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Abstract: An in-depth understanding of the low-temperature reactivity of hydrocarbon fuels is of
practical relevance to developing advanced low-temperature combustion techniques. The present
study aims to study the low-temperature chemistry of several large n-alkanes with different carbon
chain lengths in counterflow cool diffusion flames by kinetic analysis. The large n-alkanes that
were chosen are n-heptane (NC7H16), n-decane (NC10H22) and n-dodecane (NC12H26), which are
important components of practical fuels. Firstly, the thermochemical structure of a typical cool
diffusion flame is understood through its comparison with that of a hot diffusion flame. The boundary
conditions, including the ozone concentration, fuel concentration and flow velocity—where cool
flames can be established—are identified with a detailed chemical mechanism that evaluates the
low-temperature reactivity of the investigated n-alkanes. The results show that the n-alkane with
a longer carbon chain length is more reactive than the smaller one, thereby indicating the order of
NC12H26 > NC10H22 > NC7H16. This trend is qualitatively similar to the findings from non-flame
reactors. The reaction pathway and sensitivity analysis are performed to understand the effects of
carbon chain length on the low-temperature reactivity. The contribution of an n-alkane with a longer
carbon chain to the dehydrogenation reaction, oxidation reaction and isomerization reaction is greater
than that of a smaller n-alkane, and abundant O and OH radicals are generated to promote the fuel
low-temperature oxidation process, thereby resulting in an enhanced low-temperature reactivity.
The effects of ozone addition on the low-temperature reactivity of n-alkanes are also highlighted.
It is found that the addition of ozone could provide a large number of active O radicals, which
dehydrogenate with the fuels to generate OH radicals and then promote fuel low-temperature
oxidation. The present results are expected to enrich the understanding of the low-temperature
characteristics of large n-alkanes.

Keywords: kinetic analysis; cool flames; counterflow flames; large n-alkanes; low-temperature
reactivity

1. Introduction

In order to mitigate greenhouse gas emissions and meet the increasingly stringent
emission standards, it is necessary to improve the thermal efficiency of combustion engines.
Many low-temperature combustion technologies, such as advanced lean burn gasoline
engines [1,2], homogeneous charge compression ignition (HCCI) [3,4], partially premixed
compression ignition (PPCI) [5], and reactivity-controlled compression ignition (RCCI) [6],
have been proposed in recent decades. The development of these new-concept combustion
techniques depends on a deep understanding of fuel’s low-temperature oxidation kinetics,
which has received increasing research attention recently. Low-temperature chemistry has
been proven to have a significant impact on the engine’s ignition, knock and combustion
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efficiency [7–10]. For instance, low-temperature chemistry is dominant for auto-ignition
propensity, which in turn is related to the engine knock or super-knock phenomena [11–13].
Therefore, understanding the low-temperature kinetics of transportation fuels has practical
significance for the development of new-concept engines.

Previous studies mainly focused on the low-temperature combustion behavior of
small molecular hydrocarbon fuels, such as butane [14–17], hexane [18,19] and dimethyl
ether [7,20–22]; experimental and numerical studies on their flame structure, initiation and
extinction limits were carried out. However, the relevant studies on larger hydrocarbon
fuels account for a large fraction of practical transportation fuels are relatively limited.
Usually, longer carbon chain n-alkanes are more active at low-temperature conditions,
which plays an important role in the first-stage ignition process [23,24]. For these reasons,
several studies have been performed to understand the low-temperature kinetics of larger n-
alkanes, such as n-heptane [25–29], n-decane [30] or n-dodecane [31,32], based on premixed
or counterflow cool flame configurations. In these studies, the low-temperature cool flame
dynamics, such as the flame propagation speed and the extinction limits, of these n-alkanes
were covered, and the effects of additives (including NO and ozone) on the low-temperature
kinetics have also attracted extensive research attention.

For instance, Won et al. [29] investigated the effects of ozone addition on the cool
flame dynamics of n-heptane in counterflow diffusion flame configurations. It was found
that the O radical produced through the decomposition of ozone dramatically shortened
the induction timescale of the low-temperature chemistry in order to establish a self-
sustaining cool flame. A kinetic analysis and experimental characterization of the general
cool flame structure (flame temperature, main species) were provided. Brown et al. [30] and
Zhou et al. [32] investigated n-decane and n-dodecane cool diffusion flames, respectively.
It was also reported that the addition of ozone was beneficial and enhanced the cool
diffusion flame dynamics. Reuter et al. [24] investigated the extinction limits of n-alkane
cool diffusion flames for large n-alkanes (from n-heptane to n-dodecane), and investigated
low-temperature oxidation behaviors through the trends of the extinction limits of cool
diffusion flames.

Besides the flame reactors, a number of studies have been performed on the low-
temperature oxidation behavior of several other alkanes (including but not limited to
n-butane, n-hexane and iso-octane) based on rapid compression machines [15,33–35], shock
tubes [36,37] or flow reactors [38,39]. In those studies, the experimental and kinetic study
of the ignition behavior and chemical speciation during the low-temperature oxidation
process were performed and has provided the foundation for developing low-temperature
combustion kinetic models for target fuels. A literature study of large n-alkanes such as
n-decane and n-dodecane [40–42] was also performed, but most of the studies focused
on the pyrolysis/oxidation process in flow reactors, while relevant investigations on the
low-temperature oxidation behavior, especially in flame environments, were rather limited.

This work aims to investigate the low-temperature chemistry of large n-alkanes
(n-heptane, n-decane and n-dodecane) in counterflow cool flame configurations through
detailed kinetic analysis. In particular, the flame boundary conditions (such as ozone con-
centration, fuel concentration and flow velocity) required for establishing the counterflow
cool flames (i.e., the initiation limits of cool flames) are investigated, based on which the
low-temperature reactivity of these n-alkanes can be assessed. The effects of the carbon
chain length on the fuel’s low-temperature reactivity are highlighted through a detailed
kinetic analysis. Nevertheless, a literature survey revealed that while several studies have
investigated the cool flame dynamics of individual n-alkanes, very few studies have studied
the effects of carbon chain length on the low-temperature behaviors of large n-alkanes.
While Reuter et al. [24] compared the extinction limits of n-alkane cool diffusion flames for
large n-alkanes with different carbon chain lengths, the present study is focused on the
initiation limits of cool flames, which may provide new insights into the slow initiation
chemistry of n-alkanes at low temperatures. The present results are expected to deepen our
understanding of the low-temperature kinetics of large n-alkanes.
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This paper is organized as follows: In Section 2, the methodology of performing the
kinetic analysis on the low-temperature kinetics is introduced. In Section 3, the thermo-
chemical structure of a typical cool diffusion flame is presented and compared with that
of a typical hot diffusion flame. Then, the initiation limits of the n-alkane cool flames are
determined. The reaction pathway and sensitivity analysis are performed to understand
the effects of the carbon chain length of n-alkanes and the enrichment of ozone on the
low-temperature combustion behavior. The major conclusions of this work are summarized
in Section 4.

2. Kinetic Analysis Method

The present numerical simulations are performed with the OPPDIF code [43]. A
detailed chemical mechanism is developed based on the Polimi Mech [44,45] and consists
of both low- and high-temperature kinetics, which are incorporated with the Princeton O3
sub-mechanism from the literature [46,47]. The mechanism showed the greatest fidelity
to the measurements of the cool flame extinction limits [23,48] and has been shown to
capture the low-temperature oxidation behavior of large n-alkanes combustion, and has
hence been selected for further computations. More details on the simulation process are
as follows. A plug flow assumption is made for the fuel/oxidizer boundaries, and the
separation distance between the fuel and oxidizer nozzle is 20 mm. A mixture-averaged
formula is used to calculate the species diffusion velocity without accounting for thermal
diffusion. A maximum temperature of 800 K is assigned for the flame to serve as an initial
guess of the numerical solution. The grid parameters of curvature and gradient are set to
0.5 and 0.6, respectively, to ensure smoothness of the solution.

Simulations are performed to investigate the influence of various boundary con-
ditions on the initiation limits of the tested large n-alkanes. It has been previously re-
ported [14,20,29] that the establishment of stabilized counterflow cool flames is difficult to
accomplish due to the slow fuel reactivity chemistry at low temperatures. However, the
initiation of cool flames can be enhanced by varying the boundary conditions (such as mole
fraction of fuel, the ozone concentration in the oxidizer stream, or the strain rate). It is thus
necessary to study the initiation boundaries of cool flames. More importantly, the initiation
limits of cool diffusion flames can be used to evaluate the low-temperature reactivity of
different fuels. For instance, the introduction of ozone into the oxidizer stream is frequently
used to enhance the reactivity of cool flames. The critical mole fraction of ozone needed to
establish a stable cool diffusion flame can be different, depending on the chemical reactivity
of the fuel. It can be expected that fuel with a stronger low-temperature reactivity will need
less ozone to establish a stable cool flame. In this manner, the critical initiation limits can be
used as a quantitative index for ranking the fuel’s low-temperature reactivity.

The detailed flame conditions under numerical investigations are summarized in
Table 1, which include the mole fractions of species (Fuel, N2, O2 and O3), temperatures (TF
and TO) and nozzle exit velocity (VF and VO). The subscripts F and O refer to the fuel and
oxidizer stream, respectively. When determining the limit of a specific boundary condition
at the fuel/oxidizer stream (such as the O3 concentration), the corresponding boundary
condition at the oxidizer stream is varied to determine the limit condition where cool flames
can be established, while holding the other flame conditions (such as inlet temperature,
fuel concentration and flow rate) unchanged. These simulation conditions are covered
to perform parametric studies on the initiation limits. When performing simulations, the
O3 mole fraction is changed from 0.1 to 0.3, and the range of the fuel concentration in the
fuel stream is set between 0.003–0.6, while the flow velocity is varied from 5 to 1 cm/s.
Note that very few experimental studies have been performed on low-temperature cool
flames and their response to varying boundary conditions. Although future experimental
validation is yet to be conducted, the present simulations are expected to provide certain
references for understanding the dynamics of cool diffusion flames.
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Table 1. The flame boundary conditions of tested n-alkanes.

Limit TF
(K)

VF
(cm/s)

Fuel
(Mole

Fraction)

N2
(Mole

Fraction)

TO
(K)

VO
(cm/s)

O3
(Mole

Fraction)

O2
(Mole

Fraction)

O3 concentration 550 13 0.1 0.9 300 12
Fuel concentration 550 13 300 12 0.05 0.95

Flow rate 550 0.1 0.9 300 0.05 0.95

3. Results and Discussion

In the following, the thermochemical structure of a typical cool diffusion flame (for
n-dodecane) is presented through a comparison with that of a typical hot diffusion flame.
Then, the boundary conditions required to initiate a stable cool diffusion flame are numeri-
cally determined for the tested n-alkanes with varying carbon chain lengths. Finally, the
reaction pathway and sensitivity analysis are performed to understand the effects of both
ozone addition and fuel type on the low-temperature reactivity of the cool diffusion flame.

3.1. Structure of Typical Cool Diffusion Flame

Figure 1 shows the predicted thermochemical structure of a typical cool diffusion
flame of n-dodecane, including the temperature field and the concentration profiles of the
reactants (i.e., NC12H26, O2, O3) and main combustion products (i.e., CH2O, CH3CHO, CO,
CO2, H2O). The cool flames are numerically obtained at boundaries of XF = 0.1 (i.e., the
fuel stream contains 10% NC12H26 balanced with N2) and an O3/O2 ratio of 0.05:0.95 in
the oxidizer stream. For further information, the experimental conditions of n-heptane cool
diffusion flame established by Won et al. [24,29] can be referred to. The flow rate (initial
temperature) on the fuel side and the oxidizer side are 13 cm/s (550 K) and 12 cm/s (300 K),
respectively. The corresponding thermochemical structure for the n-dodecane hot diffusion
flame is shown in Figure 2 for a cross-comparison. The flames are established at XF = 0.2
and an O2/N2 ratio of 0.21:0.79 without ozone addition. The velocity and temperature
boundaries at the fuel and oxidizer nozzle duct are set at 13 cm/s (550 K) and 12 cm/s
(300 K), respectively.
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It can be seen in Figure 1 that the maximum flame temperature of the cool diffusion
flame is about 850 K, while the corresponding temperature is around 2000 K for the hot
diffusion flame. In this regard, the flame temperature can serve as the criterion to determine
whether the flame is cool or hot. In Figure 1, it can also be noted that the peak location of
the temperature profiles is close to the center of the two nozzles, which can determine the
counterflow flame position. In the cool diffusion flame, the concentration level of NC12H26
starts to decrease at a distance of z = 0.6 cm from the fuel nozzle, whereas the concentration
of CH2O and other major intermediate specials (CH3CHO, CO, CO2) start to increase.
This indicates the occurrence of the low-temperature oxidation reaction. The kinetic anal-
ysis shows that fuel decomposition at low-temperature conditions would produce large
amounts of NC12-OOQOOH and NC12-OQOOH through the low-temperature branching
pathway, and then can form CH2O via QOOH beta scission reactions. Therefore, CH2O is
usually regarded as a characteristic combustion product of a cool diffusion flame [11,20].
The concentration level of CH2O is much higher in cool diffusion flames as compared to
hot diffusion flames. The distribution behavior of the temperature and main species in the
cool diffusion flame is found to be consistent with the previous experimental observations
of Won et al. [29], although the absolute values of the temperature and species profiles
may be different due to the difference in fuel type. Similar flame structures of DME and
n-butane counterflow cool flames were also numerically observed in the literature [9,14]. It
is therefore reasonable to conclude that the present kinetic model is able to describe the
flame chemistry of n-alkane counterflow cool flames—at least at a qualitative level.

Notably different from the cool diffusion flame where there exists an overlap of fuel
and oxygen across the reaction zone, the fuel and oxygen mole fraction decrease to zero
without an overlap in the hot diffusion flame, as can be seen in Figure 2. This indicates that
there is no fuel leakage to the oxidizer side across the reaction zone in the hot diffusion
flame. In Figure 2, it is indicated that the location where the fuel and oxygen decrease
to zero is consistent with the peak location of the flame temperature, and that the major
combustion product of CO2 and H2O indicates the location of the hot flame reaction zone.
Such a difference is due to the different fuel consumption pathways and reaction rates for
high-temperature hot flames and low-temperature cool flames.

3.2. Initiation Limits of Cool Diffusion Flames

In this section, the results from the initiation limits of the cool diffusion flames are
presented for the tested n-alkanes of NC7H16, NC10H22 and NC12H26; the effects of ozone
concentration, fuel concentration and flow rate on the establishment of cool flames are in-
vestigated. The flame state (cool or hot) is determined by the maximum flame temperature,
which determines the transition from cool flame to hot flame.
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Figure 3 shows the maximum temperature distribution of large n-alkanes with varying
carbon chain lengths in the case of different ozone concentrations. As can be seen from
Figure 3, for all the tested fuels, the maximum flame temperature gradually increases
with the increase in ozone concentration. When the ozone concentration is lower than
the critical point, the three n-alkanes can establish a stable cool diffusion flame, and the
flame temperature is about 900 K. However, when the ozone concentration is higher than
the critical point, the three n-alkanes establish a stable hot diffusion flame with a flame
temperature of about 2700 K. When enough ozone is added, the NTC behavior would
disappear [27] and hot flames could be established. The transition from cool flame to hot
flame is likely caused by the ozone decomposition, which produces enough O radicals to
promote the complete oxidation of n-alkanes and produces the final products, CO2 and
H2O, during the high-temperature combustion process. This critical ozone concentration
can be regarded as the boundary condition where cool flames can be established. In
addition, it can be concluded from Figure 3 that the critical ozone concentration required
for establishing cool flames decreases with an increase in the carbon chain length of n-
alkanes. Since the introduction of ozone results in a large number of O radicals that
can boost the fuel’s low-temperature oxidation process [27,29,30], the fuel with a smaller
limiting ozone concentration would have a stronger low-temperature reactivity. In other
words, NC12H26, with its longer carbon chain, is more reactive than the smaller n-alkanes
of NC10H22 and NC7H16 during the low-temperature combustion process. This trend
will be further discussed in the next section through the sensitivity analysis and reaction
pathway analysis.
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flow rates.

By using increments of fuel concentration, the transition from unignited to cool flame
and from cool flame to hot flame of three n-alkanes with varying carbon chain lengths
can be observed, as shown in Figure 4—where (a) the minimum fuel concentration and
(b) the maximum fuel concentration for n-alkanes to establish cool diffusion flames are
reported. It can be seen that for n-alkane cool diffusion flames, the cool flame temperature
tends to increase with an increase in the fuel concentration. This trend is easily understood
since the increase in fuel concentration is conducive to promoting the interaction of fuel
and oxidizer and the low-temperature oxidation reactions, thereby releasing more heat
and thus increasing the temperature of the cool flame. Although the change in fuel mole
fraction will result in different stoichiometric mixture fractions among different flames, the
quantitative variation is small and is expected to impose little effect on flame dynamics.
Therefore, the fuel concentration has a more significant influence on flame chemistry and
the establishment of cool diffusion flame of large n-alkanes.
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In Figure 4a, the critical point of the transition from unignited to cool flame decreases
with an increase in the carbon chain length of n-alkanes. The critical minimum fuel
concentration can be regarded as the boundary conditions where n-alkanes can establish
cool diffusion flames. Moreover, it can be concluded from Figure 4b that with an increase
in the carbon chain length of n-alkanes, the critical maximum fuel concentration of the
transition from cool flame to hot flame decreases gradually. Compared with NC7H16 and
NC10H22, NC12H26 could establish cool diffusion flames at a smaller fuel concentration.
These results indicate that NC12H26 having a smaller limiting fuel concentration would
be more reactive than the smaller n-alkanes of NC7H16 and NC10H22 during the low-
temperature oxidation combustion process.

The nozzle velocity field also plays a crucial role in the establishment of n-alkane cool
diffusion flames. Figure 5 shows the effects of flow velocity on the initiation limits of cool
flames for the sake of studying the transition from cool flame to hot flame by continually
varying the flow velocity of the fuel and oxidizer stream. It can be seen from Figure 5 that
the temperature of the n-alkanes is within the cool flame temperature range (below 850 K)
until the flow velocity decreases to a critical value, at which point the flame temperature
suddenly increases to about 2500 K. This indicates the transition from cool flame to hot
diffusion flame. In this manner, this critical flow velocity is regarded as the velocity
initiation limits where n-alkanes could establish cool diffusion flames. Moreover, it can be
concluded from Figure 5 that the critical flow velocities of n-alkanes with different carbon
chain lengths are different. With an increase in the carbon chain length of n-alkanes, the
critical flow velocity of the transition from cool flame to hot flame indicates an increasing
trend. The critical flow velocity of NC12H26 is larger than that of NC7H16 and NC10H22,
which is attributed to their different low-temperature reactivities. In other words, NC12H26
having a larger limiting flow velocity is more reactive than the smaller n-alkanes of NC7H16
and NC10H22 during the low-temperature combustion process.

The above conclusions about the initiation limits (ozone concentration, fuel concen-
tration and flow velocity) for establishing the cool flames of n-alkanes consistently show
that the n-alkanes with the longer carbon chains are more reactive than smaller n-alkanes
during the low-temperature oxidation combustion process. This trend will be discussed in
detail in the following section through the reaction pathway and sensitivity analysis of the
n-alkane cool flames.
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3.3. Kinetic Analysis of the Low-Temperature Reactivity of N-Alkanes

In order to better understand the influence of carbon chain length on the low-temperature
reactivity of n-alkanes, we performed a reaction pathway and sensitivity analysis. The
concentration profiles of the important intermediate species of the three n-alkane cool
flames were compared under identical boundary conditions. In addition, the effects of
ozone addition on the fuel reactivity were investigated by comparing a cool diffusion flame
and a hot diffusion flame (with a larger ozone concentration).

Figure 6 shows the reaction pathways of n-heptane, n-decane and n-dodecane during
the low-temperature oxidation combustion process. The position of z = 8 mm, wherein
the 70% fuel consumption occurs, was selected for the reaction path analysis because the
position is close to the reaction zone (represented by the peaks of temperature profile);
the low-temperature reaction of fuel is relatively sufficient at this stage, along with the
abundance of various low-temperature intermediate species such as CH2O and CH3CHO
and other combustion products such as H2O and CO2. In this manner, the important
reactions that are pertinent to the low-temperature combustion of n-alkanes could be taken
into account during the sensitivity analysis. The numerical values on the arrow represent
the percentage of the individual reaction path to the consumption of the target species.

As can be seen in Figure 6, the low-temperature oxidation process of three n-alkanes
with varying carbon chain lengths all begins with the hydrogen extraction of fuels. More-
over, all three fuels, NCNH2N+2 (N = 7, 10, 12), produce NCNH2N+1 through a dehy-
drogenation reaction. Among them, more than 70% of hydrocarbon fuels react with
OH in the reaction OH + NCNH2N+2 ⇒ H2O + NCNH2N+1 to generate NCNH2N+1, and
the remaining hydrocarbon fuels react with HO2 and H to generate fuel radicals. Then,
NCNH2N+1 and O2 molecules react to form the adduct, NCNH2N+1-OO, through the reac-
tion NCNH2N+1 + O2 ←→ NCNH2N+1-OO. NC7H16 contributes the least to the oxidation
reaction, while NC10H22 and NC12H26 contribute more to the oxidation reaction. Next,
NCN-QOOH is generated by the isomerization of NCNH2N+1-OO through the reaction
NCNH2N+1-OO←→NCN-QOOH. It can be concluded from the graph that n-alkanes with a
longer carbon chain length contribute more to the isomerization reaction. NCN-QOOH can
be decomposed to generate OH and can also undergo a secondary addition reaction with
O2 to generate the peroxy-hydroperoxyalkyl radical, NCN-OOQOOH. With an increase
in the carbon chain length of n-alkanes, the contribution of NCN-QOOH to the formation
of OH radicals gradually increases, while the contribution of NCN-QOOH to the forma-
tion of NCN-OOQOOH indicates a decreasing trend. Then, NCN-OOQOOH decomposes
to produce OH radicals and ketohydroperoxides of NCN-OQOOH; the contribution of
NCN-OOQOOH increases with an increase in the carbon chain length of n-alkanes. Finally,
NCN-OQOOH decomposes to produce OH radicals and the products, CH3CHO and CH2O,
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and the contribution of NCN-OQOOH increases with the increase in the carbon chain
length of n-alkanes during the low-temperature oxidation combustion process.
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It can be concluded that the reaction pathway of NCNH2N+2→NCNH2N+1→NCNH2N+1-
OO → NCN-QOOH → NCN-OOQOOH → NCN-OQOOH → CH3CHO (or CH2O or
OH) is the dominant pathway for the control of the low-temperature oxidation of n-
alkane cool diffusion flames. Moreover, with an increase in the carbon chain length of
n-alkanes, the percentage of these fuels undergoing a dehydrogenation reaction, oxidation
reaction and isomerization reaction increase gradually and are associated with an increased
concentration of OH radicals. The results show that the n-alkane with a longer carbon
chain length has a stronger low-temperature reactivity. In other words, NC12H26 with a
longer carbon chain is more reactive than the smaller n-alkanes of NC7H16 and NC10H22
during the low-temperature oxidation combustion process.

Furthermore, a sensitivity analysis of the flame temperature is performed for the cool
flames produced by the three n-alkanes to further investigate the effect of carbon chain
length on the low-temperature reactivity of n-alkanes. A sensitivity analysis would help
to determine which reactions (and the corresponding rate parameters) are important to
the heat release process (indicated by flame temperature), as represented by the sensitivity
coefficient reported in Figure 7.

Figure 7 shows the elementary reactions whose rate parameters play the most impor-
tant role in flame temperature during the low-temperature oxidation combustion process
of the three n-alkanes with varying carbon chain lengths. A positive (negative) sensitivity
coefficient for the elementary reaction indicates that the increase in the reaction rate will
increase (reduce) the flame temperature; the larger the absolute value of the sensitivity
coefficient, the stronger the influence the reaction has on the flame temperature. It can
be seen from Figure 7 that the oxidation and dehydrogenation reactions have the most
significant influence on the flame temperature for the cool flames of the three alkanes. In
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addition, with an increase in the carbon chain length of the n-alkanes, the sensitivity co-
efficient of the fuel dehydrogenation reaction OH + NCNH2N+2 ⇒ H2O + NCNH2N+1,
oxidation reaction O2 + NCN-QOOH⇒ NCN-OOQOOH and decomposition reaction
NCN-OOQOOH⇒ OH + NCN-OQOOH decrease gradually. It can also be seen from
Figure 7 that the sensitivity coefficient of NC7H16 in the fuel isomerization reaction
NCNH2N+1-OO⇒ NCN-QOOH is larger than that of NC10H22 and NC12H26. These trends
indicate that NC7H16, which has a smaller carbon chain, is less reactive than the larger
n-alkanes of NC10H22 and NC12H26.
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From Figure 7, we can also find that the reaction involving ozone O3 + O2 ⇒ 2O2 + O
has a strong negative sensitivity coefficient, and the sensitivity coefficient of this reaction
decreases with the increase in the carbon chain length of the n-alkanes. It can be seen
from this reaction that the addition of ozone leads to the formation of a large number
of O radicals, which can react with n-alkanes to generate hydroxyl radicals (OH), so as
to contribute to the low-temperature heat release [49] and enhance the low-temperature
chemical reaction of large n-alkanes. Moreover, it can be concluded from Figure 7 that
the formation reaction of OH radicals, NCN-QOOH⇒ OH + NC7H14O + X, which boosts
low-temperature oxidation combustion, decreases with the increase in the carbon chain
length of n-alkanes. These results indicate that NC7H16, which has more O and OH radicals
participating in the fuel’s dehydrogenation and oxidation reactions, has a weaker low-
temperature reactivity than NC10H22 and NC12H26 during the low-temperature oxidation
combustion process.

In addition, the concentration profiles of the important intermediate species of the three
n-alkanes during the low-temperature combustion process are shown in Figures 8 and 9,
which agree with the results of the above kinetic analysis. Figure 8 shows the concentration
profiles of O and OH at the distance of z = 0.9–1.4 (from the fuel nozzle) where the O and
OH radicals are abundant. With the increase in the carbon chain length of the n-alkanes,
the peak positions of the O and OH radical profiles gradually move to the oxidizer side,
which may indicate that the low-temperature oxidation process of NC12H26 starts earlier
and thus is more reactive than NC7H16 and NC10H22. It is important to note that the peak
concentration level of the O and OH radicals is quantitively similar under the same ozone
concentration, which may indicate that the amounts of O/OH radicals are more sensitive
to ozone addition rather than the length of the carbon chain of n-alkanes.
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Figure 9. The profiles for (a) CH3CHO, (b) CH2O and (c) H2O2 concentration of three n-alkane cool
flames under the same boundary conditions of XF = 0.1, and the O3/O2 ratio of 0.05:0.95.

Figure 9 shows the mole fraction profile of CH3CHO, CH2O and H2O2, which are
important low-temperature combustion products with relatively high concentration levels.
The results show that under the same boundary conditions, the n-alkanes that have longer
carbon chain lengths are more readily able to generate the aforementioned low-temperature
oxidation products. Given this, it is understood that the oxidation of NC12H26 with the
longest carbon chain among the three n-alkanes has the largest portion of low-temperature
reactions from dehydrogenation, oxidation and isomerization reactions, thus generating the
most intermediate species. This also indicates that NC12H26 is more reactive than smaller
n-alkanes, such as NC7H16 and NC10H22—as the latter two have fewer low-temperature
oxidation products.
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We now move on to understand the kinetic effects of ozone addition on the low-
temperature combustion behavior of n-alkanes. For the convenience of discussion, we
used NC12H26 as an example. Specifically, the concentration profiles of the important
intermediate species at critical ozone concentration (named as O3-0.18 case) and after
critical ozone concentration (called as O3-0.19 case) are compared in Figures 10–12. It can
be concluded from Figure 10 that the concentration levels of the O (a) and OH (b) radicals
in case O3-0.19 are much higher than those in case O3-0.18. According to the previous
conclusion in Figure 3, the amounts of O and OH radicals produced from hot flames are
larger than those produced from cool flames. In general, an increase in ozone addition
would lead to a sharp increase in O and OH radical concentrations during the oxidation
process of NC12H26. The peak location of the concentration of O and OH radicals in the hot
diffusion flames is close to the center of the fuel and oxidizer nozzles, meaning that they are
intermediate products during the high-temperature oxidation process; however, the peak
location of the concentration of O and OH radicals in the cool diffusion flames is biased
towards the oxidizer side, given that most O radicals are produced by the decomposition
of ozone on the oxidizer side and most OH radicals are produced by the dehydrogenation
reaction (from the interaction of O and fuel) near the oxidizer side. When the O and OH
radicals are moved to the fuel side, they would be consumed during the interaction with
fuel, so the concentration of O and OH in the reaction zone is extremely low. These results
indicate that the addition of ozone provides a large number of active O and OH radicals
that can effectively enhance low-temperature reactivity.
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Figure 10. The profiles for (a) O and (b) OH concentration of NC12H26 counterflow flames at the
critical ozone concentration of 0.18 and after the critical ozone concentration of 0.19.

It can also be seen from Figure 11 that the concentration levels of CH3CHO (a), CH2O
(b) and H2O2 (c) are much higher in case O3-0.18 than those in case O3-0.19. According
to the previous reaction pathway analysis, H2O2 generated from the dehydrogenation of
NC12H26 tends to decompose into OH radicals in order to promote the low-temperature
oxidation reaction. In addition, ketohydroperoxide molecules produce a large amount
of CH3CHO and CH2O through the low-temperature branched-chain oxidation pathway.
These results indicate that CH3CHO, CH2O and H2O2 are the main products of cool
diffusion flames, which are consistent with the previous studies [14,46].

Moreover, it can be concluded from Figure 12 that the concentration levels of CO (a),
CO2 (b) and H2O (c) in case O3-0.18 are lower than those in case O3-0.19. In addition, the
addition of ozone could enhance the exothermic reaction of low-temperature peroxide
chemistry and improve the flame temperature. Therefore, the addition of ozone may
promote the reactivity of n-alkanes and effectively boost the combustion of large n-alkanes
under low-temperature conditions.
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4. Conclusions 
In this work, we performed a detailed kinetic study on the low-temperature 

oxidation kinetics of large n-alkanes, including n-heptane, n-decane and n-dodecane, in 
counterflow cool flame configurations by highlighting the effects of carbon chain length 
on the low-temperature reactivity of n-alkanes. The initiation limits (such as the ozone 
concentration in the oxidizer stream) required for the initiation of cool diffusion flames 
were determined, through which the low-temperature reactivity of the n-alkanes were 
compared. The results show that the n-alkane with a longer carbon chain is more reactive 
than a smaller n-alkane (i.e., showing the order of NC12H26 > NC10H22 > NC7H16). The 
reaction pathway and sensitivity analysis were performed to better understand the effect 
of carbon chain length on low-temperature reactivity. It was found that NC12H26 is more 
readily able to undergo dehydrogenation, oxidation and isomerization reactions, which 
produce larger amounts of O and OH radicals that can promote the fuel’s low-
temperature oxidation process. As a consequence, NC12H26 was more reactive than 
NC10H22 and NC7H16 during the low-temperature combustion process. 

The effects of ozone addition on the low-temperature reactivity of n-alkanes were 
also highlighted. It was found that the addition of ozone in the oxidizer stream could 
provide a large number of active O radicals, which tended to dehydrogenate the fuels to 
generate OH radicals and to promote the fuel’s low-temperature oxidation reactions. The 
present study is expected to promote our understanding of the low-temperature 
chemistry of larger n-alkanes in flame environments. 
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4. Conclusions

In this work, we performed a detailed kinetic study on the low-temperature oxidation
kinetics of large n-alkanes, including n-heptane, n-decane and n-dodecane, in counterflow
cool flame configurations by highlighting the effects of carbon chain length on the low-
temperature reactivity of n-alkanes. The initiation limits (such as the ozone concentration
in the oxidizer stream) required for the initiation of cool diffusion flames were determined,
through which the low-temperature reactivity of the n-alkanes were compared. The results
show that the n-alkane with a longer carbon chain is more reactive than a smaller n-alkane
(i.e., showing the order of NC12H26 > NC10H22 > NC7H16). The reaction pathway and
sensitivity analysis were performed to better understand the effect of carbon chain length
on low-temperature reactivity. It was found that NC12H26 is more readily able to undergo
dehydrogenation, oxidation and isomerization reactions, which produce larger amounts
of O and OH radicals that can promote the fuel’s low-temperature oxidation process.
As a consequence, NC12H26 was more reactive than NC10H22 and NC7H16 during the
low-temperature combustion process.

The effects of ozone addition on the low-temperature reactivity of n-alkanes were also
highlighted. It was found that the addition of ozone in the oxidizer stream could provide a
large number of active O radicals, which tended to dehydrogenate the fuels to generate
OH radicals and to promote the fuel’s low-temperature oxidation reactions. The present
study is expected to promote our understanding of the low-temperature chemistry of larger
n-alkanes in flame environments.
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