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Abstract: (1) Background: Federal land managers in the US are charged with risk-based decision-
making which requires them to know the risk and to direct resources accordingly. Without un-
derstanding the specific factors that produce risk, it is difficult to identify strategies to reduce
it. (2) Methods: Risk characterized by U.S. land managers during wildfires was evaluated from
2010–2017 to identify factors driving risk perceptions. Annotation from 282 wildfires in two regions
with distinctive risk profiles, the Northwest and Southwest Geographic Areas, were qualitatively
coded using the risk assessment framework of hazards, values, and probability from the Relative
Risk Assessment in the Wildland Fire Decision Support System (WFDSS). (3) Results: The effects
of climate on seasonal severity, fuel condition, and fire behavior emerged as the most influential
factors driving risk perceptions and characterizations of risk in both regions. Monsoonal precipitation
extended the longevity of landscape barriers, especially in the Southwest. The results suggest that a
scarcity of values at risk and a mild fire environment produce low risk fires regardless of location,
while high risk fires reflect specific local values and geography, under the umbrella of dry climate.
(4) Conclusions: the climatic contrasts between the two regions highlight how influential climate
change will be on future characterizations of wildfire risk.

Keywords: U.S. fire management; relative risk assessment; Wildland Fire Decision Support System
(WFDSS); climate

1. Introduction

U.S. federal land management agencies have sought to adopt risk management for
almost every facet of wildland fire management. Risk assessment frameworks are com-
monly applied for a variety of spatial and temporal scales to plan and prepare for wildland
fires pre-season [1,2]; to assess risks associated with fire-fighting tactics and operations [3],
and strategically in the Wildland Fire Decision Support System (WFDSS) [4,5], with its
relative risk assessment (RRA) representing a synthesis of operational and strategic wildfire
risk [6,7]. The myriad of risk frameworks introduces unclear or conflicting concepts and
terminology that manifest differently in multiple assessments based on specific contexts
within wildland fire management processes [8]. In the research presented here, risk is the
result of hazard, spread probability and values at risk from the relative risk assessment
(RRA) conducted during wildfires in WFDSS [9]. RRA is used to assess the initial risk of
emerging, federal incidents that are longer in duration because they escape initial attack
suppression efforts or will be managed to achieve a resource objective.

Understanding the factors that drive risk perceptions on wildfires is expected to enable
systematic changes to how risk is characterized, thereby allowing for greater decision-
space to use wildfire to achieve resource objectives and ultimately, better-alignment of
fire management practice and U.S. fire policy [10]. Currently, many ecosystems in the
western U.S. are experiencing a fire deficit [11] or “disturbance deficit” [12] and there is
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critical need to reintroduce fire to vast expanses of land to enhance ecosystem resiliency
and reduce uncharacteristic levels of fuel loading [13]. Ongoing and impending changes in
climate have increased the urgency of this reintroduction [14–16]. Considerably reducing
the number of directly suppressed wildfires in favor of alternative management strategies
such as confine/contain and point/zone protection remains an important goal to get more
acres “treated” with unplanned wildfire ignitions [17–19]. Additionally, embedded in every
federal land management agency mission statement is an imperative to manage lands
for future generations. This directive challenges land managers to consider long-term
consequences of current management decisions. There needs to be a systematic process to
account for decisions that both achieve and fail to address long term goals of landscape
resiliency [19]. One way to address this need is to measure if chosen strategies accomplish
both resource and protection objectives on wildfires. Understanding the drivers of decision
maker’s risk perceptions are needed to enable such measurements.

Arguably, there is no single definition of risk. Instead, ‘risk’ is a conceptual under-
standing based on the probability and consequence of uncertain future events [20]. The
biophysical characterization of risk composed of wildfire hazard, the likelihood of a wild-
fire event (probability), and a measure of how values at risk will be changed by wildfire,
provides an objective measure of “risk” [2]. However, this quantitative risk may not ex-
plicitly reflect land manager’s perceptions of risk that are influenced by a multitude of
factors. Assumptions, recent memories, quality, skill and bias associated with professional
judgments, perceived affect, and real risk are factors influencing risk perceptions [21–25].
Unless otherwise noted, risk is defined by the risk produced from the relative risk assess-
ment. The relative risk assessment reflects perceptions of risk from land managers guided,
in part, by objective, biophysical risk, and it composes the ‘real’ risk that impacts decisions
made on wildfires.

Historically, the RRA provided a systematic process to rapidly assess risk in order
to decide whether to use wildland fire as an alternative to suppression [26], stemming
from a desire to formalize protocols related to wildland fire use that emerged after the
1988 Yellowstone wildfires. In 2009, the RRA evolved to inform initial assessments of risk
to guide any fire management strategy including full suppression, reflecting revisions in
terminology and policy that merged all previous types of fire into two: prescribed and
wildfire [3,10].

Using relative risk assessment data from 5087 US wildfires from 2010 through 2017,
Noonan-Wright and Seielstad [27] showed the existence of large regional variations in RRA
risk, with fires in the West Coast regions typified by high risk and fires in the Southwest
and Eastern regions characterized by low risk. The present study examines the qualitative
text data of the RRAs to identify driving factors behind these differences. Specifically, it
seeks to identify the main themes and codes that uniquely classify high and low risk fires
in the two most risk divergent regions in the US, the Northwest and Southwest Geographic
Areas (GA), and to identify geographic dependencies. Focusing on these ‘extreme’ GAs
provides the advantage of insight into factors related to risk at the two ends of the risk
continuum but comes at the cost of overlooking factors representing the average condition
typical of other GAs. We hypothesize that differences in climatology drive differences in
risk profiles between regions, whereby the onset of the North American Monsoon in the
Southwest provides a mid-summer, semi-predictable backstop to the fire season compared
with the more uncertain, open-ended fire season in the Northwest.

The analysis capitalizes on a dataset that is mandated for specific, longer duration,
federal wildfires that either required action beyond the initial attack to suppress the fire
or had resource objectives that resulted in a longer duration event. These types of federal
wildfires necessitate formal decisions [10] and the RRA is part of the decision workflow [9]
(Figure 1). Within WFDSS, the RRA is a semi-quantitative process enabling fire managers to
assign rankings to risk elements using predetermined categories and terminology ‘relative’
to a wildfire [8]. Most of the RRA elements are derived subjectively through deliberation by
small groups of local decision-makers informed by models and data [9,28]. As such, they
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provide snapshots of how land managers, administrators, and fire specialists with access to
state-of-the-art data, models, and analysis tools assess risk on thousands of wildfires.
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The research follows a mixed method explanatory design by using frequency sum-
maries of the risk ratings (quantitative data) to inform the sample design of the relative risk
notes (qualitative data) [29,30]. Mining qualitative text is expected to provide a “deeper” un-
derstanding regarding some phenomena such as risk perceptions related to wildfire [29,31]
by generating greater specificity through text coding, and by providing a more holistic
understanding of the factors influencing risk perceptions documented on risk assessments
when fire is burning and the risk is tangible.

2. Materials and Methods
2.1. Data Collection

The RRA data are from the WFDSS database, extending from 2010 through 2017,
stratified by U.S. federal fire agency, relative risk rating and region to obtain a random
sample of 149 wildfires from the Southwest region and 133 wildfires from the Northwest
region. From these RRAs, all the qualitative text data (Figure 1) were consolidated and
coded to produce the presence or absence of codes by wildfire.

The relative risk framework evaluates risk based on three common tenets: values at
risk, hazard and spread probability and it provides visual estimates of high, moderate
or low risk on wildfires [3] (Figure 1). Users also contextualize selected ratings through
qualitative text inputs. The values element is composed of ecological ratings concerning
natural resources, cultural values and infrastructure, social and economic concerns, and the
proximity and threat of the fire to the values at risk. Hazard represents the conditions of the
fire and is composed of ratings related to observed fire behaviour, fuel condition, and the
potential growth of the fire. The probability element includes seasonal severity, prevalence
of barriers to fire spread, and time of season relative to the normal fire season. The RRA
produces an estimate of risk based on a conditional risk assessment; a condition that a fire
is actively burning on the landscape, and its associated qualitative text data provides a
portrayal of the issues influencing wildfire risk and decision-making.

For context, there were 616,032 wildfires in the U.S. from 2010–2017 [32]. Of these,
approximately 17 percent were fires on federal lands. Among federal fires, 4.9 percent
(n = 5087) resulted in publication of a risk assessment in WFDSS to provide documentation
of the probability, hazard and values influencing the characterization of risk [9]. This
analysis, then, provides insights into risk on mostly federal lands for wildfires that were
expected to pose management challenges.

A stratified random sample representing 20% of the fires from the Northwest and
Southwest geographic areas was selected to develop codes from the RRA qualitative notes.
The fires were stratified by high, moderate and low relative risk and agency to ensure
the sample was representative of the geographic area (Table 1, Figure 2). Subsequently,
282 wildfires were coded with 133 sample wildfires from the Northwest, and 149 from the
Southwest. Land management agencies included the Bureau of Land Management (BLM),
Bureau of Indian Affairs (BIA), National Park Service (NPS), Fish and Wildlife Service
(FWS), United States Forest Service (USFS), State, County & Local, and Other (Department
of Defense, Bureau of Reclamation, Department of Energy (DOE), etc.). Land management
agencies have different missions which may reflect the characterization of risk. Overall,
the frequencies of high, moderate, and low relative risk ratings between the population
and sample differed by <1%. Agency differences were <4%. The sample (and population)
reflect dominance of U.S Forest Service wildfires (Table 1).
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Table 1. U.S. jurisdictional composition of the sample fires (Northwest, 133; Southwest, 149) reflecting
the multijurisdictional nature of fire management, with many agencies sharing responsibility for one
wildfire, regardless of the ownership of the point of fire origin.

Geographic Area
Agency

USFS (%) BLM (%) BIA (%) County (%) NPS (%) Other (%) State (%) FWS (%)

Northwest 62 31 8 7 12 15 11 8
Southwest 69 16 16 3 15 5 8 1
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Figure 2. Relative risk rating for each of the sampled wildfires for the Northwest geographic area
(n = 133) and the Southwest geographic area (n = 149) with the primary federal land management
agencies in the background.

2.2. Coding

Each wildfire documented in the risk assessment could have from 1 to 4 entries
reflecting hazard, values, probability, and relative risk (Figure 1). The entries are typically
1–3 sentences per element. Approximately 11% of users write no text to explain any rating
and a handful of users write paragraphs for each element. A code can be a word or
short phrase that symbolically represents an important meaning from language-based
data [33]. As each wildfire was evaluated, simultaneous codes were developed that were
later categorized into broader classifications using deductive coding from the general
framework of the relative risk assessment. NVIVO v11 coding software [34] was used to
organize and categorize the codes and to map coding structures. A total of 83 separate codes
were developed from themes that tiered from hazard, values, and probability elements
directly applicable to the RRA. Themes were derived from the labeled axes of the RRA
for each element and then split further to accommodate finer classification of the codes.
For example, codes for the ‘Values’ element were split into 6 themes: Natural Resources,
Infrastructure, Cultural Concerns, Social Concerns, Economic Concerns and Proximity (of
the fire to values at risk, Figure 3). Themes, sub-themes and codes for the Hazard and
Probability elements are available in Appendix A.
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Figure 3. ‘Values at risk’ coding structure that follows the framework of the Relative Risk Assessment.
The tally of codes is summarized by themes (Infrastructure, Natural Resources, Cultural Concerns,
Social Concerns, Economic Concerns and Proximity (and threat of the fire to values at risk). The
themes are further described by second-order sub-themes (light grey shapes). White shapes represent
the total number of times a specific code was mentioned on a wildfire (out of a total of 282 wildfires).

Check-coding was conducted on a random sample of fifteen wildfires by three analysts
with operational and fire management backgrounds, to verify the comprehensiveness of
the coding scheme and accuracy of the main coder. They collectively achieved a mean
Kappa of 0.67 (moderate agreement). Kappa scores were also measured for individual
codes. Lower kappa scores were usually the result of a check coder missing an opportunity
to denote a code that had been discussed in the qualitative text or the codes themselves
were too broadly defined, leading to a different interpretation from the main coder. In some
cases, these discrepancies necessitated further lumping of codes. Additional queries were
run in NVIVO to minimize the main coder error associated with missing key concepts and
to verify that each code was only represented once per wildfire record. Codes were counted
once per wildfire, even if certain concepts were discussed numerous times to facilitate
computing frequencies on a per fire basis.
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2.3. Data Analysis

Data analysis was a mixture of different techniques to investigate how values at risk,
hazard and probability affect summaries of relative risk and how that risk was geograph-
ically unique or similar. First, the frequency of codes for different levels of relative risk
was computed as the presence or absence of each code summed and divided by the total
number of sample fires per geographic area (n = 133, Northwest; n = 149, Southwest) and
by relative risk rating level (high, moderate, and low). Some percentages exceed 100%
because multiple codes occurred for one wildfire; for example, users may note that both
private residences and private land occurred as values at risk (i.e., two separate examples
of the “infrastructure” theme), which were normalized individually by the total number
of sample fires, not the total sum of codes (Table 2). Second, aggregate summaries were
generated for codes and their associated themes by region and relative risk to identify the
contribution of individual codes to a theme (Figures 4–7).

Table 2. Influential codes and associated themes and elements. Percent frequency of the occurrence
of different codes (out of a total of 133 wildfires in the Northwest and 149 wildfires in the Southwest
region) tallied by (H) High, (M) Moderate, (L) Low and (T) Total Relative Risk for each region.
Chi-square p-values, (MIR) Model Improvement Ratio rankings from the Random Forest (RF) and
the Variable Importance (Var. Imp.) ranking from the CART models are included.

Element Theme Code

Northwest Southwest

Frequency (%) Chi-sq. RF
MIR,
Rank

CART,
Var. Imp.,

Rank

Frequency (%) Chi-sq. RF
MIR,
Rank

CART,
Var. Imp.,

RankH M L T p-Value H M L T p-Value

Hazard fire behavior extreme 3% 0% 1% 4% 0.406 4% 1% 1% 5% 0.003

Hazard fire behavior low 2% 5% 5% 11% 0.001 5 1% 9% 21% 31% 0.000 1 1

Hazard fire behavior moderate 8% 2% 0% 11% 0.146 5 4% 3% 3% 11% 0.419

Hazard fire behavior passive 7% 4% 2% 13% 0.900 4% 5% 4% 13% 0.705

Hazard fire behavior spotting 8% 3% 0% 11% 0.208 2% 2% 0% 4% 0.116

Hazard fire behavior surface 4% 1% 0% 5% 0.380 1% 5% 0% 6% 0.023

Hazard fuel
condition

average fuel
loads 3% 3% 0% 6% 0.175 1% 4% 0% 5% 0.046

Hazard fuel
condition

forested fuel
types 6% 5% 5% 17% 0.044 13 5% 5% 7% 17% 0.512

Hazard fuel
condition

grass fuel
types 14% 2% 0% 17% 0.009 12 2 8% 10% 9% 27% 0.561

Hazard fuel
condition high fuel loads 11% 3% 2% 15% 0.475 9% 4% 3% 16% 0.000 6

Hazard fuel
condition

highly
departed

vegetation
7% 0% 0% 7% 0.030 11 3% 3% 1% 7% 0.353

Hazard fuel
condition low fuel loads 2% 3% 2% 7% 0.078 0% 7% 11% 17% 0.002 12

Hazard fuel
condition

shrub fuel
types 3% 0% 0% 3% 0.223 7% 9% 8% 24% 0.580

Hazard fuel
condition snag fuel types 8% 1% 2% 11% 0.204 2% 4% 5% 11% 0.657

Hazard fuel
condition

vegetation
within range 4% 2% 5% 11% 0.018 4% 3% 5% 12% 0.310

Hazard potential high elevation 2% 3% 4% 8% 0.007 15 0% 1% 1% 2% 0.485

Hazard potential high
temperature 7% 2% 0% 9% 0.241 4 5% 3% 1% 9% 0.038

Hazard potential large 15% 2% 0% 17% 0.002 6 7% 1% 0% 7% 0.000 2

Hazard potential low relative
humidity 7% 2% 0% 9% 0.241 7% 4% 1% 12% 0.000 13 8

Hazard potential moderate 6% 2% 0% 8% 0.243 3% 9% 5% 17% 0.183

Hazard potential precipitation
present 4% 3% 5% 12% 0.006 9 2% 12% 19% 34% 0.000 7 3



Fire 2022, 5, 131 8 of 26

Table 2. Cont.

Element Theme Code

Northwest Southwest

Frequency (%) Chi-sq. RF
MIR,
Rank

CART,
Var. Imp.,

Rank

Frequency (%) Chi-sq. RF
MIR,
Rank

CART,
Var. Imp.,

RankH M L T p-Value H M L T p-Value

Hazard potential red flag
conditions 3% 1% 0% 4% 0.506 6% 0% 0% 6% 0.000 4

Hazard potential small 4% 5% 8% 17% 0.000 3 3% 9% 14% 26% 0.018 10

Hazard potential steep
topgraphy 16% 3% 6% 25% 0.085 5% 5% 2% 13% 0.057

Hazard potential windy 14% 3% 1% 17% 0.074 7% 4% 1% 12% 0.002

Probability barriers few 11% 3% 2% 17% 0.555 7% 5% 1% 12% 0.001 15

Probability barriers wildfire 7% 3% 2% 12% 0.968 6% 9% 13% 28% 0.386

Probability barriers natural 15% 9% 11% 35% 0.005 10 8% 12% 15% 35% 0.674

Probability barriers numerous 4% 5% 9% 17% 0.000 1 1 2% 10% 16% 28% 0.001 7

Probability barriers prescribed fire 0% 1% 0% 1% 0.231 0% 2% 7% 9% 0.006

Probability barriers unnatural 17% 6% 2% 25% 0.135 5% 13% 14% 32% 0.302

Probability seasonal
severity

average fire
danger 5% 5% 4% 13% 0.111 1% 6% 9% 17% 0.050

Probability seasonal
severity drought 11% 4% 1% 15% 0.287 3% 5% 1% 9% 0.162

Probability seasonal
severity

dry fuel
moisture 26% 5% 3% 34% 0.004 4 6% 3% 1% 11% 0.004 11

Probability seasonal
severity

high (wet) fuel
moisture 2% 0% 3% 5% 0.008 10 1% 7% 9% 17% 0.020 4

Probability seasonal
severity

above normal
fire danger 19% 5% 5% 29% 0.438 13% 6% 4% 23% 0.000 3 2

Probability seasonal
severity high 5% 4% 1% 9% 0.365 3% 2% 0% 5% 0.016

Probability seasonal
severity monsoon 0% 0% 0% 0% N/A 3% 12% 21% 37% 0.000 9 6

Probability time of
season early 8% 3% 1% 12% 0.464 5% 4% 2% 11% 0.103

Probability time of
season late 2% 2% 3% 6% 0.025 2% 3% 10% 15% 0.012

Probability time of
season middle 15% 5% 1% 20% 0.080 5% 7% 1% 12% 0.011 14 12

Values cultural
resources

general
cultural res. 5% 2% 0% 7% 0.317 6% 5% 7% 18% 0.280

Values cultural
resources cultural sites 8% 3% 1% 11% 0.541 2% 7% 8% 17% 0.255

Values economic
concerns ranching 7% 1% 0% 8% 0.094 7% 5% 9% 21% 0.209

Values economic
concerns timber 11% 2% 0% 13% 0.057 2% 1% 1% 4% 0.284

Values economic
concerns

tourism,
recreation,

trails
16% 6% 8% 29% 0.176 7% 7% 8% 22% 0.334

Values infrastructure commercial 11% 4% 0% 15% 0.079 3 5% 5% 6% 17% 0.579 10

Values infrastructure government 8% 2% 1% 11% 0.488 1% 9% 4% 14% 0.043 8

Values infrastructure housing,
structures 26% 3% 1% 29% 0.000 2 8 9% 7% 8% 25% 0.078

Values infrastructure private land 8% 1% 2% 10% 0.258 0% 3% 6% 9% 0.035

Values natural
resources

sage grouse
habitat 11% 1% 0% 11% 0.012 0% 0% 0% 0% N/A

Values natural
resources

special
management

areas
11% 2% 0% 14% 0.040 7 1% 3% 1% 4% 0.334

Values natural
resources

threatened and
endangered

species
8% 3% 2% 14% 0.938 3% 3% 1% 8% 0.200



Fire 2022, 5, 131 9 of 26

Table 2. Cont.

Element Theme Code

Northwest Southwest

Frequency (%) Chi-sq. RF
MIR,
Rank

CART,
Var. Imp.,

Rank

Frequency (%) Chi-sq. RF
MIR,
Rank

CART,
Var. Imp.,

RankH M L T p-Value H M L T p-Value

Values natural
resources wilderness 14% 4% 5% 23% 0.315 1% 3% 2% 7% 0.731

Values natural
resources wildlife habitat 12% 5% 2% 19% 0.737 9% 5% 8% 22% 0.044

Values proximity values are
close to fire 11% 2% 1% 14% 0.062 7% 5% 7% 19% 0.249

Values proximity values are far
from fire 5% 3% 2% 10% 0.648 2% 9% 9% 21% 0.106

Values social
concerns

general
concerns 5% 3% 0% 8% 0.262 9 1% 2% 1% 4% 0.557

Values social
concerns multijurisdictional 16% 5% 2% 22% 0.151 8% 5% 3% 15% 0.002

Values social
concerns smoke 5% 2% 5% 11% 0.004 4% 5% 4% 13% 0.699
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A1We also used three statistical tests to evaluate the importance of different codes
on the prediction of high, moderate, and low relative risk by region. First, Pearson’s Chi-
square tests were performed on a 3 by 2 level matrix (3 levels of relative risk by 2 levels
representing presence or absence for each code for each region. Some codes occurred for all
levels of risk. p-values less than 0.05 suggest that the composition of the codes had unequal
proportions of high, moderate or low relative risk ratings, e.g., some ratings were used
more or less than expected (Table 2). Second, we used Random Forest to predict levels
of relative risk (high, moderate or low) for each region given the presence or absence of
the 83 codes. Some codes were removed because they had no observations for any of the
incidents when the data set was divided into specific regions. Codes were also grouped
and assigned into broader themes; for example, “forests” and “range” were assigned to the
“fuel type” theme for subsequent analysis (Appendix A).

The Random Forests algorithm [35] grew 1500 classification trees based on a bootstrap
of the data. For each tree, variation in the response variable was partitioned based on the
predictor variables (i.e., high, moderate, or low relative risk). We applied a model selection
approach using the model improvement ratio (MIR) to test the model parameters and
select the model with the best error component. The “mir” scale option performs a row
standardization. The scaled importance measures are calculated as: mir = i/max(i), where
(I) is the given importance of a given metric and Imax is the maximum model improvement
score. The strength of using the MIR is that it is comparable between models. The random
forest analysis was performed 10 times due to the instability of the model for each region,
following protocols from Dillon et al. 2011 [36]. For the 10 iterations for each region, the
median MIR value was computed and ranked for each code (Table 2).
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Median MIR scores greater than zero were used reduce the 90+ codes to 46 variables
for the Southwest and 47 variables for the Northwest for a Classification and Regression
Tree (CART) analysis, used to identify main codes important to predict risk in the two
regions. Trees were set to a minimum split at 10 with an initial cp at 0.00001 with the full set
of variables. Trees were pruned again, using the most optimal complexity parameter (cp)
that minimized error. The cp value for the Northwest was 0.051 and 0.078 for the Southwest.
We used Variable Importance from the CART model as a general measure of the value the
code contributed to the sum of improvements in all nodes in which the code appears as
a splitter. Variable importance was used as an indication of the variables that were most
influential in the classification of different levels of relative risk. These values were ranked
from most influential to least influential (Table 2). All analyses were performed using R
software [37] and various packages: Random Forest analysis [38], Classification trees [39],
Model Improvement Ratio [35], and plotting [40].

3. Results
3.1. Themes and Codes Related to Wildfire Risk

A summary of influential codes and associated themes is provided in Table 2, where
the frequency of codes by H (high), M (moderate), L (low), and T (total) relative risk ratings
are expressed as percentages, along with Chi-square p-values, and rankings from the Ran-
dom Forest (highest to lowest MIR value) and Classification and Regression Tree (highest
to lowest variable importance value). Influential codes were identified by tabulating a com-
bination of Chi-square p-values < 0.05 and ordering codes according to ‘high’ frequencies
greater than or equal to 10%; and ordering ‘low’ frequencies greater than or equal to 5% for
the Northwest (Table 3). Because there were more Southwest low risk fires than high risk
fires, an inverse ordering for the Southwest (5% or less ‘high’ frequencies, 10% or less ‘low’
frequencies) were included in Table 4.

Table 3. Codes and associated themes that are more influential to distinguish high and low risk fires
in the Northwest. Codes were included if they had a p-value < 0.05 and occurred with frequencies
greater than or equal to 10% for high risk fires and 5% for low risk fires, ordered from more to
less frequent. An asterisk denotes p < 0.005. Underlined codes were common to both Geographic
Areas (GAs).

Northwest

Risk Codes Themes Frequency (%)

H
ig

h

dry fuel moisture * seasonal severity 26
Housing * infrastructure 26

large potential * potential 15
natural barriers barriers 15
grass fuel type fuel condition 14

special management areas natural resources 11
sage grouse natural resources 11

Lo
w

natural barriers * barriers 11
numerous barriers * barriers 9

small potential * potential 8
forested fuels fuel condition 5
precipitation potential 5

smoke * social concerns 5
low fire behavior * fire behavior 5
veg within range fuel condition 5
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Table 4. Codes and associated themes that are more influential to distinguish high and low risk fires
in the Southwest. Codes were included if they had a chi-square p-value < 0.05 and occurred with
frequencies greater than or equal to 10% for low risk fires and 5% for high risk fires, ranked from
most common to less common. An asterisk denotes p < 0.005. Underlined codes were common to
both Geographic Areas (GAs).

Southwest

Risk Codes Themes Frequency (%)

H
ig

h
high fire danger * seasonal severity 13
high fuel loads * fuel condition 9
wildlife habitat natural resources 9

Multijurisdictional * social concerns 8
low relative humidity * potential 7

few barriers * barriers 7
large potential * potential 7

Windy * potential 7
red flag conditions * potential 6
dry fuel moisture * seasonal severity 6
high temperature potential 5

middle time of season time of season 5

Lo
w

monsoon * seasonal severity 21
low fire behavior * fire behavior 21

precipitation * potential 19
numerous barriers * barriers 16

small potential potential 14
low fuel loads * fuel condition 11

late time of season time of season 10

Barriers and fire behavior play critical roles to predict risk level for both GAs. In the
Northwest GA, the absence of numerous barriers is the most important factor contributing
to high risk in the CART model. Grass fuel types plus numerous barriers also produce high
risk (Table 2, Appendix C). Overall CART classification accuracy between observed and
predicted was 68%, with a tendency to misclassify moderate and low risk as high risk. The
critical role that barriers play in determining the relative risk rating is further supported
by the chi-square and frequency rankings (Table 3). Natural barriers are ubiquitous for
both high and low risk Northwest wildfires and numerous barriers are more common for
Northwest low risk fires (Table 3). Dry fuel moisture and housing are the most commonly
discussed codes in high risk fires in the Northwest, occurring on ~25% of them, while
low risk fires are described by low fire potential, precipitation, forested fuel types and
vegetation within historical ranges. In addition, high risk fires in the Northwest tend to
reference natural barriers, large spread potential, grassy fuel types and natural resource
concerns common to grass/shrub fuel types like ACEC (Areas of Critical Environmental
Concern) and sage grouse habitat (Table 3).

In the Southwest, the presence of low fire behavior is the most important predictor of
relative risk (Table 2, Appendix C), and along with discussion of the monsoon, both codes
occurring about 20% with low risk fires. High risk results when there is no mention of low
fire behavior and when fire danger is high. When low fire behavior is mentioned, the CART
predicts low risk. Classification accuracy is 60% with a tendency to misclassify to moderate
risk. From the chi-square and rankings, high risk fires in the Southwest generally include
a discussion of codes influencing high fire spread potential (e.g., low relative humidity,
windy, hot, high fire potential, red flag conditions (i.e., weather conditions that occur to
promote extreme fire behavior), and seasonal severity (e.g., high fire danger, dry fuels, high
seasonal severity (Table 4). Other codes relate to fuel condition (high fuel loads), natural
resources (wildlife habitat) and social concerns (multijurisdictional fires). Low risk fires
use seasonal severity themes such as the monsoon, high fuel moisture, and late time of
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season. Themes related to fire potential and barriers are also common, e.g., precipitation,
low spread potential, and numerous landscape barriers.

3.2. VALUES: Common Values at Risk Discussed by Land Managers on Wildfires

Values at risk are discussed at less the half the frequency of hazard and probability
attributes by both regions. However, values at risk are present in higher frequencies
for high risk fires for both geographic areas, related to natural resources, infrastructure
and social concerns. Northwest managers tend to characterize proximity of wildfires as
‘close’ to values at risk compared with Southwestern managers who describe proximity as
‘far’ (Figure 4).

Values in the Northwest focus on natural resources, specifically wilderness (23%),
wildlife habitat (19%), threatened and endangered species (14%) and special management
areas (14%, Table 2), but infrastructure, especially housing and structures, is also frequently
discussed (26%, Table 2) and ranks second in the random forests analysis. Economic con-
cerns related to recreation/tourism are prevalent for all levels of risk, but most frequently
invoked for high risk fires (16%), while timber (marketable forest products) is mentioned
for mostly high risk fires (11%) but is not a statistically significant factor. Social concerns
regarding multijurisdictional fires are not significant but occur on 22% of mostly high risk
fires.

Infrastructure more than any other value at risk theme is discussed by land managers
in the Southwest, related to housing and structures, and occurring across all levels of risk
(25%, Table 2). Natural resource concerns are discussed at about half the frequency of the
Northwest and are specific to wildlife habitat, occurring for all levels of risk (22%) but more
than expected for high risk fires (Table 2). Cultural resources are discussed at twice the rate
as the Northwest for all levels of risk, mostly referencing general cultural resource sites and
concerns. Economic concerns related to recreation and tourism and ranching are prevalent
for all levels of risk with multijurisdictional fires tending to be high risk.

3.3. HAZARD: Conditions Amendable to Fire Spread

Land managers from both GAs discuss fire “potential” more than the other hazard
themes (Figure 5) and many related codes are significant, suggesting that fire potential,
topography and weather are impactful attributes associated with both high and low risk
fires. Steep topography (16%) and windy conditions (14%) are additionally used to describe
potential for high risk fires in the Northwest. High fuel loads, likely associated with “highly
departed vegetation” are also more common for high risk fires in the Northwest.

Discussion of hazard in the Southwest is dominated by precipitation (34%) and low fire
behavior (31%, Figure 5), both significant codes on low risk fires and ranked important in
the CART model (Table 2). A finer inspection of hazard themes especially for fuel condition
shows that grass and shrub fuel types are discussed with some frequency (greater than
20%) for all levels for risk in the Southwest. Fuel loading is also important, with high fuel
loads noted more for high risk fires; low fuel loads for low risk fires, and average fuel loads
occurring more than expected on moderate risk fires (p < 0.05).

Passive and moderate fire behavior are discussed commonly by both GAs, in con-
nection with all levels of risk in the Southwest, and with moderate and high risk in the
Northwest (Figure 6). The Northwest also discusses spotting for high and moderate risk
fires. While used sparingly, extreme fire behavior is a significant code in the Southwest
for high risk fires, and surface fire (vs. crown fire) is significant for moderate risk fires
(Figure 6). Low fire behavior dominates the fire behavior discussion in the Southwest (31%),
is used significantly more than expected for low risk fires (21%) and is the most influential
predictor of low risk for the CART model (Table 2, Appendix C).

3.4. PROBABILITY: Codes Influencing the Likelihood of Active Fire

Barriers to fire spread and seasonal severity are the most commonly discussed themes
in both GAs, with low fuel moisture a significant code for high risk fires, and high fuel
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moisture significant for low risk fires (Table 2). The Northwest often describes the conditions
of a challenging fire environment for high risk fires (Figure 7), although high fire danger
and drought are discussed frequently for all levels of risk. Time of season is not used
as much relative to other probability themes, but there are some interesting trends. For
example, the Northwest references middle time of season (15%) and early season fires (8%)
more commonly for high risk fires. Additionally, the type and number of landscape barriers
is important at all levels of risk in the Northwest, and references to “few” barriers also
occurs preferentially on high risk fires.

In the Southwest, seasonal severity is the focus of themes and codes and is associated
with mostly low and moderate risk fires. The North American monsoon contributes to low
(21%) and moderate risk (12%), and high fire danger is present for high risk fires (13%),
and across all risk levels (23%), indicating a dominant dry climate impacted by sporadic
(but semi-predictable) monsoonal rains that trigger low to moderate risk. Discussion of
time-of–season occurs more than expected for fires that start late in the fire season and
tends to be associated with low risk fires. Barriers to fire spread of all types is commonly
discussed, with those created by prescribed fire occurring more than expected for low risk
fires even though they are discussed less frequently overall.

4. Discussion

The discussion of risk in the Southwest and Northwest regions is focused on whether
fire is expected to reach values at risk, related to both the probability of fire spread and
the barriers that will impede this spread. If there is a good chance fire will reach values,
risk is high. Otherwise, risk trends low. Values are discussed at less than half the rate of
hazard and probability and there is no discussion of the actual or relative worth of values,
the ability of values to resist fire, or the facility of the public to accept and deal with the
consequences of wildfire. In short, managers see high risk when fire and values, especially
housing, might interact. In the context of the oft-stated assertion that ‘people need to
learn to live with fire’, these findings highlight a gap that exists between this ideal and
current practice.

Despite the inherent complexity of the fires in WFDSS, fire behavior is generally
described as moderate, low, passive or spotting fire behavior. High or extreme fire is
mentioned less than 6% of the time. This finding is consistent with the perspective that
high/extreme fire behavior is rare and fleeting on a majority of wildfires. Another way
to conceptualize fire behavior as a risk factor is to consider that a break in the conditions
that promote high fire behavior, for example, precipitation associated with the North
American monsoon, can provide land managers with some confidence that values at risk
will not be impacted by wildfire. Sporadic rains or more certainty about the end of the
fire season, coupled with barriers to fire spread, lend themselves to greater decision space
when devising fire management strategies by reducing the probability that fire will interact
with values. We suggest that the relative confidence managers have in the occurrence of a
season-ending event is a major contributor to differences in risk factors between regions.

4.1. Geographically Dependent Characteristics of Low-Risk Fires

There are some aspects of low risk fires that are geographically dependent. For
example, the Southwest discusses a mild fire environment more than the Northwest likely
due to the occurrence of the North American monsoon. The monsoon climatic pattern
strongly affects fire weather in the Southwestern US, associated with sporadic rains typically
occurring around the end of June or early July through September [41]. It contributes to a
hard-stop to the fire season precisely when most of the rest of the western US is ramping
up toward peak burning conditions and offers an element of predictability in fire activity.
When the monsoon is referenced in the Southwest, it is usually discussed in the context of
reducing fire behavior and potential and is mentioned in the context of certainty regarding
the end of the fire season, i.e.,
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“Given the recent and forecasted monsoonal moisture this fire is not expected to
grow much, if at all and fire behavior is expected to be low” (Southwest, Low
Relative Risk); or

“We are starting to see the onset of monsoon moisture which indicates the peak
fire season is drawing to a close.” (Southwest, Low Relative Risk)

When precipitation with the monsoon was lacking, managers discussed the “inconsis-
tent” or “atypical” conditions and associated them with higher levels of risk, i.e.,

“Due to atypical monsoonal patterns, continued prolonged drought, and high
temperatures, fuel moistures are very low and seasonal severity is extreme. Typi-
cally, the area would have already experienced green-up from monsoonal mois-
ture and fire activity would be minimal” (Southwest, High Relative Risk); or

“Due to sustained drought, seasonal severity would rank higher than average.
Monsoon storms have been inconsistent.” (Southwest, Moderate Relative Risk).

Landscape barriers from previous wildfires are also discussed frequently in the South-
west and prescribed fire barriers are noted on low risk fires indicating that managers
recognize the benefits of previous wildfire strategies that used wildfire to manage land-
scape vegetation when considering risk. The following example from the Southwest
exemplifies many of these common attributes:

“Overall relative risk is low, primarily because of the time of the year and the
fact that we have received good monsoon rain in the last three weeks. There are
minimal values to protect in this area, and fire behavior is expected to be low. The
fire area has not burned in recent history but is surrounded by numerous areas
that have burned in wildfires or prescribed fires in the last 5 years.” (Southwest,
Low Relative Risk).

The connections managers make between the presence of landscape barriers and risk
support research efforts aimed at expanding decision-space on wildfires. For example, the
dependencies between final fire perimeters and landscape features (topography, roads,
ridgetops, fuel changes) have been combined in an empirical model to predict Potential
Control Lines where fire management efforts might be most successful in limiting fire
spread [42]. The formulation of management zones (Potential Delineations of Operations)
dependent upon these barriers have subsequently been used to promote more options to
manage wildfire in the Southwest [43]. Our findings showing the importance of barriers
in risk perception suggest that the former efforts are likely to be successful in changing
decision-spaces around wildfires.

In the Northwest, despite the dominance of dry summer climate and the absence of a
predictable fire season-end, there is also evidence that when fire conditions are moderated
by sporadic summer precipitation, the result is low to moderate relative risk related to
lower fire behavior and spread potential, similar to what is referenced by land managers in
the Southwest. Low risk fires in the Northwest also have some unique aspects, such as high
elevation, forested fuel types, vegetation within historical ranges, numerous and natural
barriers, and smoke as the only social concern. This excerpt from a Northwest wilderness
fire provides an example of many of these common low risk attributes; for example,

“The fire is surrounded by rock on 3 sides, with a significant landslide on the
4th. Indices and fuels conditions are somewhere between average and slightly
above average. At this time, only 3 smokes are showing between all 3, and there
is no reason to believe, that this won’t happen on the Jumbo as well. Should
significant growth occur, it is anticipated that it will be up drainage away from
private values, further into the Boulder Creek Wilderness. We are entering the
last week of August, with the historical season ending event taking place in the
next 2–3 weeks.” (Northwest, Low Relative Risk)
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Although the latter conditions likely occur less frequently in the Northwest, the excerpt
illustrates remote fires with low spread potential burning at high elevation late in the fire
season with few values at risk as emblematic of low risk fires.

4.2. Climate and Local Values Distinguish High Risk Fires

High risk fires have fewer common factors shared between the GAs. There are a variety
of hazard and probability codes that commonly describe a challenging fire environment,
but the similarities diverge for the discussion of values at risk. Important values at risk
in the Northwest during high risk fires are housing, sage grouse habitat, and special
management areas (i.e., ACEC—Areas of Critical Environmental Concern) often associated
with grass/shrub fuel types. Wildlife habitat, often associated with the Mexican Spotted
Owl (Strix occidentalis lucida), is influential for Southwestern high risk fires. Housing and
recreation values at risk are discussed ubiquitously across regions and risk levels.

Unlike the Southwest, the Northwest does not benefit from consistent seasonal rains
during the summer months [44], and is expected to experience increases in fuel aridity and
wildfire activity associated with anthropogenic climate change [45]. Climate manifests as
dry summers without predictable precipitation and is the foundation for the fire season
leading land managers to frequently comment that fuels are dry and fire danger is high.
The artifact of dry summers, departed vegetation condition, grass fuel types, and dry fuel
moistures, coupled with the influence of specific values at risk that do not interact with fire
in beneficial ways (e.g., loss of structures and habitat) are all associated with higher ratings
of risk. The variety of factors influencing high risk in the Northwest is exemplified below:

“The relative risk is high due primarily to the potential for a high rates of fire
spread and large fire growth. Fire behavior indices are above normal for the
time of year. Natural resource concerns include general and priority sage grouse
habitat, ACEC, and noxious weeds. There are moderate social/political concerns
due to the ranches and private land scattered throughout the planning area and
impacts to grazing and wildlife habitat. Fuels are primarily grass. Topography
is rough and access is limited. Even though early in the fire season, fuels are
reaching critical stages. This area is experiencing a persistent drought conditions.”
(Northwest, High Relative Risk)

Previous studies suggest that most houses and structures do not respond favorably
to wildfire [46,47] and yet the intermix of national forests and housing is considered a hot
spot for development [48]. Both the number of people and homes in the wildland urban
area have increased [49] with a concurrent increase in the probability of wildfires for many
western U.S. counties [50]. The origination of wildfire ignitions is often human-caused
on private lands [51]. These factors are increasing the general jurisdictional complexity
of federal lands with transboundary wildfire exposure among federal, state, and private
entities all impacting communities [52]. Increasingly, the focus on human vulnerability is
a major tenet of federal wildfire management and not one that can be readily ignored by
managers [53]. It is therefore not surprising that land managers charged with managing
wildfire on public lands which are generally absent of private residences are discussing
housing and structures for all levels of risk in the populated and growing Northwest region
along with complexities associated with multijurisdictional wildfire management.

High risk, multijurisdictional fires appeared to be more complicated and prevalent for
both GAs; for example, there are administrative complexities along with issues related with
competing land management objectives associated with different agencies as exemplified
in the excerpts below:

“The fire is expected to involve several jurisdictions, cooperators, and special
interest groups and agreements requiring significant negotiation need to be
developed” (Northwest, High Relative Risk); or
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“The western perimeter is 1.5 miles from the Forest Service boundary. The
strategic direction for the fire is to prevent spread onto neighboring jurisdictions.”
(Northwest, Moderate Relative Risk)

In many cases, pro-active measures to incorporate multiple shareholders to provide
input into pre-fire planning processes are already occurring [54], stemming from efforts
associated with cohesive strategy [55], but the jurisdictional issue is still evident in the data,
perhaps related to the different missions of the various federal and non-federal landowners.

4.3. Climate Change

The strong and contrasting coupling of climate and risk between the Southwest and
Northwest highlights the role climate change may play in future wildfire risk. Southwest-
ern land managers clearly rely on the predictability of the monsoon to manage risk and
the Northwest clearly suffers the consequences of a highly uncertain moisture regime
each summer. Future projections of monsoonal moisture are uncertain with a changing
climate [56]. Some research has suggested that precipitation associated with the monsoon
could sharply decrease due to increased atmospheric stability and less wind associated
with more uniform sea surface temperatures [57], while others suggest the reliability of
monsoonal precipitation could shift to later in the fire season [58]. This, in turn, could result
in significantly more large wildfires (>24,000 ha), and more days with extreme conditions
including very low fuel moistures and high fire danger for the Southwest [45]. The years
between 2000 and 2021 are noted as the driest 22 year period for the last 800 years [59], and
it seems probable that selection of a ‘low’ relative risk rating could wane in the Southwest.
Based on the findings of this study, climate changes that result in more variability (or de-
creased predictability) will almost certainly increase operational wildfire risk. The constant
threat of high consequence, low probability events drives up operational risk.

The Northwest is predicted to experience an increase in more extreme fire days as
climate changes. Fuel aridity is likely the cause of larger fires in forested ecosystems [60,61],
in part, due to anthropogenic activity leading to increases in temperature and vapor
pressure deficit [62]. An evaluation of climate from the Pacific Northwest from 1901 to 2012
showed increased warming, a long-term increase in spring precipitation and decreased
summer and fall precipitation leading to larger climatic water deficits [63]. Manifestations
of future climate is expected to produce more unfavorable weather and fuel conditions
amenable to fire spread, posing challenges for land managers in both GAs [14].

On the positive side, there is evidence in both regions that when managers get a break
from high fire environment conditions with a favorable weather forecast or time of season,
they find low risk and consider a wider variety of management strategies. We hypothesized
that manager confidence in the occurrence and effects of the monsoon would be a major
aspect of Southwestern fire management that lent itself to lower risk and perhaps greater
decision space when devising fire management strategies. However, we did not anticipate
the same behavior in the Northwest when occasional sporadic moisture and certainty
with respect to fire season end worked together to produce some low risk and perhaps
different management strategies. There is a need to exploit these favorable conditions
more frequently in order to opportunistically use unplanned and planned ignitions to
accomplish long-term management objectives. Given expected future climates, now is
the time to change how fire is managed, which likely means reducing risk (or changing
perceptions of it) and using different management strategies on a larger fraction of fires [13].

5. Conclusions

Unique to this study are results from wildfire risk assessments made during actual
events, when risk was evolving, dynamic, uncertain, and inconclusive. Land managers
articulated a range of factors to justify risk with common themes emerging for the two
most risk-disparate geographic areas in the country. The Northwest and Southwest both
identified housing and habitat as the most common values at risk. Both discussed the role
of natural and unnatural landscape barriers; as well as high seasonal severity, especially
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in of the context of high fire danger and dry fuel moistures. However, the Southwest
selected low and moderate relative risk with greater frequencies than the Northwest and
the factors managers write about relate primarily to characteristics of the fire environment
amenable to ‘low fire behavior’ and ‘small potential’, in part, due to precipitation associated
with the North American monsoon. The Northwest found high and moderate risk with
high frequency, and it is not surprising that its land managers write more about values
at risk, aspects of seasonal severity leading to greater fire spread and potential, and steep
topography. Perspectives from both GAs highlight the critical role that climate plays in
dictating weather, fuel moisture, and fire behavior as noted in other studies [64,65] when
assessing risk during wildfires, which ultimately influences how wildfire will be managed.

5.1. Limitations

While there are many efforts to quantify wildfire risk [2,66], this data set from the
mandated U.S. Wildland Fire Decision Support System represents perceptions of risk from
primarily federal land managers once a wildfire ignition is established. We surmise the
RRA represents a mixture of land manager’s risk perceptions influenced by agency culture,
individual biases, risk aversions, [28,67–71] and biophysical risk, among other factors. This
study makes no attempt to understand the motivations behind an individuals’ propensity
toward rating a RRA as “high” or “low” risk, and instead summarizes these issues on
regional scales to explore these data. Semi structured interviews of land managers as
conducted in other studies could help explore the contribution of personal motivations
behind assessments of risk [28,66,68,69] and is a topic for further research.

We assumed exploring risk perception data from the RRA in WFDSS was worthwhile
because these data capture a snapshot of wildfire decision making in real-time that is
difficult to gain from decision makers who are busy managing a wildfire. There is debate
regarding the true impact to decision making when using decision support systems like
WFDSS; some advocating for its usefulness [64] and others suggesting barriers to its
adoption [72,73]. Some studies have used U.S. wildfire institutional data sets to explore
patterns and suggest improvements to fire-fighting resource allocation [64,74–76]. Prior to
this investigation, the information content of the WFDSS RRA data set and its suitability
for studying risk systematically was unknown. Thus, an exploratory approach was taken
to better understand the geography of wildfire risk perceptions [27], and then to identify
codes to predict this risk.

5.2. Further Research

Data collected on wildfires in numerous mandated systems, forms, and databases
collectively tell a story about the decisions surrounding one of the most influential moments
on a landscape—a wildfire. Researchers should endeavor to tell these stories to land
managers and administrators through exploration and analysis of these data. If managed
strategically, wildfires can leave communities and the surrounding environment in a
more resilient state than without that disturbance. Analyzing wildfire data ex post facto
to identify decisions that lessened fire-fighter exposure, costs, and increased landscape
resiliency, is a component to convincing land managers and the public that wildland fire is
an opportunity to gain benefit for landscape resiliency.

Author Contributions: Conceptualization, E.N.-W. and C.S.; methodology, E.N.-W. and C.S.; formal
analysis, E.N.-W.; investigation, E.N.-W. and C.S.; data curation, E.N.-W.; writing—original draft
preparation, E.N.-W. and C.S.; writing—review and editing, E.N.-W. and C.S.; visualization, E.N.-W.
and C.S.; funding acquisition, E.N.-W. and C.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Wildland Fire Management Research Development and
Application Group, Rocky Mountain Research Station, USDA Forest Service and the National Center
for Landscape Fire Analysis (Fire Center), W.A. Franke College of Forestry, University of Montana.



Fire 2022, 5, 131 20 of 26

Data Availability Statement: Data produced in this study are available from the corresponding
authors upon reasonable request.

Acknowledgments: Laurie Yung, Anne Black, and Vita Wright provided critical assistance to develop
social science methods. Valentijn Hoff and Chris Moran (University of Montana, Fire Center) provided
assistance with check coding. Chris Moran, Vita Wright and Anne Black provided internal reviews
and thoughtful suggestions to this manuscript. Three anonymous reviewers provided thoughtful
revisions. Finally, we thank Tom Zimmerman who implemented the initial relative risk assessment
and provided background on the development of efforts to address risk in support of the decisions to
manage wildfires for resource objectives.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A

Hazard and Probability Coding Schema

Coding structures of the Hazard and Probability elements of the relative risk assess-
ment. The total number of times codes were counted (n) are shown in white shapes. Gray
shapes denote sub-themes to summarize codes. There are a total of 282 wildfires from the
relative risk assessment dataset that were coded simultaneously to produce 83 codes.
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Figure A1. The Hazard Element is summarized by themes (Potential, Fuel Condition and Fire
Behavior). The themes are further described by second and third-order sub-themes (light grey
shapes), used to summarize types of codes, with the total number of wildfires associated with a
specific code, denoted with white shapes.
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Appendix B

Uncommon Codes

Table A1. Codes that occurred with low frequency, are not significant (chi-square > 0.05) and are not
ranked in either the Random Forest or CART analysis.

Element Theme Code

Northwest Southwest

Frequency (%) Chi-sq. RF
MIR,
Rank

CART,
Var. Imp.,

Rank

Frequency (%) Chi-sq. RF
MIR,
Rank

CART,
Var. Imp.,

RankH M L T p-Value H M L T p-Value

Hazard fire behavior crown 3% 0% 0% 3% 0.223 NA NA 1% 1% 0% 2% 0.177 NA NA

Hazard fuel
condition

invasive
species 2% 0% 0% 2% 0.478 NA NA 2% 3% 1% 6% 0.238 NA NA

Hazard potential low elevation 2% 0% 0% 2% 0.478 NA NA 1% 3% 0% 3% 0.114 NA NA

Hazard potential precipitation
absent 1% 0% 1% 2% 0.384 NA NA 1% 3% 0% 4% 0.143 NA NA

Hazard potential high resistance 3% 0% 0% 3% 0.223 NA NA 1% 2% 1% 4% 0.557 NA NA

Hazard potential low resistance 0% 0% 0% 0% N/A NA NA 0% 1% 0% 1% 0.444 NA NA

Hazard potential high relative
humidity 1% 0% 1% 2% 0.384 NA NA 0% 4% 4% 8% 0.125 NA NA

Hazard potential low
temperature 2% 0% 2% 4% 0.216 NA NA 0% 2% 3% 5% 0.179 NA NA

Hazard potential aspect 2% 1% 1% 3% 0.894 NA NA 0% 0% 1% 1% 0.186 NA NA

Hazard potential slope 2% 2% 2% 5% 0.392 NA NA 1% 0% 1% 2% 0.176 NA NA

Hazard potential calm winds 0% 1% 0% 1% 0.231 NA NA 1% 1% 0% 1% 0.498 NA NA

Probability barriers ineffective 4% 0% 0% 4% 0.151 NA NA 1% 2% 0% 3% 0.210 NA NA

Probability barriers fuel treatment 2% 2% 0% 4% 0.169 NA NA 0% 1% 3% 3% 0.124 NA NA
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Table A1. Cont.

Element Theme Code

Northwest Southwest

Frequency (%) Chi-sq. RF
MIR,
Rank

CART,
Var. Imp.,

Rank

Frequency (%) Chi-sq. RF
MIR,
Rank

CART,
Var. Imp.,

RankH M L T p-Value H M L T p-Value

Probability seasonal
severity

average fuel
moisture 1% 1% 2% 3% 0.168 NA NA 2% 1% 2% 5% 0.330 NA NA

Probability seasonal
severity moderate 0% 0% 1% 1% 0.079 NA NA 1% 4% 3% 7% 0.378 NA NA

Values cultural
resources absent 1% 1% 2% 3% 0.168 NA NA 1% 2% 3% 7% 0.702 NA NA

Values economic
concerns

mining,
outfitters,

agriculture
5% 1% 1% 7% 0.445 NA NA 2% 3% 1% 6% 0.597 NA NA

Values infrastructure few or no
houses 2% 3% 1% 5% 0.135 NA NA 1% 1% 3% 6% 0.477 NA NA

Values infrastructure highway 7% 2% 1% 9% 0.447 NA NA 2% 1% 1% 4% 0.284 NA NA

Values natural
resources

flora
(whitebark

pine,
ecosystems)

5% 2% 3% 9% 0.247 NA NA 1% 1% 1% 3% 0.836 NA NA

Values natural
resources

general natural
resources 2% 1% 0% 3% 0.640 NA NA 1% 1% 3% 4% 0.314 NA NA

Values social
concerns

negative
perceptions of

fire
1% 2% 1% 3% 0.384 NA NA 3% 3% 2% 7% 0.583 NA NA

Values social
concerns

positive
perceptions of

fire
0% 0% 0% 0% N/A NA NA 0% 3% 5% 7% 0.081 NA NA
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