
Citation: Hu, T.; Ma, L.; Gao, Y.; Fan,

J.; Sun, L. Modification and

Comparison of Methods for

Predicting the Moisture Content of

Dead Fuel on the Surface of Quercus

mongolica and Pinus sylvestris var.

mongolica under Rainfall Conditions.

Fire 2023, 6, 379. https://doi.org/

10.3390/fire6100379

Academic Editor: Grant Williamson

Received: 20 July 2023

Revised: 30 September 2023

Accepted: 2 October 2023

Published: 5 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fire

Article

Modification and Comparison of Methods for Predicting the
Moisture Content of Dead Fuel on the Surface of Quercus
mongolica and Pinus sylvestris var. mongolica under
Rainfall Conditions
Tongxin Hu , Linggan Ma, Yuanting Gao, Jiale Fan and Long Sun *

Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry,
Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; htxhtxapple@sina.com (T.H.);
malinggan@nefu.edu.cn (L.M.); 17808052614@163.com (Y.G.); fanjiale@nefu.edu.cn (J.F.)
* Correspondence: sunlong365@126.com

Abstract: The surface fine dead fuel moisture content (FFMC) is an important factor in predicting
forest fire risk and is influenced by various meteorological factors. Many prediction methods rely
on temperature and humidity as factors, resulting in poor model prediction accuracy under rainfall
conditions. At the same time, there is an increasing number of methods based on machine learning,
but there is still a lack of comparison with traditional models. Therefore, this paper selected the
broad-leaved forest tree species Quercus mongolica and the coniferous forest species Pinus sylvestris var.
mongolica in Northeast China. Taking surface dead fine fuel as the research object, we used indoor
simulated rainfall experiments to explore the impact of rainfall on the surface dead fuel moisture
content. The prediction model for surface dead fuel moisture content was modified by the direct
estimation method. Finally, using field data, the direct estimation method and convolution neural
network (CNN) model were used in the comparison. The rainfall simulation results showed that the
indoor fuel moisture content had a logarithmic increasing trend. Rainfall and previous fuel moisture
content had a significant impact on the fuel moisture content prediction model, and both the relational
model and nonlinear model performed well in predicting fuel moisture content under indoor rainfall
conditions. Under field conditions, humidity, temperature and rainfall played a significant role
in fuel moisture content. Compared with the unmodified direct estimation method, the modified
direct estimation method significantly improved the prediction accuracy and the goodness of fit
(R2) increased from 0.85–0.94 to 0.94–0.96. Mean absolute error (MAE) decreased from 9.18–18.33%
to 6.86–10.74%, and mean relative error (MRE) decreased from 3.97–17.18% to 3.53–14.48%. The
modified direct estimation method has higher prediction accuracy compared with the convolutional
neural network model; the R2 value was above 0.90, MAE was below 8.11%, and MRE was below
8.87%. The modified direct estimation method had the best prediction effect among them. This study
has a certain reference value for the prediction model of surface fuel moisture content in post-rainfall
fire risk assessment and is also of great significance for forest fire management in Northeast China.

Keywords: fine fuel moisture content; prediction models; direct estimation method; convolutional
neural networks

1. Introduction

Fires are occurring around the world, and based on future climate change trends,
wildfires will also show an increasing trend [1]. Fuel is one of the basic factors that deter-
mine forest fire occurrence and is the material basis of forest fire burning [2]. The moisture
content of forest surface fine fuels is one of the important factors affecting the spread and
combustion rate of forest fires and is increasingly recognized as the key to comprehensive
forest fire management. It has been widely used in fire risk assessment [3]. The moisture
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content of fine dead fuels on the surface is sensitive to changes in meteorological factors
and the microclimate caused by forest structure [4]. It is an important indicator of forest
fire risk level and a key parameter affecting changes in fire behavior [5,6]. Therefore, pre-
dicting forest surface dead fine fuel moisture content and improving its precision is of great
significance for forest fire prediction.

Rainfall, as a very important meteorological factor, has a significant influence on forest
fires. In general, from the perspective of interannual changes, rainfall helps to increase
the surface fuel load, thereby increasing the risk of fire. From the perspective of seasonal
changes, rainfall during the fire season can increase the fuel moisture content, thereby
reducing the fire risk and the harm it brings [7–9]. As rainfall increases, the water absorption
capacity of fuel becomes stronger, and the higher the initial moisture content of fuel, the
less rain it absorbs [10,11]. The influence of rainfall on surface dead fine fuel moisture
content is extremely obvious, but the process is complex and cannot simply equal rainfall
directly with the change in moisture content, which also includes processes such as soil
absorption and surface evaporation [12]. These complex processes pose certain challenges
to predicting the surface fluid moisture content.

Currently, studies on forest fuel moisture content are numerous, and the prediction
methods mainly include remote sensing estimation methods, meteorological elements,
equilibrium moisture content estimation methods and process models [2,13]. The equilib-
rium moisture content method is currently the mainstream method for predicting dead-fuel
moisture content, and forest fire danger prediction in many countries uses this method to
predict fuel moisture content [14]. The Simard method is based on the water loss process of
wood to predict the moisture content of combustible materials, and the Nelson method,
using a semi-physical model, has high accuracy [15,16]. However, it utilizes temperature
and humidity as factors and does not consider rainfall factors, resulting in deviations under
rainfall conditions. To predict the fuel moisture content under rainfall conditions, Lopes
elaborated on the changes in the relationship between rainfall and fuels [10] and proposed
three models for estimating fuel moisture content changes using daily rainfall data. Bilgili,
on the basis of the equilibrium moisture content [11], with the combination of wind speed,
rainfall, and air pressure difference, built a dynamic model for predicting fuel moisture
content. Lee, during the period of spring fire prevention [17], developed a prediction model
for the change in fuel moisture content based on different forest densities in the Yongdong
region of South Korea using surface dead fuel from the second to sixth day after rainfall as a
sample. The model measured the change in fuel moisture content with different diameters.

With the development of computer technology, prediction models such as machine
learning have begun to be used to predict the surface fuel moisture content. Among them,
neural networks are widely used. For example, Fan used long- and short-term memory
network models (LSTM) to predict the fuel moisture content [18] and used random forest,
artificial neural networks (ANN) and other methods to conduct research in combination
with the data from fuel moisture sticks. The results indicate that LSTM performs well in
describing the dynamic changes in time series data. Masinda used the random forest to
predict the moisture content of surface fuels in Northeast China [19], and the prediction
accuracy was high. Convolutional neural networks, as one of the classic algorithms for deep
learning, greatly reduce the number of parameters through convolutional kernels, achieve
local correlation, and achieve the effect of parameter sharing compared to traditional neural
networks. They can reduce human intervention and maximize the search for information
features, thereby enhancing prediction accuracy [20,21]. However, there is currently a lack
of research comparing and analyzing machine learning methods such as convolutional
neural networks with traditional methods.

Establishing a model of fuel with regard to the changes in the conditions of rainfall is
conducive to more accurately understanding the changing situation of fuel moisture content
after rain and is more effective in predicting fire danger periods. Promoting the overall
accuracy of fuel moisture content and forest fire danger prediction has very important
significance [22]. Therefore, this research selects important needle hardwood species of
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Quercus mongolica and Pinus sylvestris var. mongolica surface dead fine fuel in Northeast
China as the research object, combined with indoor simulation experiments and field
data acquisition, and based on the modified direct estimation method, unmodified direct
estimation method, and convolutional neural network, the dead fuel moisture content
under rainfall conditions is predicted.

2. Materials and Methods
2.1. Study Area

The research area is located in Maoer Mountain Experimental Forest Farm, Harbin city,
Heilongjiang Province (127◦34′~127◦40′ E, 45◦24′~45◦33′ N). It is approximately 30 km long
from north to south and 26 km from east to west, with a total area of 26,496 hm2. The forest
coverage rate is approximately 85%, and the forest stock reaches 2.05 million hm2. The
study area contains the flora of Changbai Mountain and has a continental monsoon climate.
It mainly has a typical natural secondary forest and plantation forest in Northeast China
formed by the destruction of the zonal top-level vegetation broad-leaved Korean pine
forest. The tree species are mainly Quercus mongolica, Poplus dividiana and Betula platyphylla.
During the 2021 autumn fire prevention season, surface fuels, semihumus, humus and soil
were collected in Quercus mongolica forest and Pinus sylvestris var. mongolica forest in Maoer
Mountain Experimental Forest Farm.

2.2. Experimental Methods
2.2.1. Indoor Simulated Rainfall Experiment

Surface fuels were collected in the experimental stand, and the samples were taken
back to the laboratory, placed in an oven, dried at 105 ◦C for 24 h until they reached absolute
dryness, and weighed. Equation (1) was used for calculating the moisture content of fuels:

FMC =
WH −WD

WD
× 100% (1)

where FMC is the moisture content of fuel (%); WH is the wet weight of fuel (g); and WD is
the dry weight of fuel (g).

Different initial fuel moisture content samples were prepared in advance. The impact
of rainfall on the dynamic changes in bed fuel moisture content is influenced by the initial
bed fuel moisture content. Therefore, different initial bed moisture contents needed to be
set for quantitative analysis in the experiment. The condition of the rainfall simulation
within the chamber was considered. If dry fuels are selected for testing, the bed moisture
content will rapidly increase in a short period of time, which will affect the test results;
therefore, the fuel bed was set to four initial moisture content gradients: 5%, 25%, 50%, and
75% [23]. The dried fuels were divided into different weights and placed on the weighing
platform. The initial moisture content of different fuels was measured using the formula
for calculating their moisture content. The required moisture was added, and the samples
were placed in a sealed bag for 24 h to fully absorb the moisture. The sealed bag was used
to completely absorb the moisture, and it was also measured before the experiment to
determine the fuel moisture content to ensure the accuracy of the fuel moisture content.

Bed compactness refers to the fuel bed volume density and the ratio of grain density.
The density of the combustible bed layer was set to three gradients: 0.01, 0.02, and 0.03.
Therefore, samples of Quercus mongolica with absolute dry masses of 4 g, 8 g, and 12 g were
collected, and samples of Pinus sylvestris var. mongolica with an absolute dry mass of 3 g,
6 g, and 9 g were placed in circular mesh baskets with a diameter of 20 cm and a height
of 2.5 cm to achieve different gradient bed fuel compactness. Each gradient was repeated
3 times, and a total of 9 samples were prepared [24].

In the experiment, we needed to set different rainfall intensities. According to the ac-
tual rainfall situation in nature, rainfall intensity gradients are divided: light rain, moderate
rain, heavy rain and rainstorm. The simulated rainfall experiment was set with treatments
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of 2 mm/h, 4 mm/h, 10 mm/h, and 16 mm/h in specific operations to observe the change
in fuel moisture content under different rainfall intensities.

We have set up a fuel bed to simulate a non-artificial environment, and placed the
samples collected in the field in the order of litter, semi humus, humus, and soil in a
rectangular planting basket to simulate the outdoor environment. Then, we loaded the
dry weighed test samples into a round mesh basket and inserted them into the rectangular
planting basket to simulate actual field measurement conditions. Finally, we simulated
rainfall using experimental instruments. We adjusted the appropriate rainfall position, took
out the round mesh basket every 10 min, weighed and calculated the moisture content
until it no longer changed. The experimental setup is shown in Figure 1.
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2.2.2. Field Experiments

During the 2021 autumn fire prevention season, monitoring points were set up at the
Quercus mongolica forest and Pinus sylvestris var. mongolica forest in the study area using the
random distribution method, and monitoring instruments for surface fuel moisture content
and meteorological data were placed [25–28]. The sampling period of this experiment was
set to 0.5 h, and monitoring instruments at different slopes were set at the experimental site,
which represents the understory environment at different locations. When setting up the
instrument, we ensured that the selected points were all located in a standard understory
environment. The specific environmental parameters of the sample plot are shown in the
table below.

The working principle was to place fuel in a nylon mesh bag, with the lower part in
contact with the soil surface, and the upper part without covering, only tightening the bag
opening to prevent leaves from entering the mesh bag. The sample was automatically lifted
through high-precision tension sensors periodically to achieve continuous measurement
of wet weight. Combined with the previously measured dry weight of the sample, real-
time moisture content of the sample was obtained [29]. The meters can automatically
measure fuel weight, temperature, humidity, wind speed, and solar radiation, and all data
can be downloaded with the set application. The monitoring instrument was based on
automatic weighing equipment that can continuously monitor the fuel moisture content
for a long time and has the function of a small weather station to automatically measure
meteorological elements, including air temperature, relative humidity, wind speed, rainfall
and solar radiation.

The main working principle of the instrument is to use the weighing method to
monitor the moisture content of fuels. First, the fuel is packed in a nylon mesh pocket, the
lower part is in contact with the soil surface, with the upper part not covered to ensure
its water vapor exchange with the environment. The automated high-precision tensile
sensor cyclically lifts the sample and determines the sample weight, achieving continuous
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measurement of the wet weight of the fuel sample. With the dry weight of the fuel sample
measured separately in the early stage, the real-time sample moisture content is obtained.
Meanwhile, meteorological factors such as atmospheric temperature, atmospheric relative
humidity, wind speed and light intensity at 1.2 m above the ground are automatically
collected [27,28]. The sampling period can be set to 0.05~24 h for any duration, and the
step size is set to 0.5 h in this study. To ensure its accuracy, the onsite measurement is
compared with the indoor weighing value (accuracy 0.1 g) and parameterized until the error
is minimized before the measurement. The study period was from July to October, during
which 6000 groups of fuel moisture content data of Quercus mongolica and 4500 groups of
fuel moisture content data of Pinus sylvestris var. mongolica were collected. Sample plot
information is shown in Table 1.

Table 1. Sample plot information.

Forest Type Altitude (m) Location Aspect Mean DBH
(cm)

Canopy
Density Mean Height (m) Mean Litter

Thickness (cm)

Quercus mongolica 395 Middle Northeast 18.40 0.70 15.20 7.20
Pinus. sylvestris var.

mongolica 380 Middle Southwest 15.80 0.40 16.47 4.90

2.3. Data Analysis
2.3.1. Constructing a Model for the Relationship between Rainfall and Fuel
Moisture Content

Water absorption curves for two types of fuel bed densities under different rainfall
intensities were drawn using rainfall experimental data. The influence of different factors
on the increase in fuel moisture content in the indoor simulation experiment was carried
out by using the ranking of random forest relative importance characteristics [30]. The
random forest model performs well in influencing factors ranking and selecting important
variables, which is why we used it in this experiment. Selected feature factors improve the
model performance.

According to indoor precipitation and growth of fuel moisture content data, the
construction model is as follows in Equation (2) [31]:

P = t× RI (2)

where P is rainfall; t is time; and RI is the intensity of rainfall.
Linear, nonlinear and relational models were carried out according to the simulation

data of the relationship between indoor rainfall and fuel moisture content. To prevent
overfitting issues during the training process of the selected model in this experiment,
the hold-out method was used to directly divide the original dataset into two mutually
exclusive datasets. The data was divided into 70% of the training set and 30% of the
validation set and several random divisions were used and repeated to take the average
value as the evaluation result, in order to obtain a better and more stable model [29].

2.3.2. Wild Fuel Moisture Content Prediction

1. Direct estimation method

The direct estimation method is a semi-physical method that considers the physical
process of fuel moisture diffusion and obtains relevant parameters through experiments [31].
It uses real-time moisture content data and meteorological data to accurately estimate
FMC in a short period of time and has good applicability [32]. To make the results more
accurate, we selected the Nelson model based on semi-physics and the Simard model
based on statistics. These models were used as the equilibrium moisture content response
equations in the direct estimation method (hereinafter, they are simply referred to as
the Nelson method and Simard method) [15,16]. The parameters of the model were
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estimated according to the Least Squares method, and then the prediction model of FFMC
was obtained.

We placed the surface fuel at the sampling site in the same mesh bag as was used
on the instrument and brought it back indoors to dry at 105 ◦C for 24 h to obtain the dry
weight. Next, we brought the weighed fuel back to its original location and selected some
samples around the sample plot, and obtained their real-time fresh weight according to
the sampling time interval set by the instrument. Finally, the fuel moisture content was
obtained with the same sampling period as the instrument. It was compared with the
automatic measurement results of the instrument in the laboratory and used to calibrate
the instrument.

This method is mainly based on the differential equation of surface fuel moisture
content proposed by Byram, as shown in Equation (3):

dM
dt

=
E−M

τ
(3)

where dM
dt represents the change in the moisture content of the fuel in period t; M represents

the moisture content of the fuel (%); E represents the equilibrium moisture content of the
fuel (%); and τ indicates the fuel material time lag (h).

The equilibrium moisture content in the above formula is calculated either by the
Nelson model or by the Simard model. The Nelson equilibrium moisture content model is
shown in Equation (4):

E = α + βlog
(
−RT

m
logH

)
(4)

where R is the universal gas constant with a value of 8.314 J·K−1·mol−1; T is the air
temperature (K); H is the relative humidity (%); m is the relative molecular mass of H2O,
with a value of 18 g·mol−1; and α and β are parameters to be estimated.

The Simard equilibrium moisture content model is shown in Equation (5):

E =


0.03 + 0.2626H − 0.00104HT H < 10

1.76 + 0.1601H − 0.0266T 10 ≤ H ≤ 50
21.06− 0.4944H+0.005565H2 − 0.00063HT H ≥ 50

(5)

where E is equilibrium moisture content (%); T is air temperature (◦C); and H is relative
humidity (%).

Substituting the equilibrium moisture content Equations (4) and (5) into Equation (3)
yields the following equation:

mi = λ2mi−1 + λ(1− λ)Ei−1 + (1− λ)Ei (6)

where mi is the FMC at time ti(%); mi−1 is the FMC at time ti−1 (%); Ei is the equilibrium
moisture content at time ti (%); Ei−1 is the equilibrium moisture content at time ti−1 (%);
λ = exp(−δt/(2τ)); τ = −δt/(2lnλ); and the time step in our study is 0.5 h, so ∆t is 0.5 h.

2. modified direct estimation method

The prediction model of fuel moisture content after rainfall is:

Mi = λ2mi−1 + λ(1− λ)Ei−1 + (1− λ)Ei + FMCIp (7)

where FMCIp is the part where the moisture content of fuels increases due to rainfall.
According to the actual moisture content data in the field, the nonlinear estimation

method was used to fit the model parameters and obtain their parameters. At the same
time, due to the selection of models with different sample parameters, in order to better
observe the performance of the model on different samples, the data was divided into a
70% training set and a 30% verification set based on time series to obtain a better and more
stable model.
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3. Convolutional neural network model (CNN)

The convolutional neural network (CNN) is one of the classical algorithms in the
field of deep learning [33,34], which has the characteristics of local connection and weight
sharing and can perform high-dimensional mapping processing of raw data and effectively
extract data features [35]. The CNN consists of a convolutional layer, a pooling layer,
and a fully connected layer. In the convolutional layer, the local connection of neurons
and the weight-sharing mode of the convolution kernel can greatly reduce the number
of parameters in the training process and improve the training speed of the model. In
the pooling layer, through the abstract understanding of the original data, the feature
dimension is reduced, which effectively reduces the number of training parameters, reduces
the degree of model overfitting, and improves the extraction efficiency of feature data. The
alternating use of the convolutional layer and pooling layer can not only maximize the
effective extraction of potential features of the input data but also reduce the error caused by
artificial extraction of features [20]. In this study, convolutional neural network prediction
mainly utilizes the torch package in R. The schematic diagram of the convolutional neural
network is shown in Figure 2:
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2.3.3. Model Evaluation and Comparison

The goodness of fit R2, the mean absolute error (MAE) and the mean relative error
(MRE) of the three models were calculated, and a 1:1 scattered point fitting diagram of
the prediction model of fuel moisture content was drawn with the measured value as the
abscissa and the predicted value as the ordinate for model evaluation and comparison.
Finally, we compared and analyzed the prediction effect through the time series of different
model results. The calculation formula is as follows:

R2 = 1−
∑n

i=1
(

Mi −Mj
)2

∑n
i=1
(

Mi −Mi
) (8)

MAE =
n

∑
i=1

∣∣Mi −Mj
∣∣ (9)

MRE =
n

∑
i=1

∣∣Mi −Mj
∣∣

Mi
*100% (10)

where Mi indicates the measured value of the moisture content of fuels (%); Mj indicates
the predicted value of moisture content of fuels (%); and Mi indicates the measured average
moisture content of fuel.
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3. Results
3.1. Dynamic Changes in Indoor Fuel Moisture Content

The dynamic changes in surface fuel moisture content of Quercus mongolica under
four different rainfall intensities, three bed compactness values (0.01, 0.02, 0.03), and four
initial moisture contents (5%, 25%, 50%, 75%) are shown in Figure 3. We can find that
the Quercus mongolica fuel bed increases its moisture content in logarithmic form with the
passage of time. After reaching the saturation moisture content, it stops rising and shows a
fluctuating growth trend of first fast, then slow. The intensity of rainfall decreases, and the
time required to reach the saturation moisture content also increases. To some extent, it
is difficult to reach the same saturation moisture content as the intensity of large rainfall.
Under different rainfall intensities, the water absorption rate of the bed layer also varies.
Generally, when the rainfall intensity is high, the water absorption rate of fuels is also
higher in the initial stage. With the increase in rainfall, the water absorption rate curve
of the fuel bed gradually flattens out in the later stage. The saturated moisture content
of surface fuels in Quercus mongolica is generally above 300% after rainfall. The overall
trend of moisture content in fuels is the same for different bed densities, with a more
rapid increase in moisture content at a bed density of 0.02. Under different initial moisture
content treatments, the water absorption rate of the fuel bed with an initial moisture content
of 75% is significantly lower than that of the fuel bed with an initial moisture content of 5%.
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The dynamic changes in surface fuel moisture content of Pinus sylvestris var. mongolica
under four different rainfall intensities, three bed compactness values (0.01, 0.02, 0.03), and
four initial moisture contents (5%, 25%, 50%, 75%) are shown in Figure 4. It shows that the
trend of the fuel bed of Pinus sylvestris var. mongolica is similar to that of Quercus mongolica
under different treatments, and the trend of the Pinus sylvestris var. mongolica fuel bed
also shows logarithmic growth with increasing time. The saturated moisture content of
the Pinus sylvestris var. mongolica bed under rainfall conditions is more than 150%, and its
saturated moisture content is far lower than that of the Quercus mongolica. The treatment of
different initial moisture contents of fuels shows that the larger the initial moisture content
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is, the smaller the growth space for the moisture content of fuels, the lower the water
absorption rate, and the greater the difference between the moisture content curves of fuels.
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3.2. Ranking of Factors Influencing the Growth of Moisture Content of Fuels

Figure 5 shows that according to the relative characteristic importance of random
forests, in the indoor simulated rainfall experiment, under the same rainfall conditions, the
previous fuel moisture content is the primary factor affecting the growth of the moisture
content of the fuel bed, while the initial moisture content and compactness are not very
important to the growth of the fuel moisture content. Compared with the Quercus mongolica
fuel bed, the results are similar in the fuel bed of Pinus sylvestris var. mongolica, and the
previous fuel moisture content also has an important impact on the increase in the moisture
content of the fuel bed of Pinus sylvestris var. mongolica under rainfall conditions.
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3.3. Rainfall–Fuel Moisture Content Growth Model

A linear model, a nonlinear model, and relationship model were established for two
types of fuels according to the important factor data obtained in the rainfall experiment
on the influence of the growth of moisture content of fuels. The analysis shows that in
the prediction results of the moisture content of Quercus mongolica, the relational model
performs better, while in Pinus sylvestris var. mongolica, the nonlinear model performs better,
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and the overall model of Pinus sylvestris var. mongolica performs better than that of Quercus
mongolica, and the specific equation is shown in Table 2.

Table 2. Model of moisture content growth of fuel due to rainfall.

Fuel Type Model Equation R2 MAE (%) MRE (%)

Quercus mongolica
Linear model FMCIp = 0.408− 0.43mi−1 + 0.021Pi + 0.112smc 0.74 32.12 24.39

Nonlinear model FMCIp = 0.987− 0.92mi−1 + 0.209mi−1
2 + 0.01Pi 0.78 29.82 18.91

Relational model FMCIp = 0.045Pi(smc−mi−1) 0.80 11.32 9.79

Pinus sylvestris var.
mongolica

Linear model FMCIp = 0.219− 0.498mi−1 + 0.015Pi + 0.002smc 0.82 19.61 16.44
Nonlinear model FMCIp = 0.602− 0.998mi−1 + 0.341mi−1

2 + 0.012Pi 0.87 12.32 18.83
Relational model FMCIp = 0.034Pi(smc−mi−1) 0.73 27.54 20.03

3.4. Dynamics of Wild Fuel Moisture Content

During the monitoring period, the moisture content of the surface fuels of Quercus
mongolica and Pinus sylvestris var. mongolica showed significant changes over time (p < 0.05).
The surface fuel moisture content of Quercus mongolica fluctuated significantly, showing
an overall trend of increasing, decreasing, increasing, and then decreasing (Figure 6). This
was because July was rainy and the frequency of rainfall was also high; therefore, the
surface moisture content of Quercus mongolica was maintained at a high level for several
consecutive days. The highest surface moisture content of Quercus mongolica was 378.11%,
the minimum value was 5.14%, and the average value was 72.73 ± 49.54%. However, in
mid-to-late July, without rainfall, the moisture content of fuels remained at a relatively
low level, and the change in moisture content was relatively small. In the monitoring
data of the moisture content of surface fuel of Pinus sylvestris var. mongolica, it can be
seen that, compared to the surface fuel moisture content of Quercus mongolica, its moisture
fuel content level was significantly lower during and before rainfall than that of Quercus
mongolica (p < 0.05); the highest moisture content of Pinus sylvestris var. mongolica fuels was
261.61%, the lowest value was 1.18%, and the average value was 48.16 ± 43.72%. During
rainfall, the increase in surface fuel moisture content of Pinus sylvestris var. mongolica was
smaller than that of Quercus mongolica, which maintained a uniform level of fuel moisture
content of Pinus sylvestris var. mongolica.
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3.5. Modified Direct Estimation Method

Based on the prediction model obtained from indoor experiments, the direct estimation
method was modified to obtain parameters for different fuel moisture content prediction
models. The parameters and evaluation indicators in Table 3 show that, compared to
the unmodified model, both modified direct estimation methods improved the degree of
fitting in predicting the surface fuel moisture content. For Quercus mongolica surface fuels,
the fitting degree R2 value of the unmodified Nelson method was 0.85, the fitting degree
R2 value of the unmodified Simard method was 0.90, the fitting degree R2 value of the
modified Nelson method increased to 0.96, and the fitting degree R2 value of the modified
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Simard method increased to 0.94. For the surface fuels of Pinus sylvestris var. mongolica, the
unmodified Nelson prediction fitting degree R2 value was 0.90, the unmodified Simard
method R2 value was 0.94, the modified Nelson method prediction fitting degree R2 value
increased to 0.95, and the modified Simard method prediction fitting degree R2 value
increased to 0.96. It can be concluded that the correction of Nelson’s method was more
effective in improving accuracy.

Table 3. Modified and unmodified direct estimation method model estimation parameters and errors.

Model Parameters/Errors

Modified Direct Estimation Method Unmodified Direct Estimation Method

Quercus
mongolica

Pinus sylvestris
var. mongolica

Quercus
mongolica

Pinus sylvestris
var. mongolica

Nelson

α 1.081 2.144 0.595 0.445
β −0.294 −0.209 −0.161 −0.091
λ 0.982 0.994 0.899 0.921

R2 0.96 0.95 0.85 0.90
MAE (%) 8.27 6.86 18.33 9.85
MRE (%) 7.84 6.12 10.91 17.18

Simard

λ 0.999 0.988 0.989 0.995
R2 0.94 0.96 0.90 0.94

MAE (%) 10.74 7.19 10.74 12.19
MAE (%) 14.48 3.53 14.48 3.97

3.6. Convolutional Neural Network Model
3.6.1. Relative Importance Screening of Meteorological Factors in Random Forest Models

Figure 7 shows that the relative importance ranking of random forest meteorological
factors is based on the monitored meteorological data and the surface fuel moisture content
data, and the results show that humidity, temperature and rainfall have significant effects
on the surface fuel content of Quercus mongolica and Pinus sylvestris var. mongolica, among
which humidity is the most significant for the surface fuel content of both. The difference
is that in Quercus mongolica forests, humidity and rainfall have a greater influence on
the moisture content of fuels, while in the surface fuels of Pinus sylvestris var. mongolica,
humidity and temperature have the greatest influence on the fuel moisture content.
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3.6.2. Convolutional Neural Network Model Tuning Parameters

In the parameter tuning optimization of the model, it is generally judged whether it is
optimal by the function loss between the training set and test dataset. The model tuning
analysis for predicting the moisture content of surface fuels is based on convolutional
neural networks. The model training loss and testing loss of the moisture content of
surface fuels in Quercus mongolica had certain fluctuations in the initial stage. But with
increasing training times (epochs), the loss function of the training dataset and test dataset
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began to decrease gradually, and at the same time, the two curves gradually approached
50 times, indicating that the mean square error was gradually reduced and the model
reached a certain effect (Figure 8). For the model parameter adjustment process of using
convolutional neural networks to predict the surface moisture content of Pinus sylvestris
var. mongolica, it was similar to the process of Quercus mongolica surface fuel moisture
content. At the beginning of the iteration, the testing loss was small, but there was a slight
difference between the training loss and the testing loss. After continuous iterations, the
two gradually approached each other, indicating that its effect was good.
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3.6.3. Convolutional Neural Network Model Prediction Results

The convolutional neural network model was used to predict the results of the surface
fuel moisture content. The surface fuel prediction fitting degree of the Quercus mongolica R2

value was 0.93, MAE was 6.05%, and MRE was 8.87%. The Pinus sylvestris var. mongolica
surface fuel prediction fitting degree of the R2 value was 0.90, MAE was 8.11%, and MRE
was 4.23% (Table 4). These results indicate that the prediction results of the moisture content
of Quercus mongolica surface fuels were better than those of Pinus sylvestris var. mongolica
surface fuels.

Table 4. Errors of convolutional neural network models for moisture content of fuel on different surfaces.

Forest Type R2 MAE (%) MRE (%)

Quercus mongolica 0.93 6.05 8.87
Pinus sylvestris var. mongolica 0.90 8.11 4.23

3.7. Model Performance Evaluation
3.7.1. Comparison of Scatter Fitting for Prediction Results of Different Models

The improvement of the prediction effect is more obvious in the Quercus mongolica
forest (Figure 9), when compared with the unmodified direct estimation method, regardless
of whether the Nelson method or Simard’s method improved to a certain extent, especially
in some areas with higher moisture content. For the prediction of the convolutional neural
network model, the distribution on both sides of the fitted line is also close to uniform, and
the R2 value is also better in the Quercus mongolica forest (Figure 9).

Figure 10 shows the scatter fitting between the predicted and measured results of
the surface fuel moisture content of Pinus sylvestris var. mongolica in different prediction
models, which is similar to the predicted results of Quercus mongolica. The modified direct
estimation method, whether using the Nelson method or the Simard method as embedded
models, performs better than the unmodified direct estimation method. Figure 10 shows
that the fitted lines of the modified direct estimation method are closer to the 1:1 line, and
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the area of the scattered point distribution is smaller, indicating that the model has better
performance. Compared with the unmodified direct estimation method, the improvement
in prediction performance is more significant in areas with higher moisture content. For
the prediction of the convolutional neural network model, the distribution on both sides
of the fitted line is also close to uniform, and the R2 value is also better, but it can be seen
that the effect of the unmodified direct estimation method is also better than that of the
convolutional neural network under the prediction of the surface fuel moisture content of
Pinus sylvestris var. mongolica.
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3.7.2. Time Series Comparison of Different Model Prediction Results

Figure 11 shows a time series comparison of the results of different models predicting
the surface fuel moisture content of Quercus mongolica. For different prediction models,
the overall trend was consistent on the same date, mainly with significant fluctuations
during the rainfall period, while the moisture content level on the majority of dates was low.
Due to the different accuracies and characteristics of different models, both models of the
modified direct estimation method showed good results (Figure 11). Although the overall
trend of the unmodified direct estimation method was consistent, the model’s response
was slow at the moment when the moisture content curve began to rise (i.e., after rainfall),
resulting in a low predicted value at the beginning of rainfall and an overestimation of
the predicted value after rainfall ended. For the convolutional neural network, the model
had a high overall accuracy, and the curve of the predicted value and measured value was
relatively consistent, but it fluctuated in some moments.
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Figure 11. Time series comparison of the prediction results of different models of Quercus mongolica.

Figure 12 shows a time series comparison of the results of different models predicting
the fuel moisture content of Pinus sylvestris var. mongolica. Several different models had
consistent overall performance trends for predicting surface fuels. The two models of
the modified direct estimation method showed good results. However, compared to the
measured value curve, due to the saturation point of the moisture content of the fuels, the
modified direct estimation method may have also overestimated a portion of the moisture
content during peak hours, while the unmodified direct estimation method may have also
had consistent overall trends. However, after the start of rainfall, the estimated value was
low, and after the end of rainfall, there may have been an overestimation phenomenon.
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From a comparison of time series curves, the convolutional neural network model was
also highly accurate, and it still fluctuated frequently on some dates, but the curve changes
were generally consistent.
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4. Discussion
4.1. The Influence of Rainfall on the Construction of a Model for Predicting Fuel Moisture Content

In the rainfall experiment, the fuel moisture content showed a sharp increase and
change in the early stages of the experiment. This was because the surface dead fuel
moisture content is composed of water within the leaf structure and surface free water.
At the same time, fuels have a large space for the absorption of precipitation under dry
conditions, making them prone to sharp peak changes [36,37], which is consistent with the
Baksic study on the temporal dynamic changes in fuel moisture content [38]. The difference
in moisture content between the two types of surface fuels is mainly due to the larger leaf
area and higher decomposition degree of Quercus mongolica in terms of the morphology and
structure of fuels, resulting in a higher overall moisture content. However, the surface fuels
on Pinus sylvestris var. mongolica exhibit a small needle-like shape and have a low degree
of decomposition [39]. At the same time, it can be seen that there is a certain difference
between the saturated moisture content of fuels obtained through rainfall experiments and
measurements under field rainfall conditions, which may be due to the lag effect of the
response of fuel moisture content to precipitation [24].

Our research found that the previous fuel moisture content has a significant impact on
the increase in fuel moisture content. This is because under the same rainfall conditions, the
higher the previous moment fuel moisture content is, the lower the proportion of rainfall,
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and vice versa. This is also fully reflected in many prediction models [40,41]. Rainfall
has a significant effect on the increase in moisture content of fuels in experiments, as it
can be directly absorbed and stored by the fuel bed, which has been confirmed in many
studies [42,43]. The fuel density did not significantly increase the fuel moisture content
in this experiment, but in Zhang’s study [23], the fuel density had a significant impact on
the fuel moisture content. This may be because the fuel density has dual effects, which
not only intercept rainfall but also increase the water vapor exchange between fuel beds.
In the prediction model of the increase in fuel moisture content on the surface of Quercus
mongolica under three rainfall conditions, the relational model performs better than the
linear and nonlinear models. This may be because the saturated fuel moisture content in
the relational model is certain, and the increase in fuel moisture content under rainfall
conditions is limited based on the previous fuel moisture content. Therefore, the changes
reflected in the relational model between the three are the largest [44]. However, due to the
lack of a water dynamics equation that explicitly expresses water absorption and diffusion,
it is difficult to improve the accuracy of this model to a higher level [45]. In the growth
of fuel moisture content on the surface of Pinus sylvestris var. mongolica, the nonlinear
model performs better. Although the relational model concisely expresses the limited
change in fuel moisture content under the condition of rainfall growth, external variations
in different fuel beds, temperatures, and humidity can affect the changes in fuel moisture
content. Therefore, although the principle of the nonlinear model is simple, its accuracy
and flexibility are better than those of the linear regression model, although it is prone to
overfitting [46]. Compared with Lopes’ linear modeling of the prediction of fuel moisture
content under rainfall conditions using three factors—rainfall intensity, rainfall change, and
initial combustible moisture content— the R2 value is slightly lower, but the model is more
concise and efficient [10]. Therefore, this study aims to further clarify the mathematical
relationship between rainfall and fuel moisture content through the establishment of three
models, which is conducive to finding representative and inductive physical models of
rainfall and fuel moisture content [47].

4.2. Driving Factors of Fuel Moisture Content under Rainfall Conditions

In the study of driving factors, humidity is the primary significant factor affecting the
fuel moisture content changes in the two forest types, which is consistent with many stud-
ies [48,49]. Water molecules in the air constantly move and penetrate surface fuels, causing
changes in the fuel moisture content. Rainfall can directly affect the moisture content of fu-
els, and its impact on the moisture content of Quercus mongolica is more important than that
of Pinus sylvestris var. mongolica. This is mainly because of the differences in fuel structure
and water absorption and evaporation, which are affected not only by external meteorolog-
ical factors but also by internal water transfer [50]. The surface fuel bed of broad-leaved
forests is relatively loose, and its surface is more susceptible to moisture absorption and
solar radiation [51]. In coniferous forests, fuels overlap, their internal water exchange paths
are much more complex, and the size and speed of water loss are different [52,53], which is
also similar to the results of Bilgili [11]. David used the saturation pressure difference [54],
leaf area index, and rainfall to predict the surface fuel moisture content of Brazilian tropical
rainforests, resulting in an underestimation of predicted values at higher measured values,
which is similar to the research of Masinda [25]. However, there was no underestimation
of the impact of rainfall on fuel moisture content in this study, which may be due to the
large amount of rainfall period data included in the collection of fuel moisture content
and meteorological data, or it may be due to the establishment of a relationship between
saturated moisture content and previous fuel moisture content specifically for the increase
in fuel moisture content under rainfall in this study. However, at certain times, there may
be a slight overestimation phenomenon, which may be due to discontinuous changes in
the surface fuel bed structure [55]. Temperature has a significant impact on the moisture
content of fuels, and the research results are similar to those previously reported [2,56].
However, it is evident that the increase in fuel moisture content under rainfall conditions
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weakens the influence of temperature, but temperature still has a significant impact before
and after rainfall [57]. In addition, wind speed and solar radiation have a relatively small
impact on the fuel moisture content in the study. This is mainly due to the changes in solar
radiation caused by canopy shading in the forest at the same time as the slowing down of
wind speed due to vegetation obstruction in the forest [58]. This may also be due to the
short time interval for data collection, which cannot reflect the more effective impact of
wind on the moisture content of fuel.

4.3. Model Evaluation and Comparison

This study constructed three prediction models for surface fuel moisture content for
two forest types. Among them, the modified direct estimation method has the highest
prediction fit R2 value and low error value, indicating that the model has a good interpreta-
tion of the fuel moisture content, low prediction error, and high accuracy. The comparison
between the modified direct estimation method and the unmodified direct estimation
method also confirms that the modification of the direct estimation method results in better
results for the model under rainfall conditions, improving the overall prediction accuracy.
The prediction accuracy of Quercus mongolica is higher than that of Pinus sylvestris var.
mongolica, which may be due to Quercus mongolica inhabiting broad-leaved forests, and
the structure of the fuel bed is simpler and more uniform than that of coniferous forests.
This result is similar to the research results of Yu [59]. Zhang used the direct estimation
method to predict the moisture content of fuels [60], and the error value was much higher
than that of this study. This is mainly because the research step size was 24 h, while the
step size of this study was half an hour, resulting in higher accuracy. This also confirms
that it depends to some extent on the step size for obtaining the moisture content of surface
fuels [28,59]. In the direct estimation method, the parameters of the Nelson equilibrium
moisture content model need to be estimated based on experimental data, and β is an
important parameter in the Nelson model. The value of β can directly reflect the sensitivity
of equilibrium moisture content to temperature and humidity. The higher the absolute
value of β is, the stronger the sensitivity of fuels to temperature and humidity, and the
weaker their water retention ability [16]. In this study, the absolute β value of Quercus
mongolica was greater than that of Pinus sylvestris var. mongolica. It also indicated that
the water-holding capacity of surface fuels in broad-leaved forests is stronger than that in
coniferous forests. This is different from the results of Zhang and Yu [24,59]. This is because
different types of fuels and sampling times can affect the physical and chemical properties
and structural characteristics of fuels. However, even in the modified direct estimation
method, only temperature, humidity, and rainfall were examined, and further exploration
is needed for more factor changes and more efficient predictions [61].

Although convolutional neural networks have lower prediction accuracy than direct
estimation methods, their fitting degree R2 value is also good, reflecting the advantages of
deep learning. Similar to the research results of Lee using machine learning to predict the
moisture content of surface fuels with a 10 time lag [62], convolutional neural networks
have high accuracy. This is because convolutional neural networks have advantages; they
can quickly capture the nonlinear relationship between the fuel moisture content and
meteorological factor data and alleviate overfitting problems. Compared with traditional
mathematical modeling, it has the advantages of simplicity, rapidity, and accurate mod-
eling and can process a large amount of data, significantly improving the accuracy of the
prediction model of the moisture content of fuels [63]. Masinda used random forest to
predict the surface fuel moisture content [25], and the R2 value reached 0.86 at the highest
value, which was slightly lower than the convolutional neural network, which may be
because the convolutional neural network is more suitable for large datasets and has better
feature mining ability, but research shows that random forest also has high application
potential and development space. The MAE and MRE values in the convolutional neural
network model are also low, ranging from 4.23% to 8.87%. However, compared to some
machine learning studies, the error is relatively high, which may be related to the selection
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of meteorological factors [64], such as the absence of the soil moisture factor in this article.
The effect of soil moisture on surface fuel moisture content has been clearly demonstrated,
and soil moisture changes are more continuous compared to surface fuels. Therefore,
coupling with soil moisture content models can be considered in the future to achieve
better results [65,66]. Fan used FSMM-LSTM to predict an R2 value of 0.91 [18], which is
comparable in accuracy to the results of this study. This study belongs to the same network
structure as convolutional neural networks, but LSTM has certain advantages in timing,
while the convolutional neural network proposed in this study was much more concise and
faster. At the same time, this study directly collected meteorological factors in the forest
microclimate to some extent, avoiding the influence of terrain.

However, in this study, the high accuracy of the direct estimation method and the
convolutional neural network model depends on a large amount of data obtained from
intensive instrument data collection for model training, and certain outliers in the data
reduce the number of samples. Therefore, in future research, the time span should also be in-
creased to obtain a large number of data samples while continuing to explore high-precision
models [67]. In this study, it can also be seen that rainfall has a significant impact on the
accuracy of model predictions, and its important mechanism should be considered in
future research. Furthermore, the impact of seasons and the lag of fuel response to weather
conditions on the moisture content of surface fuels should also be considered to improve
the accuracy of predicting fuel moisture content.

5. Conclusions

This study conducted indoor simulation experiments on the change in moisture
content of surface fuels in a Quercus mongolica forest and a Pinus sylvestris var. mongolica
forest in northeast China under different rainfall intensities and established models based
on the data. The model was obtained by combining indoor simulation experiments, and
the direct estimation method model was modified to achieve effective prediction of fuel
moisture content in the field. Finally, the dynamic changes and main driving factors of
fuel moisture content in the field were analyzed and compared with the unmodified direct
estimation method and convolutional neural network. According to the model error and
the comparison between measured and predicted values, it was determined that rainfall
and the previous fuel moisture content had a significant effect on the fuel moisture content
under indoor rainfall conditions. In field experiments, the modified direct estimation
method had the best performance, especially in effectively predicting the moisture content
of fuels under rainfall conditions. Although the convolutional neural network had slightly
lower fitting results in the model, the overall prediction accuracy was relatively high,
which can meet the requirements of forest fire risk prediction. The establishment and
modification of the model in this study are of great significance for improving the accuracy
of the prediction model for surface fuel moisture content under rainfall conditions and have
important reference values for forest fire prediction and management in Northeast China.
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