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Abstract: This paper investigates the application of the YOLOv7 object detection model combined
with knowledge distillation techniques in forest fire detection. As an advanced object detection
model, YOLOv7 boasts efficient real-time detection capabilities. However, its performance may be
constrained in resource-limited environments. To address this challenge, this research proposes
a novel approach: considering that deep neural networks undergo multi-layer mapping from the
input to the output space, we define the knowledge propagation between layers by evaluating the
dot product of features extracted from two different layers. To this end, we utilize the Flow of
Solution Procedure (FSP) matrix based on the Gram matrix and redesign the distillation loss using
the Pearson correlation coefficient, presenting a new knowledge distillation method termed ILKDG
(Intermediate Layer Knowledge Distillation with Gram Matrix-based Feature Flow). Compared
with the classical knowledge distillation algorithm, KD, ILKDG achieved a significant performance
improvement on a self-created forest fire detection dataset. Specifically, without altering the student
network’s parameters or network layers, mAP@0.5 improved by 2.9%, and mAP@0.5:0.95 increased
by 2.7%. These results indicate that the proposed ILKDG method effectively enhances the accuracy
and performance of forest fire detection without introducing additional parameters. The ILKDG
method, based on the Gram matrix and Pearson correlation coefficient, presents a novel knowledge
distillation approach, providing a fresh avenue for future research. Researchers can further optimize
and refine this method to achieve superior results in fire detection.

Keywords: knowledge distillation; forest fire detection; YOLOv7; YOLOv7x; object detection

1. Introduction

Forest fires [1] are a destructive natural disaster that severely impacts ecosystems
and human societies [2]. With the increasing frequency and intensity of forest fires due to
global climate change and human activities, they have become a significant challenge for
the current ecological environment and social safety. Early detection and rapid response
to forest fires are crucial for minimizing disaster losses, and the application of object
detection technology provides new possibilities to enhance fire monitoring and response
efficiency. Object detection technology [3–5] is a crucial task in computer vision, aiming
to detect and identify specific objects from complex scenes. In forest fire monitoring [6,7],
object detection can assist in automatically identifying signs of fires, such as smoke and
flames, enabling early detection and localization of fires. Through in-depth research on
the application of object detection in forest fire monitoring, we hope to enhance disaster
response capabilities and reduce losses caused by fires. Many aspects of object detection
methods [8,9] still need to improve in forest fire detection, such as high network complexity,
weak generalization ability, difficulty deploying large models, and insufficient data samples
affecting model accuracy. Lu et al. proposed a forest fire detection model based on
multi-task learning [10], including three tasks (detection, segmentation, classification) and
one shared feature extraction module. Although it improved performance, the model’s
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complexity remains high. Zhao [11] proposed the Fire-YOLO deep learning algorithm,
expanding the network from three-dimensional features to enhance performance, but its
model robustness still needs to be validated. Wang et al. [12] introduced a novel developed
channel attention module to improve detection performance, but it also involves more
computational costs. Gong et al. [13] proposed a flame centroid stabilization algorithm
based on spatiotemporal relationships. This algorithm calculates the centroid of the flame
region in each image frame, incorporating temporal information to obtain spatiotemporal
details of the flame centroid. However, it is worth noting that the application scenarios
for the proposed algorithm are limited. This paper combines object detection technology
with knowledge distillation to address the challenges in forest fire detection models, such
as high complexity, weak generalization ability, and deployment difficulty. This approach
seeks to drive the optimization and progress of forest fire detection models.

Knowledge distillation is a methodology that aids in training a smaller network (stu-
dent) guided by a more extensive network (teacher). Generally, large models manifest as
either a singular intricate network or an assemblage of multiple networks, demonstrating
robust performance and generalization abilities; large models contrast with small models
that exhibit constrained expressive capacity owing to their compact network size [14,15].
Consequently, the knowledge obtained from complex and powerful models can guide
the training of compact and efficient models, enabling them to achieve performance com-
parable to that of large models but with a significantly reduced number of parameters.
This approach facilitates model compression and acceleration [16,17]. Hinton et al. [18]
first introduced a technique called Knowledge Distillation (KD), which utilizes a teacher
network’s softmax outputs for instructing a student network’s learning. FitNets [19] pro-
posed a hint-based approach, aligning the intermediate layers of the student network
with those of the teacher network. During the distillation of information (in the middle
layers), because of the mismatch in feature dimensions of the teacher and student networks,
dimensionality reduction is used to match the dimensions, thereby transferring knowledge.
Still, this reduction also leads to some information loss [20,21]. In recent methods (FT [22],
AB [23]), the aim is to increase the amount of information transmitted during the distillation
process to enhance distillation performance. Both techniques exhibit improved distillation
performance through the augmentation of transferred information. However, FT and AB
alter the teacher’s feature values, leaving room for further performance improvement.
The primary purpose of this study is to cleverly integrate YOLOv7 [24] with knowledge
distillation techniques and propose ILKDG to enhance the performance of forest fire detec-
tion [25] while keeping network parameters and layers unchanged. This study explores an
approach based on Gram matrices to describe the problem-solving process. Introducing a
computation method for cross-layer Gram matrices sets this research apart from previous
studies [26].

In contrast, prior research mainly focused on computing dot products between intra-
layer features. To more effectively transmit knowledge, we incorporate the Pearson correla-
tion coefficient [27,28] and redesign the loss function to optimize the training [29] of the
student deep neural network (DNN) to align its FSP matrix with that of the teacher network.
Experimental results demonstrate that our approach achieves significant performance im-
provements on our self-created forest fire detection dataset. Compared with the traditional
knowledge distillation approach, while keeping the number of parameters and network
layers unchanged, our ILKDG method increases mAP@0.5 by 2.9%, while mAP@0.5:0.95
saw a 2.7% improvement. Precision and Recall also show significant progress, which
are encouraging results. Furthermore, compared with widely adopted object detection
distillation methods, our ILKDG method exhibits strong competitiveness, offering a new
avenue for performance enhancement in forest fire detection.
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2. Background and Related Work
YOLOv7 Architecture

YOLOv7 represents the most recent advancement in the YOLO series, further enhanc-
ing detection speed and accuracy based on previous iterations. The above paper introduces
E-ELAN in the overall architecture, utilizing shuffle, expand, and merge cardinality to
consistently bolster the network’s learning capabilities without compromising the initial
gradient path. E-ELAN enables the guidance of different groups of computational blocks to
acquire diverse features. The authors also propose a compound model scaling technique to
retain the properties of the initial design and uphold the optimal structure. Concerning net-
work optimization strategy, these authors introduce and refine model re-parameterization
and dynamic label assignment, addressing their existing challenges.

Regarding the former, the authors note that the identity connection in RepConv [30]
provides more gradient diversity for different characteristic graphs by directly accessing
the cascade of ResNet [31] or DenseNet [32], potentially disrupting the network structure.
Consequently, the authors eliminate the identity connection in RepConv and devise a
planned reparameterized convolution, efficiently combining re-parameterized convolu-
tion with various networks. For the latter, their paper incorporates the concept of Deep
Supervision [33]. It introduces an additional head in the intermediate layer of the network,
serving as an auxiliary loss to instruct the learning of the weights of shallow networks.
A novel label assignment method is formulated for this structure. Figure 1 shows the
YOLOv7 framework.
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To perform knowledge distillation, we selected the YOLOv7x network, which is struc-
turally similar to YOLOv7, as the teacher network to ensure compatibility between the two
models and improve model performance. The complexity of the teacher network typically
surpasses that found in the student network, but the difference should be manageable to
avoid poor knowledge distillation results. The basic parameters of the two models are
summarized in Table 1.

Table 1. Comparison between YOLOv7 and YOLOv7x.

Model Layers Parameters GFLOPS Size (MB)

YOLOv7 415 31189962 93.7 71.8
YOLOv7x 467 73147394 190.61 142.1

3. Materials and Methods
3.1. Knowledge Distillation

Knowledge distillation [34] involves the process of transferring knowledge from
a sizable, intricate model (teacher model) to a more compact, effective model (student
model) [35]. It involves training the student network to mimic the teacher network’s output
and emulate its internal representations or decision-making process. This technique is used
to enhance the performance of smaller models, making them approximate the behavior
of larger models while reducing computational costs and memory requirements. In the
process of knowledge distillation, logits are used as a basis for comparing the outputs
of the student model with those of the teacher model. By examining logits, the model
can measure the certainty or confidence of its predictions before applying the softmax
function to obtain the final probability. The standard cross-entropy loss depends on the
predicted probabilities and ground truth labels. Additionally, the loss function is extended
to include the standard cross-entropy loss between the predictions of the student model and
the ground truth labels, as well as an additional loss term that measures the discrepancy
between the softened probabilities (obtained through a higher temperature softmax) of the
teacher model’s predictions and the corresponding predictions of the student model. This
additional term ensures that the student model not only learns to predict the correct labels
but also aims to replicate the softened outputs of the teacher model, effectively transferring
its knowledge to the student model. By jointly minimizing these two loss terms, the student
model can learn to generalize better and imitate the behavior of the more complex teacher
model. The calculation of the probability for the class is as follows:

pi =
exp
(

zi
T

)
∑j exp

(
zj
T

) (1)

Here, T represents the “temperature” of knowledge distillation. When T = 1, it
corresponds to a normalized exponential function. With the increase in the temperature
parameter T, the softmax function’s probability distribution becomes smoother, thereby
conveying more nuanced particulars about the interrelation of different categories according
to the teacher model. This information, referred to as “dark knowledge” by Hinton, is what
we aim to impart to the student model in distillation. To compute the loss function for the
teacher’s soft targets, we use the same T value to calculate the softmax function based on
the student logits. This kind of loss is frequently called “distillation loss.” Therefore, with
the increase in T, we are better able to impart the knowledge of the teacher model to the
student model, aiding the latter in learning and generalization.

In 2015, Hinton et al. discovered the advantages of training the distilled model to
not only produce the soft labels from the teacher but also the correct labels relying on the
ground truth labels. Consequently, we compute the “standard” loss by comparing the
predicted class probabilities of the student with the ground truth labels. This loss is named
the “student loss”. When calculating the class probabilities for the student loss, we employ
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T = 1. The comprehensive loss function, which integrates both the distillation and student
losses, is determined as follows:

L(x; W) = α× H(y, σ(zs; T = 1)) + β× H(σ(zt; T = τ), σ(zs, T = τ)) (2)

Here, x represents the input, W represents the student model’s parameters, y denotes
the ground truth labels, H signifies the cross-entropy loss function, σ represents the softmax
function characterized by the “temperature” T, and α and β are constants. The logits of
the student and teacher are denoted as zs and zt, respectively. The general structure of
knowledge distillation is depicted in Figure 2.
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3.2. Flow of Solution Procedure (FSP) Matrix

Deep Neural Networks progressively generate features [36–38], with higher layers
capturing more closely related critical features necessary for the main task. Considering
the training process of a DNN as the problem and its learned weights and parameters
as the solution, the features generated within the depths of the DNN can be viewed as
temporary results during the solving process. Based on previous experience, Romero
et al. proposed knowledge transfer techniques, enabling a student network to study the
intermediate layer outputs of a teacher network. However, numerous approaches exist in
the context of DNNs for solving the mapping problem from input to output. Consequently,
replicating the features generated by the teacher’s DNN can impose rigid constraints on
the student’s DNN.

In human cognition, teachers typically elucidate the process of arriving at a solution
when addressing challenges. In contrast, students engage in learning the problem-solving
procedure. In specific problem scenarios, a student Deep Neural Network (DNN) may
not necessarily require the acquisition of intermediary outputs for a given input; instead,
it can assimilate the methodologies for tackling these particular problem types. Through
this approach, mastering the problem-solving process can offer more substantial assistance
than merely instructing intermediate outcomes.

The effectiveness of knowledge transfer [39–41] depends significantly on the precise
definition of refined knowledge. The extracted knowledge is usually obtained through
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different features in pre-trained DNNs. Drawing an analogy from how a skilled teacher
imparts the problem-solving process to a student, we define highly refined knowledge as
the problem-solving procedure. Given that neural networks process input data to yield
corresponding output results and a mapping relationship exists between the inputs and
outputs, we can understand the problem-solving process as the connection among features
at different layers of the neural network.

The Gram matrix, generated by calculating the dot products between feature vectors,
inherently captures the directional characteristics among features. Inspired by this, Gatys
et al. represented the pattern details of input data by computing the Gram matrix within
layers. In line with their work, our approach utilizes the Gram matrix, which is composed
of the dot products of different features derived from two layers in the neural network, to
symbolize the problem-solving process. Our method’s primary distinction lies in utilizing
features from different layers to calculate the Gram matrix. In contrast, the Gram matrix
in [26] is derived from deducing dot products within layers. Based on this, we use different
features from two layers to construct the matrix. Afterward, the student model learns to
align its matrix with the teacher model’s. As shown in Figure 3, a method for transferring
refined knowledge is presented by generating a Flow of Solution Procedure (FSP) matrix of
the problem-solving process from the extracted features of two layers.
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The interplay between two intermediary outcomes can characterize the progression
of the solution procedure. In the context of DNNs, we can consider the directional rela-
tionship between features from different layers from a mathematical perspective. We have
introduced the FSP matrix as a means to depict this progression. The FSP matrix, denoted
as G ∈ Rm×n, is generated from the features of two selected layers. We consider one
layer producing feature maps F1 ∈ Rh×w×m, where H, W, and M correspond the height,
width, and number of channels, respectively. Moreover, another feature map is defined as
F2 ∈ Rh×w×m. Then, we compute the FSP matrix as follows:

Gi,j(x; W) =
h

∑
s=1

w

∑
t=1

F1
s,t,i(x; W)× F2

s,t,j(x; W)

h× w
(3)

Here, x represents the input data, while W represents the weight parameters of the
neural network. Multiple points have been selected to create the Flow of Solution Procedure
matrix, as illustrated in Figure 4.
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3.3. Loss Function

The Pearson correlation coefficient a statistical measure used to assess the linear
connection between two variables. When evaluating the connection between teacher and
student networks, using the Pearson correlation coefficient can help us understand the
degree of similarity in their feature generation and prediction [42,43] results. Specifically,
when the outputs of two networks exhibit similar variations on similar inputs, their Pearson
correlation coefficient will be closer to 1, indicating a strong positive correlation between
them. Conversely, if their output trends are opposite, the correlation coefficient will be
closer to −1, indicating a strong negative correlation. When their output variations do not
exhibit a linear relationship, the correlation coefficient will approach 0, suggesting a low
correlation between them.

When evaluating the connection between the teacher and student models, the Pearson
correlation coefficient can help us evaluate the effectiveness of techniques like knowledge
distillation. Suppose the student network can partially imitate the output patterns of the
teacher network through knowledge distillation. In that case, their Pearson correlation
coefficient may be relatively high, indicating that the student model can effectively acquire
knowledge from the teacher model. In summary, the Pearson correlation coefficient quan-
titatively measures the association between teacher and student networks, aiding in the
assessment of knowledge transfer and learning effectiveness. By estimating the sample
covariance and standard deviations [44], one can obtain the sample correlation coefficient
(sample Pearson coefficient), ρ (u, v), which signifies the Pearson correlation coefficient
between two random variables, u and v.

ρ(u, v) :=
Cov(u, v)

Std(u)Std(v)
=

∑C
i=1 (ui −

_
u)(vi −

_
v)√

∑C
i=1

(
ui −

_
u)2∑C

i=1 (vi −
_
v)2

(4)

where Cov(u, v) is the covariance of u and v, and
_
u and Std(u) represent the mean and

standard derivation of u, respectively.
We then impart the knowledge extracted from the teacher network to the student

network to enhance its performance. As previously discussed, we represent the extracted
knowledge as FSP matrices, which depict the methodology or procedure employed by
the teacher network in problem solving. Suppose the teacher network generates n FSP
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matrices, denoted as GT
i , where i = 1, . . . , n. Simultaneously, the student network also

generates n FSP matrices represented as GS
i where i = 1, . . . , n. In this study, we exclusively

focus on Flow of Solution Procedure matrices
(
GT

i , GS
i
)
, where i = 1, . . . , n, which possess

identical spatial dimensions. We redefine the distillation loss by incorporating the Pearson
correlation coefficient mentioned above. Therefore, the cost function for the knowledge
transfer distillation task is defined as:

LP(Wt, Ws) =
1
N ∑

x

n

∑
i=1

λi

(
1− ρ

(
GT

i (x; Wt), GS
i (x; Ws)

))2
(5)

Here, λi and N denote the weighting of each loss term and the total number of data
points. In this study, it is assumed that all loss terms have equal importance. Thus, we use
the same λi in subsequent experiments.

The student network’s acquisition of knowledge from the teacher network is primarily
structured in two stages. First and foremost, we minimize the LP loss function to ensure
the similarity of the Flow of Solution Procedure matrix between the student and teacher
models. Secondly, given that we utilize a detection task to confirm the efficacy of the
proposed approach, the student network undergoes further training in the second stage
using task loss. Hence, we employ a weighted combination of classification loss, objectness
loss, and IOU loss as the task loss. Therefore, the overall training loss, Ltotal , can consist of
both the detection loss and the knowledge distillation loss, as follows:

Ldet = α× lcls + β× lobj + γ× lbox (6)

Ltotal = θ × LP + (1− θ)Ldet (7)

where α, β, γ, and θ take on different preset values depending on the specific task.

4. Experiments
4.1. Dataset

To enhance the model’s generalization, mitigate overfitting and improve robustness
against various variations and noise, this study employed the Mosaic and Mixup [30] data
augmentation techniques. The data augmentation had the effects as shown in Figure 5. Post
augmentation, the ultimate experimental dataset consisted of 3780 images. Subsequently,
the dataset was divided into training set, test set, and validation set in a ratio of 6:2:2.
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4.2. Experimental Configuration and Environment

Our experiment uses Python as the programming language and PyTorch as the deep
learning framework on a system running Windows 11. Table 2 outlines the hardware
specifications, while the training employed the following hyperparameters: an input image
size of 640 × 640, 300 training epochs, and a batch size of 64. The model optimization
settings can be found in Table 3.

Table 2. Experimental conditions.

Experimental Environment Details

Programming language Python 3.8
Operating system Windows 11

Deep learning framework PyTorch 1.13.0
GPU NVIDIA GeForce GTX 3090

GPU acceleration tool CUDA:11.3

Table 3. Parameter Settings.

Optimization
Method Initial Learning Rate Momentum Weight Decay

Stochastic Gradient
Descent (SGD) 0.01 0.973 0.0001

4.3. Evaluation of the Model

In this study, we assessed the quality of the model in two ways: recognition accuracy
and lightness of the model. Therefore, we chose mAP@0.5 and mAP@0.5:0.95 as two metrics
to assess the predictive accuracy of the model. In addition, we chose GFLOPs (Gigabit
Floating Point Operations per Second) and model parameters as two metrics to measure
the degree of model lightness.

(1) AP Metric: Within the confusion matrix, TP corresponds to the count of accurately
predicted fire samples, while FN refers to the count of fire samples inaccurately predicted
as non-fire. From these values, Precision (P) and Recall (R) can be derived, with P and
R representing the precision and comprehensiveness of fire detection, respectively. The
equations for computing P and R are presented in Formulas (8) and (9), respectively.

Precision (P) =
TP

TP + FP
(8)

Recall (R) =
TP

TP + FN
(9)

As shown in Formulas (10) and (11), they represent mAP and IoU, respectively.

mAP =
∫ 1

0
p(0)do (10)

Here, p(0) represents the attained level of accuracy in object detection. IoU is the ratio
of the intersection area and union area of the predicted area and the actual area, which is
usually used to measure the accuracy of the target detection algorithm [45].

IoU =
Areapred ∩ Areagt

Areapred ∪ Areagt
(11)
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(2) GFLOPs is a metric employed to quantify the time complexity of the model, which
exhibits a direct relationship with the hardware performance demands. Equation (12)
illustrates the formula utilized for computing GFLOPs.

GFLOPs =
(

2CiK2 − 1
)

HWC0 (12)

In the context of this formula, Ci and C0 denote the count of input and output channels,
K represents the kernel size, while H and W describe the dimensions of the feature map.

(3) Parameters refer to the quantity of parameters the model utilizes, typically mea-
sured in millions. This metric significantly impacts the ultimate size of the trained
model’s output.

4.4. Comparison of Experimental Results

The typical training process of distillation [46] generally comprises two main phases.
Firstly, the teacher network is trained. Secondly, the student network is trained using
the knowledge provided by the teacher network. Specifically, (1) YOLOv7x is trained as
the teacher detector. (2) The knowledge transferred from the teacher network is defined,
specifying intermediate layer feature representations and processing information as knowl-
edge targets. (3) The loss function is defined. (4) The feature flow matrix representing the
problem-solving process is incorporated into the loss function during the training process
of the student model. (5) The student model is trained using the loss function. (6) After
training, the accuracy of the student network is assessed using the test data to determine
whether it successfully acquired knowledge from the teacher network while ensuring
performance improvement.

In this study, we conducted object detection experiments using our self-created forest
fire dataset and employed ILKDG technology. The experimental results illustrate a notable
enhancement in the model’s predictive capability following distillation, particularly in its
ability to withstand adversarial noise and generalize effectively. Encouragingly, the distilled
model exhibited a noticeable enhancement in the original object detection task, as shown
in Figure 6, and successfully detected objects that were previously unidentifiable before
distillation. This highlights the potential advantages of ILKDG technology in addressing
adversarial noise and improving model generalization. These results emphasize ILKDG
as a practical approach for enhancing object detection performance and provide valuable
guidance for further research and applications.
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To assess the efficacy of the proposed approach, we conducted a comparative analysis
of the self-created forest fire dataset compared with widely adopted object detection distilla-
tion methods. The results in Table 4 demonstrate significant improvements achieved by our
approach. As expected, models with more parameters, or more extensive or deeper archi-
tectures exhibited better performance, while smaller or shallower models had advantages
in terms of processing speed. First, we applied the KD (Knowledge Distillation) and FitNet
methods and found that these techniques were effective in enhancing performance, leading
to improvements in mAP@0.5 and mAP@0.5:0.95. Next, we contrasted the FGD [47] and
KD++ [48] methods, which seemed to show no significant performance gains and, in some
cases, resulted in performance degradation, particularly in terms of Recall.

Table 4. Evaluation results on self-created forest fire dataset.

Model Precision Recall mAP@0.5 mAP@0.5:0.95 Params (M)

Teacher (YOLOv7x) 0.881 0.842 0.895 0.637 73.1
Student (YOLOv7) 0.833 0.819 0.846 0.604 31.1

+KD 0.844 0.824 0.859 0.618 31.1
+FitNet 0.847 0.822 0.860 0.611 31.1
+FGD 0.850 0.821 0.854 0.621 31.1

+KD++ 0.846 0.823 0.858 0.622 31.1

+Proposed 0.862 0.831 0.870 0.631 31.1

Finally, we employed our proposed ILKDG method, which outperformed all other
methods in all metrics, especially in mAP@0.5 and mAP@0.5:0.95, where it achieved relative
improvements of 2.9% and 2.7%, respectively, compared with KD. This performance gain
was achieved while maintaining the same number of parameters (31.1 million). In object
detection tasks, a 1% improvement is considered highly significant, especially on large-
scale datasets.

These results highlight the significant potential for performance enhancement our
proposed method offers on our self-created forest fire dataset, while maintaining a rela-
tively low model complexity. Our research provides essential insights and performance
improvements for wildfire detection in forests, improving the efficient surveillance and
anticipation of natural calamities such as wildfires.

4.5. Ablation Study

To confirm the efficacy of our correlation-based approach, we measured the corre-
lation between student and teacher models, with the student model being trained using
standard classification loss, knowledge distillation (KD), and our ILKDG method. We
chose commonly used metrics such as Pearson correlation coefficient, Spearman’s [49],
and Euclidean distance [50] as correlation measures. As summarized in Figure 7, ILKDG
exhibited stronger correlations than the baseline.

We trained the student YOLOv7 and teacher YOLOv7x on the self-created forest fire
dataset with or without label smoothing (LS). In our approach, we performed experiments
to verify the effectiveness of the cosine similarity technique [51]. Both cosine similarity and
Pearson correlation coefficient can be employed to evaluate the teacher’s and student’s
association. Compared with the scale invariance of cosine similarity, the Pearson correlation
has an additional shift-invariance that results from centering the vectors first, making it
more robust to distribution changes. We performed experiments to compare the use of
these two metrics in our ILKDG and train models with or without label smoothing. Recent
research [52,53] indicates that knowledge distillation with high-temperature settings is
incompatible with label smoothing, so we also employed KD (τ = 1) to train our networks.
ILKDG using Pearson correlation outperformed in terms of accuracy, especially when
the teacher and student were trained with label smoothing (where predicted probability
distributions may undergo shifts due to its influence), as indicated in Table 5. Therefore,
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Pearson correlation, which possesses both scale and translational invariance, might be a
better metric for measuring relationships in ILKDG.
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Table 5. Ablation of cosine similarity and Pearson correlation in ILKDG.

Method w/o LS w/LS

Teacher 0.892 0.895
KD (τ = 6) 0.850 0.852
KD (τ = 1) 0.853 0.859

ILKDG (cosine) 0.861 0.867
ILKDG (Pearson) 0.868 0.870

5. Conclusions and Future Research

This article introduces a novel knowledge distillation method called ILKDG and
explores its integration with YOLOv7 in the context of forest fire detection applications.
YOLOv7 is renowned for its efficient real-time detection capabilities but its performance
may be constrained in resource-constrained environments. To address this challenge, we
incorporated ILKDG into the YOLOv7 model, enabling knowledge transfer from a teacher
model to a lighter-weight student model. This approach maintains high detection accuracy
while reducing computational and memory requirements. We compared our ILKDG
method with classic knowledge distillation algorithms like KD and current mainstream
distillation methods, conducting experiments on a self-created forest fire detection dataset.
The results demonstrate a significant improvement in detection performance due to the
added benefit of ILKDG’s distillation technique. Specifically, without changing student
network parameters or network depth, we achieved a 2.9% improvement in mAP@0.5 and
a 2.7% improvement in mAP@0.5:0.95. This indicates that combining YOLOv7 with the



Fire 2023, 6, 446 13 of 15

ILKDG method proposed in this article effectively enhances the accuracy and performance
of forest fire detection.

While this paper has already validated the effectiveness of the ILKDG method in
enhancing the accuracy and performance of forest fire detection, there is still potential
for further enhancement. Future research directions include the following four aspects.
(1) Despite the proven effectiveness of ILKDG, significant potential exists for further im-
provement. Future research will optimize the ILKDG parameters and structure to enhance
detection performance, including increasing mean average precision (mAP) and reduc-
ing false positive rates. (2) Additional techniques to achieve a lightweight model will be
explored to adapt to resource-constrained environments. This may involve investigating
compact network designs, quantization techniques, or model pruning, building upon
ILKDG’s existing capacity to reduce computational and memory requirements. (3) Further
refinement of the dataset and data augmentation techniques are crucial to enhancing the
model’s robustness. Incorporating diverse data, including different weather conditions,
periods, geographical locations, and fire incidents, will improve the model’s overall perfor-
mance in real-world scenarios. (4) Another intriguing research direction involves exploring
semi-supervised learning techniques. Integrating data from different sensors, such as in-
frared images and smoke sensor data, alongside visual data could ensure accurate detection
results under diverse weather conditions, ultimately enhancing the precision and reliability
of fire detection.
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34. Buciluǎ, C.; Caruana, R.; Niculescu-Mizil, A. Model compression. In Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, 20–23 August 2006; pp. 535–541.
35. Hsu, Y.-C.; Hua, T.; Chang, S.; Lou, Q.; Shen, Y.; Jin, H. Language model compression with weighted low-rank factorization. arXiv

2022, arXiv:2207.00112.
36. Aghdam, H.H.; Heravi, E.J. Guide to Convolutional Neural Networks; Springer: New York, NY, USA, 2017; Volume 10, p. 51.
37. Montavon, G.; Samek, W.; Müller, K.-R. Methods for interpreting and understanding deep neural networks. Digit. Signal Process.

2018, 73, 1–15. [CrossRef]
38. Miles, R.; Mikolajczyk, K.J. A closer look at the training dynamics of knowledge distillation. arXiv 2023, arXiv:2303.11098.
39. Zhao, B.; Cui, Q.; Song, R.; Qiu, Y.; Liang, J. Decoupled knowledge distillation. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Washington, DC, USA, 14–18 August 2022; pp. 11953–11962.
40. Chen, D.; Mei, J.-P.; Zhang, H.; Wang, C.; Feng, Y.; Chen, C. Knowledge distillation with the reused teacher classifier. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 14–18 August
2022; pp. 11933–11942.

41. Wang, L.; Yoon, K. Knowledge distillation and student-teacher learning for visual intelligence: A review and new outlooks. IEEE
Trans. Pattern Anal. Mach. Intell. 2021, 44, 3048–3068. [CrossRef] [PubMed]

42. Liu, B.; Tang, R.; Chen, Y.; Yu, J.; Guo, H.; Zhang, Y. Feature generation by convolutional neural network for click-through rate
prediction. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 1119–1129.
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