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Abstract: Fire risk assessment on the wildland–urban interface (WUI) and adjoined urban areas is
crucial to prevent human losses and structural damages. One of many interacting and dynamic
factors influencing the structure and function of fire-prone ecosystems is vegetation ignitability,
which plays a significant role in spreading fire. This study sought to identify areas with a high-level
probability of ignition from time series multispectral images by designing a pattern recognition neural
network (PRNN). The temporal behavior of six vegetation indices (VIs) before the considered wildfire
event provided the input data for the PRNN. In total, we tested eight combinations of inputs for
PRNN: the temporal behavior of each chosen VI, the temporal behavior of all indices together, and the
values of VIs at specific dates selected based on factor analysis. The reference output data for training
was a map of areas ignited in the wildfire. Among the considered inputs, the MSAVI dataset, which
reflects changes in vegetation biomass and canopy cover, showed the best performance. The precision
of the presented PRNN (RMSE = 0.85) in identification areas with a high potential of ignitability gives
ground for the application of the proposed method in risk assessment and fuel treatment planning
on WUI and adjoined urban areas.

Keywords: wildland–urban interface; vegetation ignitability; fire risk assessment; artificial neural
network

1. Introduction

The concept of Wildland–Urban Interface (WUI) is a transition zone between the
natural landscape and the build-up environment, officially proposed in February 1987 by
the U.S. Department of Agriculture [1]. The basis for allocating territories to WUI with a
specific fire management approach was reasoned by evidence that protecting structures
from wildland fires is challenging, and human-caused fire ignitions are the most common,
which became the basis for a specific legislative framework for WUI management [2].
Further, considering that anthropogenic factors increase the risk of a wildfire [3], the
management of WUI decided to create buffer (sanitary) zones and fuel breaks to protect
urban territories from fire [4]. A particular concern was that compact city planning is
more resistant to fire [5] and that urban areas were not considered in fire management.
The concept of non-flammable cities has worked for a long time until the climate changes
observed in recent times led to an increase in the frequency and intensity of fire weather [6].

Nevertheless, wildfires that hit the city have become frequent in the last decade.
Among numerous examples, wildfires have been reported in Greece (Athens, 2009 and
2015, Thasos, 2016, Mati, 2018), France (Marseilles, 2009 and 2016), Spain (Javea, 2012 and
2016), Italy (Palermo, 2022), Israel, 2016 and 2021, and the United States (California, 2018).
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The catastrophic consequences of the wildfire spread in cities have made professional
societies reconsider the existing approach to fire management and include urban vegetation
adjoin to WUI in the risk assessments system [7].

Fire spread in forests and WUI is a combination of two main strategies: direct propaga-
tion from adjacent vegetation and spotting fire through ember attacks [8,9]. The specificity
of urban areas limits direct propagation due to interspersing vegetation with fire-resistant
structures, while firebrands are the primary fire spread strategy on the built-in part of the
WUI [10–12]. In laboratory studies where fuel is subjected to contact with a lightning source,
e.g., firebrands, the ignitability is defined as 100% due to the experiment conditions exclud-
ing external limiting factors, while the time of ignition and flaming duration vary [13,14].
Studies that have assessed actual wildfires, however, show that not all firebrands drive new
ignitions; rather, fire spotting propagation depends on the meteorological conditions, the
amount of fine fuel, and species composition on the specific patches [15]. Thus, the ability
to identify areas with high ignition probability allows a better estimate fire connectivity
network in the specific area, which in turn supports risk assessment and fuel treatment
planning [16,17]. Although the probability of ignition depends on various environmental
factors, there now exists a wealth of evidence that the main factor affecting the likelihood
of the fire from firebrands is vegetation and its characteristics: moisture content, biomass
amount, and biofuel type [18–20].

The three main approaches used to evaluate fire risks in vegetated areas are biophysical
models, statistical models, and fire behavior models [21]

• Biophysical models estimate fire risk based on the scientifically validated weights
of terrain physical parameters: vegetation, elevation, slope and aspect, roads, and
settlements [22,23];

• Statistical models use GIS-based historical summaries to estimate the correlation
between fire-affecting parameters and observed fire frequency at specific locations [24];

• Fire behavior models use mathematical models that predict fire spread based on
biophysical parameters that simulate a fire dynamic in particular conditions [25]

Currently, the most advanced methodologies consider continuous risk assessment,
learning from past events, and using dedicated techniques to process relevant data, support
decisions, and enable risk management. Recent studies, therefore, propose a risk assess-
ment approach based on machine learning [26,27]. Practice shows a good performance
of various machine learning methods: support vector machines, decision trees, random
forests, artificial neural networks (ANN), and k-nearest neighbors [28–30]. The advantage
of ANN for fire studies is the ability to solve complex non-linear relationships between
multiple inputs and the probability of ignition that allows for achieving predictive accuracy
higher than in traditional statistical approaches [31]. ANNs are already implemented
to predict forest fire probability based on common parameters for biophysical models.
However, when considering the accuracy of estimated relationships to predict fire risks,
both approaches have comparable difficulties in practical application due to spatial and
temporal site specifics.

Although the vegetation characteristics are typical for fire risk, the specific dataset of
vegetation parameters varies among studies, e.g., tree height, canopy cover, and vegetation
type. The idea for monitoring vegetation state by spectral data obtained from remote
sensing satellite missions appeared in 1970 [32]. Firstly, the studies were focused on the
direct effect of plan biophysical properties, e.g., chlorophyll content, green biomass, and
leaf area index, on vegetation reflectance in the different spectral ranges. As a result, a
dozen vegetation indices (Vis) and statistical models were proposed for the estimation
of vegetation characteristics. Further, the implementation of modern technologies and
time-series spectral data allows for the estimation of indirect parameters such as plant
phenology and forest overstorey fuel attributes and supports fuel model classification [33].
VIs allow for the detection of forest degradation [34], discriminating vegetation covers [35],
and mapping vegetation according to the fuel type [36]. In practice, fire risk assessment
uses datasets of time-series VIs for better fuel classification performance [37,38].
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The present study focuses on supporting fire risk assessment on WUI and adjoined urban
areas with the ANN application, which estimates the probability of ignition based on temporal
VIs behavior. The study is conducted on empirical knowledge of Haifa’s 2016 wildfire; we test
the hypothesis that time series multispectral images provide sufficient information to predict
vegetation ignitability using a pattern recognition neural network (PRNN).

2. Materials and Methods
2.1. Case Study

Haifa is a coastal Mediterranean city in Israel on Mt. Carmel (32◦48′56′′N, 34◦59′21′′E).
The local topography includes steep mountain slopes and dry riverbeds (wadis) that
frame the sprawling city with “green fingers”, which leads to a considerable length of the
WUI [39]. The urban area includes native greenery, flora, and many planted trees [40].
Within the city, the vegetation consists primarily of decorative plantings, low-growing trees,
conifers, and maquis shrubland: Pinus halepensis, Quercus spp., Quercus calliprinos, Ceratonia
siliqua, Pistacia spp., Pistacia letiscus, Cistus salviifolius, Cistus criticus, Sarcopoterium spinosum,
Calicotome villosa, Genista fasselata Decne [41–43]. In the study region, the vegetation tends
to be extremely flammable because of its short time-to-ignition and long flame duration.
Previous ecological studies also indicate extensive connectivity among open spaces in Haifa;
backyards and other urban in-between areas complement the semi-natural landscape and
ensure wildlife movement between habitat patches [44].

Like the Mediterranean region, Haifa is prone to fires due to the “Fire Bioclimates”
climate, characterized by dry and hot summers and wet and mild winters [45]. Easterly
winds from deserts called “Sharav” aggravate the fire situation, which intensifies in the
transitional seasons and brings high temperatures of nearly 40 ◦C and low humidity below
30% [46]. Wildfires in the areas surrounding Haifa are frequent and well-studied in the
context of fire management; however, likely due to the non-flammable cities concept [39,47],
urban areas are often excluded.

The wildfire considered in this study occurred in Haifa on 24 November 2016. Meteo-
rological stations reported low humidity above 30% and strong southwest wind 10–15 m s-1.
The start of the fire was the ignition of wildland adjoined to the urban development [48].
Bypassing non-flammable constructions and burning nearly 9 ha of vegetation, the wildfire
rapidly crossed the city in the first hour (Figure 1). The surrounding wildlands’ total burned
area was 120 ha [49]. According to the assessment, the total damage and loss amounted to
130,000,000 USD [50].
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2.2. Data Collection and Pre-Processing

The source for vegetation data collection is the LANDSAT 8 satellite which consists
of two sensors: Operational Land Imager and Thermal Infrared Sensor. In the presented
study, we use data from Operational Land Imager 8 (OLI8), which consists of 9 bands.
Band 1 and band 9 are supporting bands for image correction according to environmental
conditions (atmosphere and clouds). Bands 2–7 present visible and infrared spectral data.
Bands 2–6 have spatial resolution of 30 m, and band 7 has resolution of 60 m. Band 8 is
panchromatic channel proposed for data fusion and improvement of spatial resolution
of the spectral bands to 15 m. We acquired OLI8 images with radiometric and geometric
correction (Level-2 Data Product) during 2014–2016, as provided by the United States
Geological Survey (USGS). Images have undergone atmospheric correction by the FLAASH
algorithm [51] and Gram–Schmidt pan-sharpening [52] in the ENVI environment (L3Harris
Technologies, Exelis Inc., Broomfield, CO, USA). Images with cloudiness of less than 5%
on the region of interest were selected from the obtained data set. To reach a better spatial
resolution that is important for urban studies, the collection of selected OLI8 images was
downscaled to achieve 1 m resolution and to reconstruct pre-fire vegetation conditions [53].
The downscaling method is based on machine learning technique that estimates spatial
distribution of vegetation from low-resolution spectra data by discovering dependencies
between 1 m resolution aerial imagery and 15 m resolution satellite-acquired pixels.

The reference output data to train the proposed PRNN was a map of the actual burned
area at the first hour of the wildfire event in Haifa on 24 November 2016, reconstructed
based on crowd knowledge and firefighters’ data by Polinova [48].

2.3. Pattern Recognition Neural Network
2.3.1. Neural Network Design

PRNN with the maximum likelihood principle was designed to estimate the relation-
ship between temporal VIs and the probability of ignition on WUI and adjoined urban
areas (Figure 2). Neural Network toolbox developed in MATLAB2020b environment (The
MathWorks, Inc., Natick, MA, USA) that provides ready-use modules was chosen for
PRNN designing. The backpropagation method with the sigmoid activation function was
used for PRNN training. This approach allowed for the optimization of the weights and
minimized a combination of squared errors so that the neural network learned how to
estimate relationships between inputs and outputs correctly. To provide random data
distribution for test-training-validation and to generalize the network by determining the
correct combination of squared errors and weights, Bayesian regularization that eliminates
the need for lengthy cross-validation process was applied for the designed PRNN. The
number of hidden layers of PRNN was defined as 10 for all input datasets. The PRNN
input data is temporal VIs behavior maps, and output data was classified into ‘Ignited’ and
‘Not ignited’ pixels.

2.3.2. PRNN Input

The collected and downscaled OLI8 images were processed to produce VIs maps.
The VIs considered in the study were selected according to their relevance to the main
fire-related vegetation characteristics: canopy cover, leaf area index, biomass amount,
and moisture (Table 1). In total, six indices were considered in the study: Enhanced
Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI), Modified Simple
Ratio (MSR), Modified Soil Adjusted Vegetation Index (MSAVI), Transformed Difference
Vegetation Index (TDVI), Normalized Multi-band Drought Index (NMDI).
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Figure 2. PRNN for estimating the relationship between temporal VIs behavior and probability of
ignition.

Table 1. VIs considered in the study.

VIs Equation Related Vegetation Characteristics Reference

EVI 2.5 ∗ (NIR − Red)
(NIR + 6 ∗ Red − 7.5 ∗ Blue + 1)

Biomass, canopy cover [54,55]

NDVI NIR − Red
NIR + Red Biomass, tree productivity, leaf area index [56–58]

MSR ( NIR
RED ) − 1

(
√

NIR
Red ) + 1

Leaf area index, fraction of
photosynthetically active radiation, biomass [59,60]

MSAVI 2 ∗ NIR + 1 −
√
(2 ∗ NIr + 1)2 − 8(NIR − Red)

2
Biomass, canopy cover [60–62]

TDVI 1.5 ∗
[

(NIR − Red)√
NIR2 + Red + 0.5

]
Canopy cover [63]

NMDI NIR − (SWIR1 − SWIR2)
NIR + (SWIR1 − SWIR2)

Vegetation moisture [64]

The PRNN input dataset had several configurations: all indices for all considered
dates, each index for all dates, and a set of indices at the specific dates chosen based on the
statistical analysis named the ‘PCA dataset’. Factor analysis with the principal component
method was used to reduce the number of variables by a multivariate technique that
analyzes a matrix of numerous inter-correlated quantitative dependent variables [65,66].
‘PCA dataset’ was proposed to evaluate factor-based combinations (different VIs at different
dates) for better ignitability prediction.

2.3.3. PRNN Output

The map of the actual burned area at the first hour of the wildfire event was used to
prepare the common output dataset for PRNNs with various inputs. Pixels matching the
actual burned area at the first hour were marked to class ‘Ignited’; pixels near the burned
patches and staying resistant to the fire were mapped to the class ‘Not ignited’. In total,
1500 pixels of each class were selected for the neural network training.
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2.3.4. RNN Accuracy Measures

Trained PRNNs with the best performance of estimated ignition probability were
subjected to accuracy assessment. The precision of the PRNNs was assessed by the percent-
age of pixels within the boundaries of the actual ignited area that is classified as ‘Ignited’
(i.e., with a probability threshold of 0.5). Pixels with an ignition probability of more than 0.5
are mapped together with polygons of the actual ignited area for visual inspection [67]. In
addition, the quantitative assessment of accuracy was performed by calculating the average
value and standard deviation of ignition probability, estimated by PRNNs in pixels falling
into the actual ignited area.

3. Results
3.1. Data Preparation

After sorting satellite images and excluding images with a high level of cloudiness, the
result was fourteen OLI8 images captured from November 2014 to October 2016. Due to
the cloudiness, two large gaps occurred in the temporal data sequence; data was absent for
the period from May to October 2015 and from March to July 2016. The resulting images
were used to produce six VI’s temporal maps—one temporal map contained all declared
indices named ‘All indices’.

The factor analysis was performed to reduce the number of indices from the ‘All
indices’ dataset. The resulting two first principal components produced by the factor
analysis explained 81.8% of the variance: 60.3% explained by the first component, and
21.5% explained by the second component. The strength of correlation between considered
VIs and the first two principal components was used to select 39 VIs obtained at the specific
dates and introduced in a new map named ‘PCA dataset’.

3.2. PRNN Training

The predefined samples of pixels from the input maps were introduced in PRNN for
training. The results of the confusion matrix for each prepared input dataset are presented
in Table 2. All of the eight considered datasets showed good performance in identifying
both ignited and not ignited pixels. When considering the prediction accuracy in each
individual group—training, test, validation—we see a chaotic distribution of estimated
accuracy caused by the random dividing of data into groups supported by Bayesian
regularization. Therefore, to assess the PRNN performance regarding the input dataset, the
total accuracy considering together results of training, test and validation was chosen as a
key indicator. The lowest prediction accuracy was observed in the NMDI data set: 85.9%
for ignited pixels and 87.5 for not ignited pixels. The ‘All indices’ dataset’ accuracy was
also relatively low—92.9% for ignited and 88.4% for not ignited. One more dataset with
relatively low precision was PRNN trained on the NDVI dataset: 91.3% for ignited pixels
and 83% for not ignited. The accuracy of PRNN trained by the TDVI dataset was 90.9% for
ignited and 89.1% for not ignited pixels. The PRNN trained by the MSR dataset predicted
ignited areas with an accuracy of 95% and not ignited with an accuracy of 86%. The neural
network trained on the ‘PCA dataset’ and EVI had similar results in accuracy: 96.3% for
ignited pixels in both datasets, 90.6% in the ‘PCA dataset’, and 87% in the EVI dataset for
not ignited pixels. PRNN trained by the MSAVI dataset showed the best performance:
96.4% for ignited and 90.6% for not ignited areas. The best performance of trained PRNN
was observed in MSAVI, EVI, and ‘PCA dataset’.

3.3. PRNN Accuracy Assessment

Based on the training results, three ignition probability maps were reconstructed
using PRNNs with the best performance: the EVI, MSAVI, and PCA datasets. A total of
94,043 pixels from the reconstructed PRNN map fell within the boundaries of the actual
ignited area. Among them, a probability of ignition of more than 0.5 was 77.8% of the pixels
estimated by PRNN trained on the EVI dataset, 85.6% of the pixels estimated by PRNN
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trained on the MSAVI dataset, and 83.6% of the pixels estimated by PRNN trained on PCA
dataset (Figure 3).

Table 2. The results of the Confusion Matrix of trained PRNN.

Dataset
Correspondence of Predicted and Actual Targets (%)

Training Validation Test Total (Training,
Validation, and Test)

EVI
Ignited 96.8 100 90 96.3

Not ignited 82.4 93.8 100 87

NDVI
Ignited 90.6 100 86.7 91.3

Not ignited 80.6 86.7 92.3 83

MSR
Ignited 96.3 90 93.8 95

Not ignited 89 76.9 78.6 86

MSAVI
Ignited 96.9 90 100 96.4

Not ignited 92.5 87.5 84.6 90.6

TDVI
Ignited 90.3 84.6 100 90.9

Not ignited 91.5 77.8 93.3 89.1

NMDI
Ignited 84.5 88.9 91.7 85.9

Not ignited 88.1 85.7 86.7 87.5

All indices
Ignited 94.1 90 85.7 92.9

Not ignited 87.3 87.5 93.8 88.4

PCA dataset
Ignited 95.1 100 100 96.3

Not ignited 84.5 100 92.9 87.9Fire 2022, 5, x FOR PEER REVIEW 8 of 13 
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According to the methodology, the quantitative assessment of the predictive accuracy
provided by the trained PRNNs with the best performance was calculated by the average
value and standard deviation of ignition probability in pixels falling into the ignited area.
Due to the ability of MSAVI to separate between vegetation and soil and sensitivity to plant
dryness and phenology [68], the best precision for detecting ignited areas were observed in
the map created by PRNN trained on this index: the average value of ignition probability
was 80.21%, and the standard deviation was 24.9%. The PRNN trained on the PCA dataset
also showed high precision in estimating ignition probability in the considered area: the
average value was 80.06%, and the standard deviation was 26.28%. The lowest accuracy
in prediction ignited areas was shown by PRNN trained on the EVI dataset: the average
value was 73.57%, and the standard deviation was 31.17%.

4. Discussion

By utilizing biophysical vegetation characteristics expressed by VIs and calculated
from OLS8 time series multispectral imagery, we effectively identified and mapped areas
with a high-level probability of ignition within the WUI and adjoined urban areas. Whereas
other methods based on the temporal deviation of vegetation characteristics obtain an
RMSE ≈ 0.6–0.80 [69–71], the method used in this study was based on vegetation behavior
patterns expressed by VIs and estimated to be more accurate (RMSE ≈ 0.85). It is important
to note that obtained results, similar to other studies i.e., [69–71], refer to the informativeness
of the input dataset and suitability of analytical technique, while the ability of generalization
correlative approaches for fire risk assessment is still challenging [72]. The precision of
the vegetation-only method presented in this paper is comparable to statistical approaches
which consider complex environmental data [73–75] due to the advantage of machine
learning techniques over traditional analyses [76,77].

The prediction accuracy of ignition probability by neural networks trained on com-
plex environmental parameters depends highly on the number and informativeness of
variables: the precision is directly correlated with the completeness of the input data [78].
The analysis of these networks highlights that among the considered environmental pa-
rameters, fuel moisture and the amount of precipitation are the main factors for ignitability
prediction [79–81]. As noted in our introduction, vegetation is the main factor predicting
ignitability and adds information about landscape and weather to increase the accuracy of
the neural network analysis by a few percent [31]. The increased accuracy is because the
information on vegetation state dynamics allows for obtaining indirect information about
precipitation and anthropogenic activity by the plant growth rate [64,82,83].

The study area investigated in this paper represents a variety of vegetation types
under different water regimes, including trees, shrubs, grass, and ornamental plants. The
advantage of this work is the ability to predict the ignitability in a diversity of vegetation
species with different moisture contents typical to urban areas, which has previously been
a challenge for many researchers [74,84,85]. In contrast to the generally accepted approach
of live fuel moisture content analysis as the primary ignitability estimator [86,87], spectral
remote sending data and VIs, in particular, allow monitoring phenological status as relevant
drivers of leaf biomass and moisture contents [88].

The feature of multispectral satellite systems such as OLS8 is collected by spectral
signals together with the biochemical and physiological characteristics of vegetation [89].
The advantage of this feature for fire risk assessment is the ability to capture the changes
both in water content [90] and phenology [91], which allows for the estimation of fuel
flammability and supports ignitability prediction [13,14,92]. In the conducted study, the
most appropriate VI for vegetation ignitability prediction on WUI and adjoint urban areas
was MSAVI. Correlating with green biomass and vegetation cover, MSAVI makes the
index a powerful tool for estimating vegetation vitality [93]. In recently published works,
MSAVI has been established to predict land use and land cover classes such as native forest,
shrublands, grassland, and vegetation adjoint to the built-up areas [94,95].
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The high predictive accuracy of MSAVI observed in this study exceeded the results
obtained with the input data configuration based on PCA analysis, indicating that the
informativeness of this index in fire risk assessment is underestimated and has the potential
for ignitability mapping. While NDVI is wildly used for fire risk assessment in vegeta-
tion [71], PRNN trained on the NDVI dataset is not among the top three methods in terms
of accuracy due to the low sensitivity of the index to vegetation moisture in shrubs and
trees [96].

The precision of the presented PRNN gives ground for applying this approach to
estimate vegetation ignitability and can be implemented in fire risk assessment as input data
that describes fuel [97,98]. MSAVI reflects vegetation characteristics relevant to flammability
and, together with other environmental data such as topography and climate, can support
fire management and decision-making on WUI and adjoined urban areas [92,99].

5. Conclusions

The present study proposes to support fire risk assessment on WUI and adjoined
urban areas by estimating the probability of vegetation ignition by ANN. The PRNN was
designed to predict ignitability based on temporal VIs behavior and assess its performance
in comparison to the actual ignited area observed in a wildfire that occurred in Haifa,
Israel, in 2016. The results of the study confirm that time series multispectral images
provide sufficient information to classify vegetation according to its probability of ignition.
Among the considered indices, the best performance in identifying areas with a high
potential of ignitability was MSAVI, which reflects changes in vegetation biomass and
canopy cover. The precision of more than 85% of the presented PRNN gives ground for
applying this approach to assess vegetation ignitability and to support fire management
and decision-making on WUI and adjoined urban areas.
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