlation with VSC (R2 = 0.813) than Sentinel-1 γ0 VV
(R2 = 0.637). Accordingly, Sentinel-1 γ0 VH backscatter exhibited higher significance in the
multivariate linear regression model than VH backscatter (Table 1). Post-fire VSC retrieved
from Sentinel-1 backscatter data 1 year after the wildfire featured high fit (R2 = 0.878) and
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low predictive error (RMSE = 0.112) based on the validation with VSC field data. The VSC
retrieval was closely adjusted to the 1:1 line without exhibiting significant under- or over-
estimation effects throughout the entire field-measured VSC range (Figure 3). Therefore, it
can be assumed that the VSC wall-to-wall estimates at the wildfire scale would be reliable.

Figure 3. Relationships between Sentinel-1 γ0 VV and VH backscatter data and field-measured
vertical structural complexity (VSC), as well as between the observed and predicted VSC. The dotted
black line represents the 1:1 line.

Table 1. Results of the multivariate linear regression model fitted to predict field-measured vertical
structural complexity (VSC) from Sentinel-1 γ0 VV and VH backscatter data. Significant p-values are
in marked in bold.

Parameter Estimate Standard Error t-Value p-Value

Intercept 1.991 0.147 13.542 <0.001
VV 0.082 0.020 7.576 <0.001
VV2 0.003 0.001 6.092 <0.001
VH 0.148 0.036 2.287 0.025
VH2 0.004 0.002 1.852 0.068

F = 86.18; p-value < 0.001.

Wall-to-wall VSC estimates 1 year after the fire (Figure 4) only partially matched the
fire severity spatial variability patterns within the wildfire scar (Figure 1), suggesting a
potential modulating effect of the plant community type. The highest VSC estimates were
found in valley bottoms, particularly in the western section of the wildfire. The mean VSC
value at the study site was 0.298.

Fire severity had a significant effect (F = 228.79; p-value < 0.001) on the spatial variabil-
ity patterns of VSC without considering the influence of plant community types (random
factor—in the LMM) (Figure 5). VSC values were significantly higher in low-fire-severity
scenarios, while there were no significant differences in the VSC between areas burned at
moderate-to-high fire severity (Figure 5).

The effect of fire severity on the VSC showed a different behavior depending on the
plant community type (Figure 6), as shown by the significant interaction between both
predictors in the linear model (Table 2). The strongest effect was mediated by the plant com-
munity type, followed by fire severity and their interaction. Gorse shrublands, dominated
by facultative seeders, did not show significant differences in the VSC between fire severity
scenarios (Figure 6). The VSC in broom shrublands and Scots pine forests, also dominated
by seeder species—obligatory in the case of Scots pine—was significantly higher in areas
burned at low fire severity than in areas burned at moderate-to-low severities, where no
differences were found between both scenarios (Figure 6). In contrast, communities domi-
nated by resprouter species, i.e., heathlands and Pyrenean oak forests, low and moderate
fire severity scenarios showed the highest VSC values with respect to areas burned at high
fire severity (Figure 6).
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Figure 4. Wall-to-wall estimates of vertical structural complexity (VSC) within the study site com-
puted from Sentinel-1 γ0 VV and VH backscatter data.

Figure 5. Boxplot depicting the relationship between fire severity and vertical structural complexity
(VSC) within the study site. We also show linear mixed model (LMM) results. Lowercase letters in
the boxplot denote significant differences at the 0.05 level between fire severity scenarios in Tukey’s
HSD test.
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Figure 6. Boxplot depicting the relationship among fire severity, plant community, and vertical
structural complexity (VSC) within the study site. We also show linear model results corresponding
to those shown in Table 2. Lowercase letters in the boxplot denote significant differences at the
0.05 level between fire severity scenarios in the Tukey’s HSD test within each plant community.
Significance levels are represented by *** (p-value < 0.001), ** (p-value < 0.01), * (p-value < 0.05), and
“none” (p-value > 0.05).

Table 2. Linear regression model results for the effect of fire severity and the plant community type
on the vertical structural complexity (VSC). Significant p-values are marked in bold.

Predictor Df F p-Value (>F)

Fire severity 2 345.409 <0.001
Plant community 4 4176.961 <0.001

Fire severity: Plant community 8 95.752 <0.001

4. Discussion

The obtention of wall-to-wall fire severity assessments in fire-prone ecosystems of
the western Mediterranean Basin through remote sensing data and techniques that meet
management needs in terms of accuracy is of utmost importance (i) to develop reliable
post-fire management plans and strategies [29,81,92] and (ii) to improve the understanding
about the ecological implications of fire regime shifts on post-fire succession pathways and
ecosystem functions in the context of global change [36,93]. Previous research reported that
VSC monitoring is also essential for this purpose in fire-prone burned landscapes [4,39,47].
The results of the present study have contributed, for the first time, to shed light into the
relationship between fire severity and the VSC spatial variability. Remarkably, the sound
ecological relationships found between both factors for each plant community would allow
forest managers to implement management interventions targeted at recovering VSC in
fire-prone ecosystems by considering only wall-to-wall fire severity estimates using passive
optical sensors, which are simpler to produce than vegetation structural estimates from
SAR data.

Sentinel-1 SAR backscatter data successfully captured three-dimensional vegetation
structural characteristics in this study and thus the VSC spatial variability in the short-term
after fire. This can be attributed to the high sensitivity of SAR data to the density and size
of stems, branches, and foliage in the canopy [52], as compared to passive optical data [63].
In contrast, field-measured biomass consumption through the CBI could be accurately



Fire 2023, 6, 450 11 of 18

modeled using the dNBR index calculated from Sentinel-2 passive optical data because
of the NIR and SWIR sensitivity of broadband spectral indices to top-of-canopy char and
vegetation consumption in post-fire environments [94], as previously reported in many
studies worldwide [70,84,92,95]. This is particularly evident if the fire effects are correlated
among vegetation strata [96], as in our study site.

Remarkably, the dNBR threshold for moderate–high severity, with particular rele-
vance in post-fire management, was comparable to those reported in other Mediterranean
sites [89,97,98]. Previous research also evidenced that reduced canopy closure due to fo-
liage consumption in several Mediterranean forest and shrub plant communities across
the Iberian Peninsula enabled the penetration and interaction of short-wavelength SAR
signal with the lower vegetation strata [75,99]. In areas burned at low fire severity, and thus
with a higher density of unconsumed foliage, the SAR signal may be related to fire-induced
changes in the canopy architecture [100], which may also act as a proxy for structural
density in subcanopy strata [101].

The direct relationship between VSC and Sentinel-1 C-band SAR backscatter data,
evidenced in this study, is consistent with the reduction in the γ0 VV and VH backscatter
intensity as the number of scattering elements in the canopy decreases [63,99]. Fernández-
Guisuraga et al. [47] also evidenced a similar relationship in the study site, but the authors
estimated VSC from the data fusion of Sentinel-1 C-band SAR backscatter and Sentinel-2
reflectance, which may hinder model transferability because of the plant-community-
dependent behavior of passive optical data as a proxy for canopy traits [98]. Indeed,
the overall accuracy of the VSC estimates was considerably higher in the present study
(R2 = 0.878 vs. R2 = 0.810). The high overall fit, and thus generalization ability of SAR-based
VSC estimates considering the different plant communities in the study site, could be
explained by the physical basis of SAR data to characterize the variability in the volumetric,
crown, and dihedral scattering in burned areas [64]. In this context, cross-polarized C-band
data (VH polarization) featured the strongest correlation with VSC in this study, which
may be associated with the domination of cross-polarized waves by volumetric scattering
from the canopy branches, tree density, and tree height [63,102] and thus may be more
responsive to VSC variability. Altogether, our results suggest that this approach could be
leveraged in other Mediterranean plant communities and those of other biomes exhibiting
low-to-moderate canopy closure that allows for the penetration of short-wavelength SAR
signal [75,103], without undergoing limitations exerted by airborne LiDAR data availability.
Also, the link evidenced here between the VSC response, as modulated by fire severity
and the plant community type, could be extrapolated to a wide variety of Mediterranean
plant communities. Future studies could also leverage the potential of GEDI and ICESat-2
laser altimeters, where available, to supplement SAR data based on the calculation of
height-distribution metrics within the plant communities [104].

The large extensions of Scots pine forests and heathlands burned at high fire severity
is consistent with previous research. Unmanaged Scots pine forests are highly prone to
extreme fire behavior because of ladder fuels with high crowning potential [105]. Indeed,
Pinus sylvestris is moderately fire resistant [32] and one of the most susceptible European
pine species to crown fires [106]. The large amount of live and dead fuel, particularly close to
the ground, and the homogeneous horizontal structure and even-aged stand characteristics
related to the vertical structure make heathlands dominated by Erica australis prone to
extreme fire behavior [107–109].

Our study provides clear evidence that fire severity, regardless of the plant community
type, may lead to significant changes in the physical arrangement of the vegetation in the
vertical canopy profile. The simplification in structural diversity at the plant community
level has been previously reported in the mesic and dry sclerophyll forests of southeastern
Australia that burned at high fire severity [110,111], being attributed to long-lasting im-
pacts of elevated vegetation mortality under Mediterranean climate conditions [112]. The
same behavior was evidenced by Kane et al. [57] in several forest types and woodlands
within the Yosemite National Park, where high-severity patches featured the least structural
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heterogeneity because open spatial structures clearly dominated. Conversely, previous
research also reported the dominance of more structurally diverse and fragmented canopies
following high-intensity crown fires in the short-term after fire in Mediterranean maritime
pine (Pinus pinaster Ait.) stands and mixed-forests [56]. The authors reported that severe
wildfires enhanced the vegetation cover evenness by height strata over the early post-fire
period, but the effect diminished in the medium-term because of the increasing dominance
of recovering resprouter species. The large variability in the effects of fire severity on vege-
tation structural characteristics is consistent with our results showing that plant community
types strongly modulated the VSC response to increasing fire severity even within the
same wildfire. Also, this response was strongly linked to the regenerative strategies of the
dominant species in the community (i.e., seedling recruitment and resprouting response).

The aerial and soil seed banks of the most susceptible seeder species to crown damage,
such as dense broom stands and Scots pine forests [68], can be seriously hindered by
moderate-to-severe wildfires [113], triggering the seed bank depletion and precluding
seedling recruitment [114–116]. In this context, the shrub aerial parts are particularly
vulnerable to fire because of their growth-form close to the soil and the associated heat-
induced impacts on cambial tissues and roots [117–119], even at moderate severities [36].
For its part, the smaller individuals in moderately fire-resistant Scots pine forests are only
capable of surviving low-intensity wildfires [32]. The recovery trajectories in Scots pine
forests after a high-intensity wildfire rely on seed dispersal from unburned islands [120],
with a limited seeding and resprouting response of the accompanying understory species
under this scenario [121]. These limited post-fire recovery responses, together with high
biomass consumption, could explain the strong impact of moderate-to-high fire severity on
the VSC of broom shrublands and Scots pine forests, dominated by facultative and obligate
seeder species, respectively. This behavior was amplified in gorse shrublands, dominated
also by facultative seeders, which exhibited a small VSC that did not differ between fire
severity scenarios. This can be probably associated with the poor environmental conditions
of the sites where gorse communities are established, such as degraded soils with low soil
organic carbon and available nutrient contents after the wildfire [122], hindering vegetation
recovery responses in the short-term after the fire at the study site [8].

In contrast, moderate fire severity did not have a stronger impact on VSC than low
severity in communities dominated by resprouter species, i.e., heathlands and Pyrenean oak
forests, which are precisely those exhibiting the highest VSC under all fire severity scenarios.
The strong resprouting response of the dominant species of both plant communities [47,123]
allows for the rapid recovery of below- and above-ground plant biomass [124]. In addition,
only the fire impact on bud-forming tissues of resprouter species is expected to hinder
resprouting vigor and delay the resprouting response at high fire severity [125–127]. In
the specific case of Pyrenean oak forests, typically located in moister microclimates [128],
canopy re-establishment may be enhanced under lower environmental stress conditions in
the short-term after the fire.

Future research should confirm the plant community-dependent VSC trends evidenced
here by using a long-term monitoring approach to account for delayed post-fire mortality
effects and potential changes in the species composition [105]. In addition, the potential
effect of fire history attributes on VSD recovery trajectories [25,53,54], including the fire
frequency and time since the last fire, should be evaluated on large spatial scales in fire-
prone ecosystems of the western Mediterranean Basin by leveraging the remote sensing-
based approach proposed here.

5. Conclusions

The results of this study shed light, for the first time, into the relationships between
fire severity and the VSC spatial variability, as modulated by the plant community type in
Mediterranean fire-prone ecosystems. The physical sense and sensitivity of C-band SAR
backscatter data to the variability of the density and distribution of scattering elements in
burned vegetation canopies, including stems, branches, and foliage, allowed for accurate



Fire 2023, 6, 450 13 of 18

VSC predictions considering the high variability in the three-dimensional structure of the
studied plant communities. Our results suggest that the effects of fire severity on vegetation
structural characteristics were strongly modulated by the plant community type in the
short-term after fire. The VSC response was strongly linked to the regenerative strategies
of the dominant species in the community. In this context, the impact of fire severity on
VSC was stronger in communities dominated by seeder species than in those dominated
by resprouting species with strong recovery responses, even just one year after the fire.
Future research should confirm, in the long term, the trends observed here, as well as the
transferability of our approach to other types of Mediterranean plant communities and in
other biomes.
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