Article

Desert/Forest Fire Detection Using Machine/Deep
Learning Techniques

Mason Davis !

check for
updates

Citation: Davis, M.; Shekaramiz, M.
Desert/Forest Fire Detection Using
Machine/Deep Learning Techniques.
Fire 2023, 6, 418. https://doi.org/
10.3390/ fire6110418

Academic Editors: Washington
Rocha, Ant6nio Vieira and Marcos

Francos

Received: 20 September 2023
Revised: 21 October 2023
Accepted: 23 October 2023
Published: 29 October 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Mohammad Shekaramiz

1,%*

Machine Learning and Drone Laboratory, Engineering Department, Utah Valley University,
Orem, UT 84058, USA; mason.davis@uvu.edu
* Correspondence: mshekaramiz@uvu.edu

Abstract: As climate change and human activity increase the likelihood of devastating wildfires, the
need for early fire detection methods is inevitable. Although, it has been shown that deep learning and
artificial intelligence can offer a solution to this problem, there is still a lot of room for improvement.
In this research, two new deep learning approaches to fire detection are developed and investigated
utilizing pre-trained ResNet-50 and Xception for feature extraction with a detailed comparison against
support vector machine (SVM), ResNet-50, Xception, and MobileViT architectures. Each architecture
was tuned utilizing hyperparameter searches and trials to seek ideal combinations for performance.
To address the under-representation of desert features in the current fire detection datasets, we have
created a new dataset. This novel dataset, Utah Desert Fire, was created using controlled fires and
aerial imaging with a DJI Mini 3 Pro drone. The proposed modified ResNet-50 architecture achieved
the best performance on the Utah Desert Fire dataset, reaching 100% detection accuracy. To further
compare the proposed methods, the popular forest fire detection dataset, DeepFire, was deployed
with resulting performance analyzed against most recent literature. Here, our proposed modified
Xception model outperformed latest publications attaining 99.221% accuracy. The performance of
the proposed solutions show an increase in classification accuracy which can be leveraged for the
identification of both desert and forest fires.

Keywords: desert fire; forest fire detection; deep learning; transfer learning; Xception; ResNet-50;
support vector machines; image classification; hyperparameter tuning

1. Introduction

Wildfires are both ecological and economic disasters. These fires are characterized as
uncontrolled and unpredictable fires in areas with combustible vegetation. According to
recent reports, human-caused fires account for the majority at 89%, while other natural
causes occur at a less frequent rate [1,2]. Natural causes such as lightning can be hard to
detect as if they strike in remote areas, they may only be noticed after being developed
into a sizeable fire. The destruction of environments due to fire also causes side effects
on the ecosystem and surrounding communities. In desert environments, fire has been
associated with the elimination of vegetation and increased probability of erosion [3]. These
destructive fires also harm soil biological components that are vital for the maintenance of
native plant species [3]. Catastrophic and fast-evolving fires also endanger and deteriorate
the health of the surrounding communities. The smoke and particulates are known to
cause lung and eye irritation while long exposure can lead to decreased lung function,
exacerbation of asthma, and bronchitis [4].

Given deserts’ inherently arid and barren nature, the susceptibility to wildfires is
historically low. However, with the increase in invasive plant species and sporadic heavy
rainfall, the flammability of these regions is increasing [5]. These implications are further
highlighted in the recent Dome Fire located in the Mojave Desert, California. In 2020, a light-
ning strike caused a small fire that rapidly developed and destroyed 17,512 hectares (Ha)

Fire 2023, 6, 418. https:/ /doi.org/10.3390/fire6110418

https://www.mdpi.com/journal/fire

https://doi.org/10.3390/fire6110418
https://doi.org/10.3390/fire6110418
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fire
https://www.mdpi.com
https://orcid.org/0009-0003-5832-8738
https://orcid.org/0000-0003-1176-3284
https://doi.org/10.3390/fire6110418
https://www.mdpi.com/journal/fire
https://www.mdpi.com/article/10.3390/fire6110418?type=check_update&version=2

Fire 2023, 6,418

2 of 20

of the national park, along with 1.3 million Joshua trees [6]. As another such instance, the
York Fire has been California’s largest wildfire of 2023 [7]. With the increased precipitation
driving vegetation growth in the area, this fire destroyed 37,667 Ha of land [7]. It turns out
that invasive species are an increasingly significant driver of desert fires. It has been shown
that invasive plant species can quickly recover after fire, resulting in the cyclical increase of
fire probability and the spread of invasive species [8,9]. While these factors contribute to
increasingly violent desert fires, forest fires remain a major concern.

Forests not only provide resources such as food, fuel, and shelter to species but also
help clean the air by absorbing carbon dioxide and preventing erosion by dissipating
rainfall and slowing runoff with their root system [10]. While forest fires are not a new
phenomenon, they are increasing in size and quantity inducing a larger loss of life, resources,
and capital. Since 1960, the top five largest wildfires by acreage burned in the United States
occurred from 2007-2020 [2]. Forest fires do not only affect the United States but also the
global community at scale. Canada, which makes up 9% of the world’s forests, is having
one of its worst fire years to date. According to the National Wildland Fire Situation Report,
as of 21 June 2023, there have been a reported 2765 fires which is already above the 10-year
average of 2068. While the acreage burned is monumental, the area is just shy of 6 million
hectares. This far exceeds the 10-year average of 393,746 hectares [11]. As another example,
Russia is home to 20% of the world’s forests and has seen a similar trend of devastating fire
behavior. From 2001 to 2021, Russia lost 52.8 Mha of tree cover from fires with the greatest
loss during the 2021 fire season [12].

The magnitude and quantity of fires have been increasing year over year and re-
searchers have started to study the climate change trends in tandem with wildfire statistics.
As a consequence of the greenhouse effect, the temperature is becoming higher globally
with a predicted increase of 5-6 °C by the year 2100 [13]. Temperature extremes drive
environments that foster volatile wildfires, increasing in quantity and intensity [14]. Brown
et al. investigated the tie between climate change and wildfires [15]. By comparing the
energy release component index from 1975 to 1996 against a model that calculated the
expected rises due to climate change, they found that areas such as the Great Basin will
undergo longer fire seasons [15].

Due to the large economic cost of fighting wildfires and the changing conditions
that foster faster-growing fires, local and national leaders have pushed for preventative
and control measures in recent years. Thanks to advances in computing power and the
availability of state-of-the-art processing power, computer vision and deep learning have
been recently applied to the problem of early fire detection. The recent boom in the
popularity of neural networks and deep learning is due to the increase in computational
performance and availability of modern graphics processing units (GPUs). GPUs can be
used to implement these architectures and provide an excellent computational performance
boost with up to 20x the speed of CPU-only processing [16]. This has been utilized by
researchers for early fire detection to improve the training time and performance on large
datasets. However, the desert fire detection using this technology has not been studied or
addressed seriously.

Dawar et al. used a dataset consisting of satellite imagery of Canadian forest fires and it
was shown that their proposed convolutional neural network (CNN) model outperformed
Alexnet, Xception, MobileNet, and Lenet5 with the accuracy of 95.14% [17]. In another
study, Nallakaruppan et al. compared deep learning architectures on satellite images of
fire with DenseNet-201 outperforming Inception, ResNet-50, and VGG-16 with an accuracy
of 98.46% [18].

By applying transfer learning and making use of pre-trained weights for the forest
fire detection problem, researchers have seen increases in performance and accuracy. In
this regard, Khan et al. proposed a transfer learning approach utilizing VGG-19 as the
base network. When compared to K-nearest neighbors, SVM, Naive Bayes, and Logistic
regression, it was concluded that the transfer learning approach was superior with an
accuracy of 95% on the DeepFire dataset [19]. Following their initial work, Khan and

Fire 2023, 6,418

3 0f20

Khan furthered their research and proposed a novel approach to fire detection refered to as
FFireNet. FFireNet was developed using MobileNetV2 as the backbone and modifying the
fully connected layers at the end with ReLU and sigmoid functions. This approach proved
beneficial as it performed well on the DeepFire dataset achieving 98.42% accuracy and
outperformed other architectures such as Xception, InceptionV3, and ResNet152V2 [20].
On the same dataset, a particle swarm-based federated learning approach was evaluated
by Supriya and Gadekallu [21]. Overcoming the hurdles of communication lags and
transmission processing power, their proposed approach achieved 94.47% accuracy on the
test data [21]. Namburu et al. also leveraged transfer learning with MobileNet, adding a
flattened, dense, and softmax layer for the purpose of fire classification. Their proposed
method, X-MobileNet, achieved 98.89% accuracy on a large dataset created using drone
footage [22]. Idroes et al. proposed TeutongNet with the use of ResNet-50 as their backbone
architecture [23]. This architecture is made based on a pre-trained ResNet-50 and adding
global average pooling, dense, dropout, and sigmoid layers. TeutongNet was trained
and tested on the DeepFire dataset and achieved 98.68% accuracy [23]. Alice et al. also
employed ResNet-50 as the feature extraction to their proposed fire detection model referred
to as AFFD-ASODTL. By combining ResNet-50 with a Quasi-Recurrent neural network for
classification, they were able to reach 97.33% accuracy and surpassed other architectures
on their created dataset [24].

Another area of fire detection research that is increasing in popularity is real-time
detection and classification. This area uses machine learning for classification as well as
tracking and relaying data about the fire in real-time. In this case, Wu and Zhang investi-
gated three architectures, You Only Look Once (YOLO), Single Shot Detector (SSD), and
Region based convolutional neural networks (R-CNN), for real-time forest fire detection
and their relative performance. The models were trained using images of smoke and
fire in different environments, both forest and urban, to train the models to detect and
segment both fire and smoke. Experimentally, they concluded that the YOLO algorithms
had poor performance on small and cool fires. To resolve this issue, Wu and Zhang altered
the structure of YOLO by adding one more convolutional and max-pooling layer. With
these modifications, Faster R-CNN and SSD provided the best performance still at 99.7%
and 99.88% for fire detection, respectively [25]. Jin and Lu made use of these real-time
processing techniques to detect movement as part of a proposed fire detection process. This
included the combination of real-time data, feature extraction, and classification for fire
detection. Through comparative analysis of algorithms for extraction and classification
steps, Jin and Lu concluded that AdaBoost and Naive Bayes were the leading algorithms
for low and high-dimensional classifiers, respectively. With these in place, the performance
of their approach on evaluation data was 97.33% [26]. A large hurdle for real-time detection
and edge computing is the balance of size and performance. To overcome the large com-
putational costs of traditional real-time detection methods, in [27] the authors proposed
a lightweight YOLOV7? architecture for deployment in UAV’s for the purpose of smoke
classification. Altering traditional YOLOv7 with reduced computational convolutions,
activation functions, and the reassembly of features, their model provided high accuracy
while significantly cutting size and computational cost. Measuring the Giga floating point
operations per second (GFLOPs), this novel approach improved the performance by 6%
over the baseline YOLOvV7 [27].

While wildfires affect forest environments heavily, the review of existing literature
revealed a need for the investigation of desert fire features. In order to investigate detection
methods in these diverse environments, new datasets need to be created and are required
to be fed to the models during the training period. This lack of desert feature representation
in popular fire datasets was also highlighted in [28]. To tackle this problem, we propose a
new dataset which includes 986 total fire and no-fire images for use with fire classification
models. This new dataset, Utah Desert Fire, was created to analyze the models in fire feature
extraction and classification abilities. This dataset was created in a desert environment
which provides valuable insight into the capability of fire detection in diverse conditions.

Fire 2023, 6,418

4 0f 20

In this paper, we explore the performance of four existing architectures and propose
two novel approaches for fire classification. The models were tuned and trained on this
newly proposed dataset with resulting performance comparisons drawn. Following these
comparisons, the proposed models were trained and tested on the popular DeepFire dataset
created by Khan et al. to compare performance with recent proposed architectures in the
literature [19].

The following outlines the contributions and flow of this research:

e Review of the existing research in fire detection with the focus on desert and
forest fires.

e (Creation of a novel desert fire detection dataset, Utah Desert Fire.

* Proposal of modified transfer learning approaches for Xception and ResNet-50.

e Hyperparameter tuning and testing for the best performance on the proposed Utah
Desert Fire dataset.

¢ Comparison of SVM, Xception, ResNet-50, and MobileViT architectures performance
against proposed models on the Utah Desert Fire dataset.

¢ Comparison of our proposed models performance with exisiting solutions in the
literature on the DeepFire dataset [19].

The following sections will discuss the architectures and approaches proposed, the
methods used for tuning and finding best performance, followed by resulting performance
and literature comparisons.

2. Materials and Methods
2.1. Architecture Qverview

The four models/architectures investigated for early desert and forest fire detection
include SVM, ResNet-50, Xception, and MobileViT. Modified architectures making use of
transfer learning were created as well using ResNet-50 and Xception as the backbone. The
following sections discuss the architectures in more detail along with the proposed transfer
learning approaches investigated in this research.

2.2. SVM

SVM is a popular classification and regression algorithm that transforms data into
a higher dimension to separate the data with hyperplanes. Once the data is separated
with the initial hyperplane, support vectors are created by passing two more hyperplanes
through one or more data points on each side. In our case, fire and no-fire classes create
the two hyperplanes that separate our data. Optimization involves creating the largest
distance, or maximum margin, between the support vectors for optimal performance. The
regularization parameter C, also known as the penalty parameter, is used to determine the
strength of regularization. This adjusts the amount of bias for misclassification vs. margin
size in the algorithm. An important aspect of SVM is the use of kernals which decide how
the data is manipulated for separation and provides the shape of hyperplanes [29]. Figure 1
illustrates a simple hyperplane separation between two classes. The support vectors can
be seen passing through the nearest data points to the middle-most vector. Noting this
illustration is a simple linearly separable example of an SVM.

Figure 1. An SVM example. Here, the filled circles show the data points, the solid line represents the
decision boundary, and the dashed lines represent the support vectors [30].

Fire 2023, 6,418

50f 20

2.3. ResNet-50

The ResNet family of convolutional neural networks was proposed by He et al. [31].
As neural networks increase in depth, they become more challenging to train due to
backpropagation loss. To remedy this, He et al. proposed skip connections that create a
shortcut for backpropagation to reach earlier layers and eliminate the vanishing gradient
problem [31]. Residual connections are also utilized, giving to the name ResNet, which
learn residual functions regarding the input layer. ResNet can be created using various layer
counts, i.e., ResNet-18, ResNet-34, ResNet-50, etc. In this paper, ResNet-50 is employed for
fire detection simulations. ResNet-50 was chosen by considering its size and performance.
For use with smaller datasets, a 50 layer architecture will be sufficient for classification over
101 or 152 layer variants while also providing a significant calculation reduction. Figure 2
illustrates the ResNet-50 architecture with its notable skip connections between each stage.
Each stage is repeated, indicated in the figure by the numbers below, dependent on the
layer count desired. The convolutional filter size is also determined by the resulting size
desired and can be seen in Figure 2.

’F\w g”oa;‘ 64 | | 64 | (256 128 128 | | 512 | ‘256 256 ‘1024 | 512 2043
%3 x4 %6 %3

Figure 2. ResNet-50 architecture.

2.4. Xception

Xception is a deep convolutional neural network architecture created by Chollet
to outperform the existing architectures in computer vision tasks [32]. Built based on
InceptionV3, Xception differentiates itself by utilizng depthwise separable convolutions
instead of traditional convolutions. This consists of a single convolutional filter for each
input channel and a final pointwise convolution applied to all channels. This approach,
known as depthwise separable convolutions, reduces the computations needed which
make Xception faster and more efficient than traditional CNNs. Xception incorporates
these convolutions into a 71-layer deep architecture that outperformed InceptionV3 on
ImageNet and other large-scale datasets [32]. The Xception architecture is depicted in
Figure 3 with three distinct sections, entry, middle, and exit. The entry and exit flow occur
only once while the middle flow repeats 8 times before feeding into the exit flow. Another
key feature is the skip connections utilized throughout all flows although, only the entry
flow makes use of a convolutional layer between each skip connection.

Entry Flow

IO DI 108309,

Middle Flow

Conv ReLU
LA i N
V Global -
A L) L) L
Pool (\ X%%)
4 g >
Separable Maxpool
Conv
Exit Flow

T 47003 —

Figure 3. Xception architecture.

Fire 2023, 6,418

6 of 20

2.5. MobileViT

MobileViT was created in 2022 by researchers at Apple with mobile computing per-
formance in mind [33]. This model, as illustrated in Figure 4, combines the strength of
convolutions and transformers into one light weight model. Traditionally, transformers
are heavy weighted networks that were developed for natural language processing tasks,
but have since been adapted to computer vision in recent years. Vision transformers (ViIs)
use self-attention mechanisms to learn long-range dependencies and relationships between
different pixels in images. This has been shown to be a competitive approach to image clas-
sification tasks while remaining cheap to train [34]. By using vision transformers in tandem
with convolutions, the model is able to learn from both the global and spatial information
of the image. MobileViT is a light weight, general purpose vision transformer containing
1.3M parameters in the xxs variant used in this research [33]. Due to the potential for on
device execution, MobileViT will serve as a great comparison against the larger models in
Xception and ResNet.

MobileViT block .
i o ‘ﬁ-_‘—b onv-n x n.
______________________ { Transformers as Convolutions ' _’._’ -

Local] (glol:al represem:mons)
W] mpresentatmns)

chJr’-l.u

w Fusion

MV2 MobileViT MVZ MobileViT Global pool
L
]_'u-'[block]_‘u_'[block Gt ﬁmeMF o8t

h=w=2 h=w=2

Output spatial — 128 x 128 64 x 64 32x 32 16 x 16 1x1

dimensions

Figure 4. MobileViT model [33].

2.6. Transfer Learning

Transfer learning is the concept of networks not starting from scratch. This is accom-
plished by taking a models knowledge previously learned on a task and leveraging those
weights for something new. In computer vision, models are trained on large datasets such
as ImageNet, an extensive visual database with more than 14 million images [35]. These
models learn the key features of images and allow for use in other classification tasks via
transfer learning. This approach consists of loading those learned weights and freezing
each layer to create the feature extraction layer. A new predictive layer is then added to
allow for a model to fine-tune on a new dataset for a specific problem. Thus, a model
can be trained faster, with less data, and with higher performance. This approach seems
promising especially when datasets are small and resources are limited, allowing learned
generalization on large datasets to accelerate new classification problems [36].

2.7. Proposed Modified Xception

The modified Xception model utilizing transfer learning is built on an Xception model
with pre-trained weights on ImageNet which are frozen during training [35]. This allows
leverage of the pre-trained model’s feature extraction for fire detection. Connected to
the Xception base model, a rectified linear unit activation (ReLU), average pooling layer,
and sigmoid activation are added. These form the new layers of the model and allow for
binary classification, in our case fire and no-fire. ReLU introduces non-linearity to our
model which helps prevent the vanishing gradients. This layer is then followed by average
pooling to down sample our feature map by averaging the values defined in the filter. This
reduction in features prevents over fitting while also making our model computationally
efficient. This is followed by the sigmoid activation that provides our classification of
1 or 0, fire or no-fire. Table 1 displays the layers of the proposed modified Xception as

Fire 2023, 6,418

7 of 20

discussed along with their output shapes and trainable parameters. The non-trainable
parameters seen here indicate the frozen layers within the feature extraction base while
the trainable parameters come from our newly added layers that are fine tuned for fire
classification. Figure 5 shows the built architecture of the proposed modified Xception
model that visualizes the information seen in Table 1.

Table 1. Proposed Modified Xception Summary.

Layer (Type) Output Shape Parameters
Input Layer (250, 250, 3) 0
Xception (8, 8,2048) 20,861,480
ReLU (8, 8,2048) 0
Global Average Pooling (None, 2048) 0
Sigmoid (None, 1) 2049

Total Params: 20,863,529
Trainable Params: 2049
Non-trainable params: 20,861,480

Input Layer

Sigmoid
Average Pooling
RelU (2048)
Xception (8.8.2048)
(8,8,2048)

250 = 250 x 3

Figure 5. Proposed modified Xception model.

2.8. Proposed Modified ResNet-50

Utilizing the same methodology as the proposed modified Xception model, a modified
ResNet-50 was built leveraging transfer learning. This allows for weights learned on
ImageNet to be loaded and frozen making use of the achieved feature extraction capabilities
for our fire detection problem. Adding new layers: ReLU, max pooling, and sigmoid to
form our predictive layer. Figure 6 shows the entire architecture for the proposed modified
ResNet-50. The input layer is a 250 x 250 x 3 image which is fed into ResNet-50 with
weights learned from ImageNet training. This is then passed through a ReLU to add
non-linearity and a max pooling layer to downsize our feature map. Finally, the sigmoid
layer allows for binary classification and provides 2049 trainable parameters to fine-tune.
Table 2 shows the parameters for each of these layers, noting that the only trainable layers
are from our sigmoid output layer.

Table 2. Proposed Modified ResNet-50 Summary.

Layer (Type) Output Shape Parameters
Input Layer (250, 250, 3) 0
ResNet-50 (8, 8,2048) 23,587,712
ReLU (8, 8,2048) 0
Global Max Pooling (None, 2048) 0
Sigmoid (None, 1) 2049

Total Params: 23,589,761
Trainable Params: 2049
Non-trainable params: 23,587,712

Fire 2023, 6,418

8 of 20

Input Layer

Sigmoid

- Max Pooling
200 = 250 = 3 r" """
RelLU (2048)
ResNet-50 (7.7 204a)

(7.7.2048)
Figure 6. Proposed modified ResNet-50 model.

3. Simulations and Results

In this section we discuss the simulation settings and data used for training and evalu-
ating our deep learning models on fire detection. The architectures discussed in Section 2
are fine-tuned and compared through multiple simulations for optimal performance. Per-
formance metrics are outlined through which we make use of in the resulting comparisons
of performance on the proposed Utah Desert Fire dataset. Finally, the proposed modified
architectures are compared against recent literature on the popular fire detection dataset,
Deepfire [19].

3.1. Simulation Environment

All simulations were performed using TensorFlow 2.10, Keras 2.10, and Python 3.9
on the following hardware: Intel® Core (Santa Clara, CA, USA) i5-7600K, 16 GB DDR4,
NVIDIA GeForce GTX 1070 with 8 GB GDDRb.

3.2. Metrics

The following metrics are used for comparing the relative performance between our
models and those proposed in recent literature. A positive label refers to the fire class
or an image that depicts fire. Negative refers to the non-fire class or an image that does
not depict fire. As predictions are made using the model, if the model correctly predicts
the label, it will be defined as a true negative (TN) or true positive (TP) respective to the
class in question. False positive (FP) is defined as predicted positive while its true class is
negative. Similarly, false negative (FN) is defined as predicted negative with its true class
being positive. These four definitions are used to create a visual representation of a model’s
prediction known as a confusion matrix. Along with this, the following performance
metrics were calculated:

Accuracy is defined as the percentage of correct guesses a model makes, which is the
correct guesses divided by all guesses made.

Accuracy = (TP +TN)/ (TP + TN + FP + FN) 1)

Precision measures how well a model predicts the positive label, in this case fire,
providing a measure for fire detection.

Precision = TP/ (TP + FP))

Recall measures how completely the label in question is predicted. Note that the key
difference between precision and recall is that recall considers FN predictions.

Recall = TP/ (TP + FN) 3)

Fire 2023, 6, 418

9 of 20

F1-Score is the harmonic mean of precision and recall, combining the quality and
completeness into one score.

F1-Score = (2 x Precision x Recall) / (Precision + Recall) 4)

3.3. Dataset OQverview

With research emerging in the area of forest fires, there was a lack of desert environ-
ment representation in the publicly available datasets. For this reason, we have created a
new dataset, Utah Desert Fire, to train and compare models on the important task of fire
detection in this environment. To create the dataset, experiments were conducted which
included the use of a Lion BullEx Intelligent training system, a DJI Mini 3 Pro (Figure 7),
and a small controlled brush fire to capture fire and no-fire images. Figure 8 illustrates the
experimental setup for the two conducted experiments which allowed for fire and no-fire
images to be taken. Samples of the Utah Desert Fire dataset are illustrated in Figure 9.

-3 _ &

Figure 7. DJI Mini 3 Pro Drone.

(a) Experiment setup for BullEx fire simulations. (b) Experiment setup for controlled brush fire.
Figure 8. Utah Desert Fire dataset experiments.

The dataset includes a total of 986 RGB images of size 250 x 250 which are further
split for use in training and testing of our proposed models. Table 3 outlines the split totals
which consists of 80% of the total images for training and 20% for testing, while 20% of the
training data was further split for validation.

Table 3. Utah Desert Fire training split.

Label Train Validation Test Total
Fire 316 79 99 493
No-Fire 315 78 99 493

Total 631 157 198 986

Fire 2023, 6, 418 10 of 20

NoFire

Figure 9. Sample images from the new fire dataset i.e., Utah Desert Fire dataset. Size of 250 x 250.

All models utilized pre-processing layers to normalize pixels from 0-255 to 0-1 for
training. However, only the proposed modified transfer learning architectures took advan-
tage of image augmentation. The list of augmentations used for the proposed modified
ResNet and Xception are outlined in Table 4. Each deep learning architecture was trained
over 50 epochs with binary cross-entropy as the loss function and input size of 250 x 250
as illustrated in Table 5. The following sections outline the hyperparameter tuning and
simulations that were conducted to locate the best performance of each architecture on the
Utah Desert Fire dataset.

Table 4. The augmentation applied to proposed modified models.

Random Augmentation Type Range
Rotation 0-50°
zZoom +0.1%
Shear 0.1%
Translation 0.1-0.2%

Table 5. Simulation settings and parameters.

Simulation Parameter Value
Epochs 50
Loss Function binary cross-entropy
Image Size 250 x 250
Batch Size 32%

* The proposed modified Xception and modified ResNet-50 utilized batch sizes of 64.

3.4. Support Vector Machine Results

Implementing an SVM for fire detection and classification was accomplished through
the Scikit-Learn library [30]. The hyperparameters and functions of interest are the C_value,
kernel function, and the degree of polynomial kernels. All other values were kept at their
default values. Four C_values were tested on each of the five kernels. The models were
then evaluated on the test data and the top results for each C_value are reported in Table 6.

Table 6. SVM results on the test data.

Accuracy

C_Value Kernel (Test Data) Precision Recall F1-Score
100 RBF 90.909% 0.909 0.909 0.909
10 RBF 90.909% 0.909 0.909 0.909
1 RBF 90.404% 0.905 0.904 0.904

0.1 Poly-degree 3 83.838% 0.838 0.838 0.838

Fire 2023, 6,418

11 of 20

According to Table 6, the radial basis function (RBF) was the preferred kernel through
our hyperparameter search. RBF resulted in the highest accuracy of 90.909% for both
C_values of 10 and 100. Polynomial of degree 3 was preferred when the C_value was
the smallest at 0.1. Note that the larger the C_value, the smaller the margin becomes
which provides a greater bias towards correct classification which is reflected in the
resulting performance.

3.5. ResNet-50 Results

Here, ResNet-50 was simulated to determine the best performance. In order to find
the best optimizer for each architecture, a random search of optimization algorithms was
conducted utilizing KerasTuner [37]. The following optimizers were chosen: Accelerated
Adaptive Moment Estimation (Adam), Nesterov-Accelerated Adaptive Moment Estimation
(Nadam), Stochastic Gradient Descent (SGD), Root Mean Square Propagation (RMSprop),
and Adaptive Gradient Algorithm (Adagrad). These optimizers were ran at their corre-
sponding default parameters initially as detailed in Table 7. The results in Table 8 outline
the top 3 performing optimizations found through hypersearching.

Table 7. Optimization algorithms with default hyperparameters.

Learnin Initial
Optimization Rate & B1 B2 Momentum € Accumulator p
Value
Adam 0.001 0.9 0.999 - 1x 1077 - -
Nadam 0.001 0.9 0.999 - 1x1077 - -
Adagrad 0.001 - - - 1x 1077 0.1 -
RMSprop 0.001 - - 0.0 1x1077 0.1 0.9
SGD 0.01 - - 0.0 - - -
Table 8. ResNet-50 initial optimizer search top three performance.
Optimizer Accuracy (%) Precision Recall F-Score
Adam 99.495% 1.0 0.990 0.995
SGD 99.490 % 1.0 0.990 0.995
Nadam 98.990% 1.0 0.980 0.990

As seen in Table 8, the Adam and SGD optimizers provided the best performance
followed by Nadam. The highest accuracy achieved from the initial optimizer search was
99.495% with the Adam optimizer. To seek further performance gains from the model,
these top 3 optimizers were tuned. This was also achieved through KerasTuner [37].

The search space for the following simulation included learning rate, momentum, 31,
B2, and p. The learning rate parameter provides how much the optimization adjusts the
weights through each pass as it minimizes error. Momentum is a parameter of gradient
descent in which the update term gets an added momentum value to assist optimization
over local minima and speeds up the convergence. 81 and f, are parameters used in Adam
and Nadam optimizers. B; controls the weight of the first moment estimates while B,
controls the weight of the second moment estimates. Finally, p adjusts the decay factor
which helps prevent an optimizer from overshooting minimum loss. These values were
randomly selected and trained on the ResNet-50 architecture over 50 epochs with validation
loss being monitored to determine the best results. The best model for each algorithm was
then tested on the test data for comparison against the first default simulation as shown
in Table 8.

Fire 2023, 6,418

12 of 20

Table 9 details the performance of ResNet-50 after experimentally searching for optimal
hyperparameters. Here, it is shown that SGD has the highest accuracy reaching 99.495%
with the optimal found tune. When compared to the default simulation in Table 8, the
performance was not increased through further tuning.

Table 9. ResNet-50 top three optimization algorithms with the best performing hyperparameters.

Optimization

Algorithm

Learning Rate Momentum B1 B2

Nesterov

Momentum Test Accuracy

SGD
Adam
Nadam

0.01
0.001

0.01

- - False 99.495%
0.01 0.001 - 98.485%
- 0.001 0.00001 True 98.485%

0

3.6. Xception Results

The same methodology was applied to determine the best optimization algorithm
for the Xception architecture. The default hyperparameters were utilized with the Keras
API [38] and simulated over 50 epochs, while keeping the best result. Table 10 presents
the top 3 optimizers and their corresponding test accuracy from the initial search which
includes the 5 optimizers discussed in Table 7. Here, it is shown that Adam, RMSprop, and
SGD provide the highest performance for the Xception architecture. RMSprop provided
the highest accuracy at 99.495% followed by Adam and SGD at 99.490% and 98.485%,
respectively.

Table 10. Xception initial optimizer search top three performance.

Optimizer Accuracy (%) Precision Recall F-Score

Adam 99.490% 1.0 0.990 0.995
RMSprop 99.495% 0.990 1.0 0.995
SGD 98.485% 1.0 0.970 0.985

Once the best optimization algorithms were determined, the hyperparameters were
further searched for an optimal performance. This was accomplished using KerasTuner [37]
which allowed quick and seamless hyperparameter search. The top three algorithms were
used in tandem with 20 random simulations, including random variations for learning rate,
B1, B2, p, and Momentum (SGD). The top results are tabulated in Table 11.

Table 11. Xception top three optimization algorithms with the best performing hyperparameters.

Optimization
Algorithm

Learning
Rate

Nesterov Test

Momentum P 1 P2 Momentum Accuracy

RMSprop
Adam
SGD

0.0001
0.01
0.01

0.9 0 - - - 100%
- - 0.0001 0.00001 - 99.495%
0.5 - - - True 99.495%

Through hyperparameter search, the RMSprop optimization algorithm achieved a
100% accuracy score on the test data. The hyperparameters that provided the best accuracy
were a learning rate of 0.0001, momentum of 0.9, and p=0. This tuned simulation achieved
a 0.5% accuracy increase over the default RMSprop hyperparameters. Both the Adam and
the SGD optimizers realized marginal accuracy gains of ~0.005% when compared to the
initial optimizer search in Table 10.

3.7. MobileViT Results

Following the same tuning method, MobileViT was simulated to find the optimal
performing hyperparameters. As seen in Table 12, the best performing optimizers were

Fire 2023, 6,418

13 of 20

found to be Adam, RMSprop, and SGD. Here, it can be seen that the performance was
similar between the top three. Although, Adam attained the best accuracy of 99.696%.

Table 12. MobileViT initial optimizer search top three performance.

Optimizer Accuracy (%) Precision Recall F-Score
Adam 99.696% 0.996 0.998 0.997
RMSprop 99.492% 0.990 1.0 0.995
SGD 99.391% 0.994 0.996 0.994

Seeking further performance increases with the MobileViT architecture, these top three
optimizers were searched for top performing hyperparameter tunes. The search results are
shown in Table 13 with corresponding parameter selection. Here, it can be seen that the
Adam optimizer continues to achieve highest detection accuracy with 99.797%. This tune
realized a gain of 0.1% accuracy over the default hyperparameters seen in Table 12. SGD
also achieved a higher accuracy over the default values by a similar margin while RMSprop
dropped slightly. However, the best performing hyperparameters for RMSprop as seen
in Table 13 are the default values. Thus, these parameters are consistent in providing
optimal performance.

Table 13. MobileViT top three optimization algorithms with best performing hyperparameters.

Optimization

Algorithm Learning Rate Momentum P B1 B2 Test Accuracy
Adam 0.001 - - 0.001 0.1 99.797%
SGD 0.001 0.99 - - - 99.495%
RMSprop 0.001 0 0.9 - - 99.290%

MobileViT is the smallest model in our comparison, with the selected xxs variant
containing 1.306 million (M) parameters, but performs competitively against the larger
models in accuracy. Section 3.11 draws a full comparison of all tuned model performance
where the model size vs. accuracy is clearly illustrated and further discussed.

3.8. Proposed Modified ResNet-50 Results

A modified ResNet-50 was created using pre-trained weights trained on ImageNet
as the feature extraction base [35]. Additional layers were added including a ReLU non-
linearity, max pooling, and an output layer with sigmoid activation to form the classification
layers. Testing included max pooling and average pooling where it was found that max-
pooling achieved the best results for this model. Here, batch sizes of 32 and 64 were
investigated, with 64 providing better results overall. Data augmentation was also used
through all training as was described in Table 4. Leveraging the optimization and optimiza-
tion parameter searches conducted on base ResNet-50, the optimizer chosen for this model
was SGD, as it provided the best accuracy and generalization. The model was trained over
50 epochs with input size of 250 x 250. Detailed description of the training parameters are
tabulated in Table 14.

Table 14. Proposed modified models training parameters.

Setting Modified ResNet Modified Xception
Batch Size 64 64

Epochs 50 50
Optimizer SGD Adam

Learning Rate 0.01 0.001

Fire 2023, 6,418

14 of 20

Training accuracy and loss performance over the 50 epochs is illustrated in Figure 10.
Here, it can be seen the Proposed modified ResNet-50 deploying transfer learning quickly
reaches 98% accuracy in the validation set with the loss continuing its downwards trend
well past epoch 40. This model achieved 100% accuracy on the Utah Desert Fire test set,
showcased in the confusion matrix Figure 11. The test performance receiver operating
curve (ROC) and precision-recall (PR) curve for this proposed method are illustrated in
Figure 12.

Training Accuracy Training Loss
0.301 —— Train Loss
Validation Loss
0.98 4 0.25
0.96 1 0.20 4
S
3 n
5 ul
2
 0s4] 0.15
0.104
0.92
—— Train Accuracy 0.05 4
0.90 1 Validation Accuracy
0 10 20 30 a0 50 0 10 20 30 40 50
Epoch Epoch
(a (b)

Figure 10. Proposed modified ResNet-50 training and loss performance on Utah Desert Fire. (a) Pro-
posed modified ResNet-50 training accuracy. (b) Proposed modified ResNet-50 training loss.

No-Fire

True label

F40

F20

No-Fire
Predicted label

Figure 11. Proposed Modified ResNet-50 Utah Desert Fire test classification.

ROC curve ROC curve
1.0 1.01
— AUC = 1.000 — AUC = 1.000

0.94 0.9

0.8 4 0.8 4
2 2
071 €071
L4 o
= =
£ 0.6 £ 0.6
=] o
o o
2 054 @ 0.5
= =

0.4+ 0.4 4

0.3+ T 0.3 4

0.2 T T T T 0.2 T T T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate False positive rate
(a) (b)

Figure 12. Proposed modified ResNet-50 test performance on Utah Desert Fire. (a) Proposed modified
ResNet-50 ROC curve. (b) Proposed modified ResNet-50 PR curve.

Fire 2023, 6,418

15 of 20

3.9. Proposed Modified Xception Results

Similar to the proposed modified ResNet-50, a modified Xception architecture was also
created, simulated, and examined. Here a pre-trained Xception architecture was used as the
feature extraction layer. This was achieved by applying the weights learned from training
on the ImageNet dataset and freezing those layers for subsequent training [35]. The feature
extraction layer was fed into a ReLU non-linearity, average pooling, and sigmoid which
formed our prediction layers for fire detection. These additional layers were fine-tuned to
our new task of fire classification. Both max and average pooling were tested, with average
pooling consistently providing better performance on the Utah Desert Fire test data. Based
on the results obtained from the optimizer search on base Xception, the RMSprop optimizer
was chosen for our modified Xception simulations. Batch size was altered from the original
Xception simulations above to 64 which provided consistent performance increases during
training and testing.

Figure 13 shows the training accuracy and loss over the 50 epoch training period for
the proposed modified xception architecture. The model learned rapidly over the first
5 epochs, reaching 95% accuracy on the validation set. As seen in Figure 14, the model only
classified one image incorrectly in the test set resulting in 99.495% accuracy. The ROC and
PR curves for this simulation can be seen in Figure 15.

Training Accuracy Training Loss
o /H 0.6 —— Train Loss
0.95 4 Validation Loss
0.5
0.90
0.4
085
c wn
5 a
é 0.80 503
0.75 1 0.2 4
0.70 4 1
—— Train Accuracy 0.1 k
0.65 Validation Accuracy
- - . - - . 0.0 +— - - - - -
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch
(@ (b)

Figure 13. Proposed modified Xception training and loss performance on Utah Desert Fire. (a) Pro-
posed modified Xception training accuracy. (b) Proposed modified Xception training loss.

No-Fire

True label

F40

F20

No-Fire Fire
Predicted label

Figure 14. Proposed Modified Xception Utah Desert Fire test classification.

Fire 2023, 6,418

16 of 20

ROC curve Precision-Recall
10 1.0 -
—— AUC = 1.000
0.9 0.9 4
0.8 0.8 1
2
2:0:7 0.7
5 5
G 06 3 0.6
UEJ 0.5 0.5
=
0.4 0.4
0.34 0.3
0.2 T T T 0.2 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.2 03 04 05 06 0.7 08 09 1.0
False positive rate Recall

(a) (b)
Figure 15. Proposed modified Xception test performance on Utah Desert Fire. (a) Proposed modified
Xception ROC curve. (b) Proposed modified Xception PR curve.

3.10. Architecture Comparison

Table 15 draws a full comparison of the models investigated in this paper and their
performance on the proposed Utah Desert Fire dataset. Here, it is shown that both the
proposed modified ResNet-50 model and base Xception exceed in accuracy reaching 100%.
This was followed by MobileViT at 99.797% accuracy and the proposed modified Xception
model and base ResNet-50 at 99.495%. Lastly, the performance of SVM trails these newer
deep learning models however, still achieves 90.909% accuracy and provides a baseline
comparison as a simple algorithm. Table 15 also draws comparison to each perspective
models parameter size in millions. The inherent trade off between large heavy weight
models and small light weight models is not clearly seen in this dataset. MobileViT, being
the smallest sized model in our comparison is able to classify as well as the other heavy
weight models in Xception and ResNet-50. For cases of edge deployment and real-time
image processing the trade off is vital for achieving real time inference, as large bulky
models are both computationally expensive and occupy more memory.

Table 15. Performance on Utah Desert Fire.

Model Accuracy Precision Recall F1-Score Model Size (Params)
Proposed Modified ResNet-50 100% 1.0 1.0 1.0 23.590 M
Xception 100% 1.0 1.0 1.0 20.861 M
MobileViT 99.797% 1.0 0.996 0.998 1.306 M
Proposed Modified Xception 99.495% 1.0 0.990 0.995 20.864 M
ResNet-50 99.495% 1.0 0.990 0.995 23.587 M
SVM 90.909% 0.909 0.909 0.909 -

3.11. Comparison with Recent Literature on the DeepFire Dataset [19]

With the surge in popularity, machine learning and artificial intelligence has been the
subject of research for fire detection in recent years. One popular forest fire dataset used
in this area was created by Khan et al. and is known as the DeepFire dataset [19]. This
section draws a comparison between the present literature and corresponding performance
with our proposed architectures. Table 16 illustrates the latest performance on the DeepFire
dataset. According to Table 16, the proposed modified Xception architecture utilizing
transfer learning has achieved the highest accuracy at 99.211%. Idores et al.’s TeutongNet
achieved the second-highest accuracy on this dataset, surpassing Khan and Khan’s FFireNet.
Both methods utilized a transfer learning approach similar to our proposed modified
Xception but, made use of differing pre-trained base models and classification layers [20,23].
The top three performing architectures indicate how powerful transfer learning can be for
image classification with small datasets.

Fire 2023, 6,418

17 of 20

Table 16. Comparison of DeepFire classification models.

Method Accuracy Precision Recall F1-Score

Proposed Modified Xception 99.211% 1.000 0.9842 0.9920

Idroes et al., 2023 [23] 98.680 % 0.9947 0.9793 0.9868

Khan & Khan, 2022 [20] 98.421% 0.9742 0.9947 0.9844

Proposed Modified ResNet-50 98.421% 0.9792 0.9895 0.9844

Mousavi & Ilanloo, 2023 [39] 96.880% 0.9736 0.969 0.9861

Khan et al., 2022 [19] 95.000% 0.9572 0.9421 0.9496
Supriya & Gadekallu, 2023 [21] 94.470% - - -

4. Conclusions

Wildfires are devastating catastrophes that affect communities locally and worldwide.
With the increasing temperature, dry conditions due to climate change, and the quick
spread of such fires, it is vital that these disasters be detected early. This research outlined
four popular machine/deep learning architectures and algorithms along with two new
proposed modified models with their corresponding performance on the fire detection
problem. Utilizing the newly created Utah Desert Fire dataset, the models were tuned for
their optimal performing hyperparameters and compared to analyze performance. The
highest performing model on the Utah Desert Fire dataset was found to be the proposed
modified ResNet-50 model and base Xception with both reaching 100% accuracy after
training, followed by MobileViT and our proposed modified Xception with 99.797% and
99.495% accuracy, respectively. The important tradeoff between model size and accu-
racy was compared and the smallest model, MobileViT, still achieved notable accuracy.
For further comparison, the proposed modified models making use of transfer learning
were tuned and trained on the popular forest fire dataset DeepFire. Here, our proposed
modified Xception model achieved highest accuracy at 99.211% topping the accuracy of
recent literature. These results show promising performance in accurately identifying both
desert and forest fires which is a crucial step towards easing the environmental impact of
these disasters.

5. Future Work and Challenges

Wildfires are fast spreading environmental disasters that require massive resources
to curb their spread once started. We have seen the power of deep learning in identifying
fires in both desert and forest settings. However, accurate detection is only part of the
solution. Due to the rapid changes and spread of fires, detection speed also plays a vital
role in wildfire prevention. Achieving real-time performance will require researchers to
address the following challenges.

* Reduction in model complexity for faster inference speed.

* Robust datasets for generalization within diverse environments.

* Real-time location systems for relaying size and direction of fires to corresponding
officials.

* Real-time data acquisition, processing, and transmission in remote environments.

Our future work will include the investigation of light weight models and methods
for increasing the inference speed to achieve real-time performance, while having high
detection accuracy.

Author Contributions: Conceptualization, M.S.; methodology, M.S. and M.D.; software, M.D.; val-
idation, M.S. and M.D.; formal analysis, M.D. and M.S.; investigation, M.S. and M.D.; resources,
M.D. and M.S.; data curation, M.D.; writing—original draft preparation, M.D.; writing—review and
editing, M.S. and M.D.; visualization, M.D.; supervision, M.S.; project administration, M.S.; funding
acquisition, M.S. All authors have read and agreed to the published version of the manuscript.

Funding: This project was supported by an internal GEL-Quick grant from Utah Valley University.

Fire 2023, 6, 418 18 of 20

Data Availability Statement: The created Utah Desert Fire dataset can be accessed at https://www.
kaggle.com/datasets/mdavis9/utah-desert-fire-dataset (accessed on 10 August 2023). The pro-
posed modified xception and ResNet architectures and code can be accessed at https:/ /github.com/
Noodler-Doodler/FireProject (accessed on 26 August 2023). The DeepFire dataset can be accessed at
https:/ /www.kaggle.com/datasets/alik05/forest-fire-dataset [19] (accessed on 5 May 2023).

Acknowledgments: The authors are also incredibly grateful for the full support of Justin Sprague,
UVU Fire Marshall, for the controlled fire experiments in an open field that enabled us to take aerial
images from the designated fire.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

Adam Accelerated Adaptive Moment Estimation
Adagrad Adaptive Gradient Algorithm

FN False Negative

FP False positive

GFLOPs Giga Floating Point Operations per Second
GPU Graphics Processing Unit

Ha Hectares

M Million

Nadam Nesterov-Accelerated Adaptive Moment Estimation
PR Precision-Recall

RBF Radial Basis Function

R-CNN Region Based Convolutional Neural Networks
ResNet Residual Network
RMSprop Root Mean Square Propagation

ROC Receiver Operating Characteristic
SSD Single Shot Detector

SGD Stochastic Gradient Descent

SVM Support Vector Machine

N True Negative

P True Positive

VGG Visual Geometry Group

ViTs Vision Transformers

Xception Extreme Inception

XXS Extra Extra Small

References

1. Wildfire Statistics—CRS Reports. Available online: https:/ /crsreports.congress.gov/product/pdf/IF/IF10244 (accessed on 23
June 2023).

2. National Interagency Coordination Center Wildland Fire Summary and Statistics Annual Report 2022. Available online: https:
/ /www.nifc.gov /nicc/predictive-services/intelligence (accessed on 23 June 2023).

3. Lynn, E Fire Impacts on the Mojave Desert Ecosystem: Literature Review; U.S. Department of Energy Office of Scientific and Technical
Information: Washington, DC, USA, 2012.

4. Wildfires, World Health Organization. Available online: https://www.who.int/health-topics/wildfires (accessed on
23 June 2023).

5. McLauchlan, K.K; Higuera, P.E.; Miesel, J.; Rogers, B.M.; Schweitzer, J.; Shuman,].K.; Tepley, A.].; Varner,].M.; Veblen, T.T.;
Adalsteinsson, S.A.; et al. Fire as a fundamental ecological process: Research advances and frontiers. J. Ecol. 2020, 108, 2047-2069.
[CrossRef]

6. U.S. National Park Service. Available online: https://www.nps.gov/moja/learn/nature/dome-fire.htm (accessed on
19 October 2023).

7. York Wildfire Still Blazing, Threatening Joshua Trees in Mojave Desert, Claire Thornton, USA Today. Available online:
https:/ /www.usatoday.com/story /news/nation/2023/08/02/ california-york-fire-update/70511816007/ (accessed on
19 October 2023).

8. Allen, E.B.; Steers, R.J.; Dickens, S.J. Impacts of fire and invasive species on desert soil ecology. Rangel. Ecol. Manag. 2011,

64, 450-462. [CrossRef]

https://www.kaggle.com/datasets/mdavis9/utah-desert-fire-dataset
https://www.kaggle.com/datasets/mdavis9/utah-desert-fire-dataset
https://github.com/Noodler-Doodler/FireProject
https://github.com/Noodler-Doodler/FireProject
https://www.kaggle.com/datasets/alik05/forest-fire-dataset
https://crsreports.congress.gov/product/pdf/IF/IF10244
https://www.nifc.gov/nicc/predictive-services/intelligence
https://www.nifc.gov/nicc/predictive-services/intelligence
https://www.who.int/health-topics/wildfires
http://doi.org/10.1111/1365-2745.13403
https://www.nps.gov/moja/learn/nature/dome-fire.htm
https://www.usatoday.com/story/news/nation/2023/08/02/california-york-fire-update/70511816007/
http://dx.doi.org/10.2111/REM-D-09-00159.1

Fire 2023, 6, 418 19 of 20

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

Brooks, M.L.; Pyke, D.A.; Galley, K.; Wilson, T. Invasive plants and fire in the deserts of North America. In Proceedings of
the Invasive Species Workshop: The Role of Fire in the Control and Spread of Invasive Species, Tall Timbers Research Station,
Tallahassee, FL, USA, 19-22 June 2001.

Balloffet, N.; Deal, R.; Hines, S.; Larry, B.; Smith, N. 2012, Ecosystem Services and Climate Change, U.S. Department of Agriculture,
Forest Service, Climate Change Resource Center. Available online: https://www.fs.usda.gov/ccrc/topics/ecosystem-services
(accessed on 23 June 2023).

Canadian Wildland Fire Information System, Natural Resources Canada. Available online: https://cwfis.cfs.nrcan.gc.ca/report
(accessed on 23 June 2023).

Russia Deforestation Rates & Statistics: GFW. Available online: https://www.globalforestwatch.org/dashboards/country /RUS
(accessed on 26 June 2023).

Houghton, J. Global warming. Rep. Prog. Phys. 2005, 68, 1343-1403. [CrossRef]

Oceanic, N.; Administration, A. Available online: https:/ /www.noaa.gov/noaa-wildfire /wildfire-climate-connection (accessed
on 10 September 2023).

Brown, T.J.; Hall, B.L.; Westerling, A.L. The impact of twenty-first century climate change on Wildland fire danger in the Western
United States: An applications perspective. Clim. Chang. 2004, 62, 365-388. [CrossRef]

Oh, K.S,; Jung, K. GPU implementation of neural networks. Pattern Recognit. 2004, 37, 1311-1314. [CrossRef]

Dawar, I.; Gupta, S.D.; Singh, R.; Kothari, Y.; Layek, S. Forest Fire Detection using Deep Learning Techniques. In Proceedings of
the 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies
(ViTECoN), Vellore, India, 5-6 May 2023; pp. 1-6.

Nallakaruppan, M.; Pillai, S.; Bharadwaj, G.; Balusamy, B. Early Detection of Forest Fire using Deep Image Neural Networks.
In Proceedings of the 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET), Warsaw, Poland, 19-21
May 2023; pp. 1-5.

Khan, A ; Hassan, B.; Khan, S.; Ahmed, R.; Abuassba, A. DeepFire: A novel dataset and deep transfer learning benchmark for
forest fire detection. Mob. Inf. Syst. 2022, 2022, 1-14. [CrossRef]

Khan, S.; Khan, A. FFireNet: Deep Learning based forest fire classification and detection in smart cities. Symmetry 2022, 14, 2155.
[CrossRef]

Supriya, Y.; Gadekallu, T.R. Particle swarm-based federated learning approach for early detection of forest fires. Sustainability
2023, 15, 964. [CrossRef]

Namburu, A.; Selvaraj, P; Mohan, S.; Ragavanantham, S.; Eldin, E.T. Forest Fire Identification in UAV Imagery Using X-MobileNet.
Electronics 2023, 12, 733. [CrossRef]

Idroes, G.M.; Maulana, A.; Suhendra, R.; Lala, A.; Karma, T.; Kusumo, F; Hewindati, Y.T.; Noviandy, T.R. TeutongNet:
A Fine-Tuned Deep Learning Model for Improved Forest Fire Detection. Leuser |. Environ. Stud. 2023, 1, 1-8. [CrossRef]

Alice, K,; Thillaivanan, A.; Koteswara Rao, G.R.; S, R.; Singh, K_; Rastogi, R. Automated Forest Fire Detection using Atom Search
Optimizer with Deep Transfer Learning Model. In Proceedings of the 2023 2nd International Conference on Applied Artificial
Intelligence and Computing (ICAAIC), Salem, India, 4-6 May 2023; pp. 222-227.

Wu, S.; Zhang, L. Using popular object detection methods for real time forest fire detection. arXiv 2018, 1, 280-284.

Jin, S.; Lu, X. Vision-based forest fire detection using machine learning. In Proceedings of the 3rd International Conference on
Computer Science and Application Engineering, Sanya, China, 22-24 October 2019; pp. 1-6.

Chen, G.; Cheng, R.; Lin, X;; Jiao, W.; Bai, D.; Lin, H. LMDFS: A Lightweight Model for Detecting Forest Fire Smoke in UAV
Images Based on YOLOV7. Remote Sens. 2023, 15, 3790. [CrossRef]

Ghali, R.; Akhloufi, M.A. Deep Learning Approaches for Wildland Fires Remote Sensing: Classification, Detection, and
Segmentation. Remote Sens. 2023, 15, 1821. [CrossRef]

Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273-297. [CrossRef]

Pedregosa, F; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825-2830.

He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016; pp. 770-778.

Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Seattle, WA, USA, 14-19 June 2017; pp. 1251-1258.

Mehta, S.; Rastegari, M. Mobilevit: Light-weight, general-purpose, and mobile-friendly vision transformer. arXiv 2021,
arXiv:2110.02178.

Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. Animage is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.
Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20-25 June 2009; pp. 248-255.
Mihalkova, L.; Mooney, R.]. Transfer Learning from Minimal Target Data by Mapping across Relational Domains. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI-09), Pasadena, CA, USA, 11-17 July 2009; Volume 9,
pp. 1163-1168.

https://www.fs.usda.gov/ccrc/topics/ecosystem-services
https://cwfis.cfs.nrcan.gc.ca/report
https://www.globalforestwatch.org/dashboards/country/RUS
http://dx.doi.org/10.1088/0034-4885/68/6/R02
https://www.noaa.gov/noaa-wildfire/wildfire-climate-connection
http://dx.doi.org/10.1023/B:CLIM.0000013680.07783.de
http://dx.doi.org/10.1016/j.patcog.2004.01.013
http://dx.doi.org/10.1155/2022/5358359
http://dx.doi.org/10.3390/sym14102155
http://dx.doi.org/10.3390/su15020964
http://dx.doi.org/10.3390/electronics12030733
http://dx.doi.org/10.60084/ljes.v1i1.42
http://dx.doi.org/10.3390/rs15153790
http://dx.doi.org/10.3390/rs15071821
http://dx.doi.org/10.1007/BF00994018

Fire 2023, 6, 418 20 0f 20

37. O’Malley, T.; Bursztein, E.; Long, J.; Chollet, F; Jin, H.; Invernizzi, L. KerasTuner. 2019. Available online: https://github.com/
keras-team/keras-tuner (accessed on 19 October 2023).

38. Chollet, F. Keras. Available online: https://keras.io (accessed on 19 October 2023).

39. Mousavi, S; Ilanloo, A. Nature inspired firefighter assistant by unmanned aerial vehicle (UAV) data.]. Future Sustain. 2023,
3, 143-166. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner
https://keras.io
http://dx.doi.org/10.5267/j.jfs.2023.1.004

	Introduction
	Materials and Methods
	Architecture Overview
	SVM
	ResNet-50
	Xception
	MobileViT
	Transfer Learning
	Proposed Modified Xception
	Proposed Modified ResNet-50

	Simulations and Results
	Simulation Environment
	Metrics
	Dataset Overview
	Support Vector Machine Results
	ResNet-50 Results
	Xception Results
	MobileViT Results
	Proposed Modified ResNet-50 Results
	Proposed Modified Xception Results
	Architecture Comparison
	Comparison with Recent Literature on the DeepFire Dataset DeepFire

	Conclusions
	Future Work and Challenges
	References

