
Citation: Wang, G.; Chen, T.; Wang,

Z.; Gao, Z.; Mi, W. Beads and

Globules from Fires: Can They Be

Differentiated through Metallurgical

Analysis Based on Machine Learning

Algorithms? Fire 2022, 5, 123.

https://doi.org/10.3390/fire5040123

Academic Editor: Qingsong Wang

Received: 17 July 2022

Accepted: 16 August 2022

Published: 19 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fire

Article

Beads and Globules from Fires: Can They Be Differentiated
through Metallurgical Analysis Based on Machine
Learning Algorithms?
Guanning Wang 1,2, Tao Chen 1,*, Zhidong Wang 3, Zishan Gao 1 and Wenzhong Mi 2

1 Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University,
Beijing 100084, China

2 Disaster Accident Investigation Technology Center, Tsinghua University, Beijing 100084, China
3 China Guangdong Nuclear Testing Technology Co., Ltd., Suzhou 215000, China
* Correspondence: chentao.a@tsinghua.edu.cn

Abstract: Electrical apparatuses are prone to faults, which generally causes fires. During such fires,
the identification of resolidified copper beads on wires has a strong influence on the direction of
the fire investigation. There are four kinds of resolidified beads formed on copper conductors that
have been through the fire with and without voltage, namely, ‘cause’ beads (CB), ‘victim’ beads
(VB), overload globules (OG), and fire melting globules (FG). First, to improve the identification’s
objectivity and quantifiability, we used various morphologic parameters of crystals and porosities
to express metallurgical microcharacteristics, such as Ar-G, As-G, An-G, Dm-G, R-G, FD-G, Fm-G,
Ar-G, As-P, An-P, Dm-P, R-P, FD-P, Fm-P, P3-P, and Cu2O. Then, several machine learning classifiers
were developed to predict the melted beads based on metallurgical morphologic parameters by using
SVM, BP neutral network (BPNN), AdaBoost, bagging, and random forest (RF), respectively. Models
were trained and tested based on the sample set, consisting of 560 samples which were collected from
real room fires. ACC/F1 of the RF model were 0.894/0.805, respectively, which are superior to SVM,
BPNN, AdaBoost, and bagging. For the RF classifier, the recall rates of CB, VB, OG, and FG were
92.5%, 67.5%, 100%, and 97.5%, respectively, indicating that RF has best potential to predict OG and
FG. The variable importance was analyzed to distinguish key features, and the results revealed that
Cu2O has highest impact on bead classification. We cannot find much promise with this method that
uses multiple metallurgical and morphological parameters for distinguishing between CB and VB. It
is confirmed that no machine learning classifiers combined with metallurgical analysis could do this
work well in this paper. Thus, we strongly recommend that other evidence for investigation in the
room fire should also be considered to cover the shortage of this kind.

Keywords: fire investigation; copper wire; globules; beads; metallurgical analysis; machine learning

1. Introduction

As one of the great disasters of social economy, fire has long been an important problem
which requires solving and studying [1,2]. Electrical faults, such as a short circuit or an
overload condition, often pose ignition hazards in the easily flammable and environment
in daily activities. In order to sum up the lessons learned from fire accidents and to
prevent the same accidents from happening again, there is critical need for researchers to
investigate the cause of fires accurately and efficiently [3]. In fires, it is known to many
investigators that the presence of a rounded mass of resolidified copper means the copper
conductor was energized at the time of the fire. However, the tests performed by others
demonstrated that beads of resolidified copper may be present on conductors known not
to have been energized [4]. In the 2017 edition of NFPA 921, “Guide for Fire and Explosion
Investigations”, there are four main resolidified beads formed on copper conductors with
and without voltage, namely beads called ‘cause’ beads and ‘victim’ beads, which do or
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do not start the fires, respectively, and globules that are either caused by overload or by
fire melting conditions. Identifying how the resolidified copper beads found in fires were
formed plays a crucial role in helping investigators to determine if specific conductors were
energized and initiated the fire. An important question for fire investigators is whether
these four kinds of beads on copper conductors can be distinguishable from one another.

This question is so critically important to uncovering the truth about fires which has
long puzzled investigators and electrical fire researchers. Thus, scholars around the world
have begun a difficult quest to find the solution. Henderson et al. [5]. proposed carbon
content analysis to identify ‘cause’ beads and ’victim’ beads. The results showed that
the carbon content technique is of no value in distinguishing these two kinds of beads.
Babrauskas [6] presented some physical and chemical testing methods to distinguish
beads that were associated with causing a fire, or were produced as a result of a fire
resulting from another cause. He found that relying on the beads’ external shape, surface
smoothness, surface roughness, or size was not useful to discriminate ‘cause’ beads and
’victim’ beads. Moreover, unfortunately, energy-dispersive X-ray spectrometry (EDS) was
proven insufficient in identifying these two kinds of beads. Wright et al. [4]. had observed
both the appearance by stereo microscope and internal microstructures by metallurgical
microscopy of beads and globules. It was proposed that beads and globules were similar in
appearance, as the surfaces all have fine, rounded, porous structures typical of a solidified
solid, but fortunately they could be differentiated by the sharp line of demarcation in their
microstructure. NFPA 921 (2017) in Section 9.10.3.2 states that “Beads can be differentiated
from globules, which are created by non-localized heating such as overload or fire melting.
Beads are characterized by the distinct and identifiable line of demarcation between the
melted and the adjacent un-melted portion of the conductor”.

Traditional metallurgical analysis could be used to discriminate beads and globules,
but there are still some crucial limitations during its practical use. In the process of
investigating electrical fires, resolidified copper beads have most frequently been observed.
After metallurgical analysis, it may be concluded that those rounded masses of resolidified
copper are beads or globules. However, to determine the cause of fire further, it is difficult
to differentiate between ‘cause’ beads and ‘victim’ beads or to identify globules generated
by overload or fire attack. This is because the presence of microstructures of beads or
globules have close similarity in morphology. Thus, qualitative and semi-quantitative
metallurgical analyses, which are mainly relied upon to differentiate the beads or globules
at present, have affected the objectivity and accuracy of the prediction results. Therefore,
the research in quantitative metallography discrimination of rounded masses of resolidified
copper is a pragmatic need for fire investigators.

Methods in computer science offer new methods for microstructure classification. In
these approaches, different algorithms and various microstructural parameters are used
to build a classification model. DeCost and Holm [7] have applied “the bag of features”
to create genetic microstructural signatures that can be used to automatically find rela-
tionships in large and diverse microstructural image data sets. Chowdhury et al. [8] have
further expanded upon the work presented by DeCost and Holm. Multiple computer vision
and machine methods were investigated for microstructure recognition. In addition, they
concluded that deep learning algorithms could successfully be applied to micrograph recog-
nition tasks. Bangaru et al. [9] presented a machine learning-based image segmentation
method for microstructure analysis. In this work, the results showed that the Random forest
(RF) classifier is suitable for microstructure analysis using scanning electron microscopy.
Although quantitative microstructural analysis has achieved many advances with the
development of computer vision and machine learning, replacing human expertise-based
skills by means of computer is still the most challenging part of the process [10]. Hence, a
better solution would involve a novel method to meet the fire investigation need. Although
there are few researches at present on intelligent quantitative analysis approaches to the
determination of metallurgical microstructures, what predecessors in the field have done
has laid a solid foundation for exploration of this novel method.
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Machine learning has been successfully applied in both fire science [11] and safety
areas [12]. For example, ANNs were used to predict forest fires using meteorological
data [13], and IV-SVM was used to set up a fire recognition model [14]. Considering our
task is to identify the resolidified copper beads in one of four specific categories, some
special machine learning methods with advantages of classification were chosen to set up
discrimination models. Support vector machine (SVM) is considered in this work because
of its simplicity and efficiency. At present, SVM has been a widely used classification and
recognition algorithm derived from the statistical learning theory [15,16]. SVM models with
different kernel functions can not only solve the classification problems of general data but
can also meet the needs of multi-classification problems with small samples and nonlinear
characteristics [17]. It is popular in classifying microstructures due to the advantage of its
having stronger robustness than other machine learning methods. DeCost and Holm [7]
have trained an SVM model in combination with visual features to classify microstructures
into one of seven groups with greater than 80% accuracy over five-fold cross-validation.
Hence, there is a possibility to use it in discriminating melted beads found in fire scenes.
BP (back propagation) neural network is a classic neural network learning algorithm which
is also considered in this work. It performed well in stock price pattern classification [18],
wear debris classification [19] and identification of bridge grouting compactness [20].

Ensemble methods have been proven to be effective tools for solving multi-label
classification tasks [21], and this is why we also considered them as tools to perform beads
classification, mainly including boosting, bagging and Random forest. The AdaBoost (the
abbreviation of Adaptive Boosting), formulated by Yoav Freund and Robert Schapire [22],
is a popular boosting algorithm in ensemble schemes, which perform exceptionally well
in classifying soils [23], rock mass [24], and Alcoholic EEG signals [25]. Bagging classifier
was used, as it can easily handle higher dimensional data and missing data points and
maintains accuracy for missing data. Thus, it is successfully used in the classification
of chicken, beef and mutton tissues [26], determinations of COVID-19 CXR images [27],
and predictions of credit scoring [28]. Additionally, the Random forest classifier is one of
the most successful ensemble learning techniques used for large-sized classification and
skewed problems [29]. The Random forest is an ensemble of decision trees, and each tree
returns a classification result. Due to its best classification and recognition performance,
it has been applied in many different fields, such as heart diseases diagnosis [30], flight
departure delay prediction [31], and HCV detections [32].

In our approach, several machine learning algorithms were used to try to meet the
challenge of identifying metallurgical images of resolidified copper beads extracted in fires.
The task of the discrimination relied on machine learning models previously mentioned.
The input and the output were seventeen-dimensional parameter vectors and the bead
class labels respectively. The seventeen-dimensional parameters were selected to describe
the morphology of the grains and the porosities of the melted beads with the help of Image
Pro-Plus 6.0 (IPP 6.0) software. We not only proposed different discrimination models
based on different learning algorithms, but also carried out a comparison among them
on the accuracy (ACC) and the F1-measure (F1), and then determined a better approach.
The rest of this paper is organized as follows: The metallurgical data collection method is
introduced in Section 2. In Section 3, several machine learning models are built based on
the metallurgical dataset exacted in Section 2, and the prediction results are discussed. In
Section 4, the final conclusion is drawn.

2. The Metallurgical Data Collection
2.1. Experiment Conditions and Metallurgical Image Dataset

In order to establish identification models for analyzing and classifying the metallur-
gical microstructures of ‘cause’ beads (CB), ‘victim’ beads (VB), overload globules (OG),
and fire-melting globules (FG), this process requires a large dataset comprising metal-
lurgical microstructures with different vision angles and at different magnifications. To
obtain such a dataset, we collected the resolidified copper beads’ metallurgical images
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from the Physical Evidence Appraisal Center (PEAC) of China People’s Police University
for nearly 10 years, which are used for bead classification as a case study. In such room
fires, the copper conductors were exposed to electrical faulting or flames and resolidified
as beads or globules. Then we obtained a dataset with 634 images, which was comprised
of metallurgical images of CB, VB, OG, and FG. After the filtering process, the dataset
containing 560 samples was prepared for analysis. Images were held out into two datasets
randomly: a training dataset and a test dataset, corresponding to the models’ training and
testing, respectively.

As a result, the training dataset was comprised of micrographs of CB, VB, OG, and
FG, which in total included 400 samples, 100 samples for each class. The test dataset was
comprised of 160 samples with 40 samples for each class. The examples of metallurgical im-
ages of CB, VB, OG, and FG are provided in Figure 1. Columnar crystals and porosities are
clearly observed in the metallurgical microstructures of CB and VB. Dendritic morphologies
and equiaxed crystals appear in the micrographs of OG and FG. Sometimes, the morpho-
logic characteristics of resolidified copper beads are very similar, which makes it difficult
to rely on the quantitative determination of expert prior knowledge traditionally. With the
developments of computer vision and machine learning, replacing the experience-based
judgment with computer-led processes and realizing the metallurgical microstructures’
automatic discriminations are urgently needed, which will assist investigators to better
establish an evidence chain.

Figure 1. Examples of metallurgical micrographs used for parameters extraction and classification.
Micrographs shown in (a–d) are cross-sectional views of CB, VB, OG and FG respectively.

2.2. Selection of Input Variables

The performance of the machine learning model is affected by the number of input
variables. Thus, extraction of parameters is the foundation of the determination, and
thereby the first step of all procedures. Deng et al. [33] analyzed the metallurgical structures
of CB under different short-circuit currents. They found that a strong current was required
for Cu2O formation. As the temperature rose, the small grains gradually aggregated and
grew, and the dendrites Cu2O and eutectic (Cu + Cu2O) began to form. Hence, Cu2O
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content was selected as an important dimension of a resolidified copper sample. Based on a
real electrical fire, Yu et al. [34] also analyzed the metallographic structure of the arc copper
beads, and the average diameter, perimeter, and area of the grains were studied. Li et al. [35]
investigated the process and mechanism of breakdown-induced cable insulation exposed to
conductor heating caused by overload. Kinds of metallographic microstructure of arc beads
were found during a test, such as dendritic segregation structure, equiaxed recrystallized
grains and cylindrical crystals. Zhang et al. [36] developed a series of experiments on the
glowing contact triggered by poor electrical contacts. They also found that CuO-dominant,
Cu2O-dominant, and Cu2O-CuO mixed modes are found in different parts of metallurgical
structures. According to NFPA 921, the morphologic structures of grains and porosities are
the valid indicators of the resolidification process in fire, thus they may be chosen to describe
the characteristics of metallurgical images. The size and shape of grains and porosities
vary depending on the solidification behaviors, thus microstructures of melted beads vary
widely. Hence, the microstructures of the grains and the porosities are interesting parts
of a metallurgical structure. With the help of IPP6.0, we selected seventeen dimensional
parameters to represent the morphologic structures of samples mathematically, as shown
in Table 1.

Table 1. Metallurgical characteristics parameters of melted beads on stranded copper conductors.

No. Type Item Code Implication

1

Parameters
of grains

Area Ar-G Reports the area of each object
(minus any holes)

2 Angle An-G

Reports the angle between the vertical axis and
the major axis of the ellipse equivalent to the
object (i.e., an ellipse with the same area, first

and second degree moments), where
0◦ ≤ Angle◦ ≤ 180◦

3 Aspect As-G

Reports the ratio between the major axis and the
minor axis of the ellipse equivalent to the object

(i.e., an ellipse with the same area, first and
second degree moments), as determined by

Major Axis/Minor Axis. Aspect is always ≥1

4 Diameter (mean) Dm-G

Reports the average length of the diameters
measured at two degree intervals joining two

outline points and passing through
the centroid

5 Feret (mean) Fm-G Reports the shortest caliper (feret) length

6 Fractal Dimension FD-G Reports the fractal dimension of the
object’s outline

7 Roundness R-G

Reports the roundness of each object, as
determined by the following formula:

(perimeter2)/(4 × pi × area). Circular objects
will have a roundness = 1; other shapes will

have a roundness > 1

8 Perimeter3 P3-G Reports a corrected chain code length of the
object perimeter, not including holes

9

Parameters
of poles

Area Ar-P The same as before
10 Angle An-P The same as before
11 Aspect As-P The same as before
12 Diameter (mean) Dm-P The same as before
13 Feret (mean) Fm-P The same as before
14 Fractal Dimension FD-P The same as before
15 Roundness R-P The same as before
16 Perimeter3 P3-P The same as before

17 Cu2O
Content Cu2O Ratio Cu2O

The proportion of Cu2O after content binary
extraction and measurement in polarized-field

under the magnification of 50×

The parameters such as area, angle, aspect, diameter (mean), feret (average), fractal
dimension, roundness, and perimeter could cover the microstructures of the grains and
their porosities comprehensively. The solidification process of beads or globules is a phase-
changing process determined by kinetic conditions. When copper solidified, Cu2O formed
a grain-like eutectic distribution at the grain boundary, which indicates the heat-treating
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process of copper conductors in fire. Therefore, we selected the content of Cu2O as one of
the important parameters to reflect the recrystallization oxidation degree. The metallurgical
microscope was applied to take photographs under the polarized field and IPP6.0 was used
for a binary extraction and the measurement of Cu2O content [33]. Each parameter was
measured five times in parallel, then averaged. The measurement processes are shown in
Figure 2.

Figure 2. Examples of metallurgical microstructural parameters extraction and measurement by
IPP 6.0. Micrographs shown in (a–d) are views of grains selected by IPP, porosities selected by IPP, a
bright-field of metallurgical structure, and a polarized-field after a binary extraction.

The input vectors x derived from metallurgical images had seventeen dimensional
parameters. In order to simplify the data processing and to ensure the convergence rate of
operation, the input vectors of the training dataset and the test dataset were normalized by
the Z-score method into dimensionless variables. Corresponding to this, the output vectors
were set which contained the samples’ labels, namely the CB, the VB, the OG, and the
FG. Based on these input vectors and output vectors, the models were trained, validated,
and tested. Figure 3 shows the data preprocessing procedure. Finally, a dataset with
560 samples was established, in which the number of samples for each class was equal.
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Figure 3. Flowchart of the data preprocessing procedure.

3. Development of Classification Model
Model Training and Evaluation

To obtain a classifier which could perform the bead classification task well, SVM,
BP neutral network (BPNN), AdaBoost, bagging, and random forest (RF) were adopted
in this research to build such classification models. Then, a comparison was done to
choose an optimal one. A flowchart of the bead classification method proposed is shown
in Figure 4. In this way, IPP software was used first to select special parameters from
each metallurgical image of melted beads which cover the microstructures of grains and
porosities comprehensively. Then, the whole dataset was randomly divided into two
datasets, namely the training dataset and the test dataset. Then, the five different machine
learning algorithms mentioned above were used to set up different bead identification
models. Ultimately, the classification results were compared and analyzed, and the model
that performed best was identified.
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Figure 4. Flowchart of the bead classification method.

In order to perform this research well, 28% of the whole dataset was used as the test
dataset randomly, then the remaining 72% of the metallurgical dataset was kept as the
training dataset. The model was trained via 10-fold cross validation, i.e., the training dataset
was approximately divided into 10 mutually exclusive subsets, and during each run, the
kth subset (10%) was taken as the validation set, while the remaining nine subsets were
taken as the training set. Then, the model was evaluated with the average performance of
all 10 runs to ensure the stability of the validation results. To obtain the optimal model, the
grid search method was utilized during the 10-fold cross-validation process to enumerate
the combination of hyperparameters with specified discrete values, as shown in Table 2.
After grid-searching, hyperparameters were obtained to make an optimal model which was
used to perform the prediction task. A flowchart of model training and testing is shown in
Figure 5. Accuracy (ACC) and F1-measure (F1) are adopted as evaluation criteria of the
model, and were calculated as follows:

ACC =
n

∑
i=1

Di,i/
n

∑
i=1

n

∑
j=1

Di,j (1)

F1 =
1
n

F1i (2)

F1i =
2PiRi

Pi + Ri
(3)

Pi =
Di,i

∑n
k=1 k, i

(4)

Ri =
Di,i

∑n
k=1 i, k

(5)
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where D represents the confusion matrix, Di,j represents the number of samples with real
class i and predicted class j, F1i, Pi, and Ri represent the F1-measure, accuracy, and recall
(R) of class i, respectively, and n represents the number of classes. The values of ACC and
F1 ranged from 0 to 1, with 1 representing the best model performance and 0 the poorest.

Table 2. Optional parameter values in grid search.

Model Parameter Optional Values N

BP neutral network

Number of hidden layers 1, 2, 3

72
Hidden layer size [10 20 30]

Train function traingd, traingda,
traingdm, traingdx

Transfer function logsig, tansig

SVM

Kernel function poly, linear, RBF, Sigmoid

884
c

2−2, 2−1.5, 2−1, 2−0.5, 1, 20.5, 21,
21.5, 22, 22.5,
23, 23.5, 24

g
2−4, 2−3.5, 2−3, 2−2.5,2−2, 2−1.5,

2−1, 2−0.5, 1, 20.5, 21, 21.5, 22,
22.5,23, 23.5, 24

Bagging NumLearningCycles 1–200 200
AdaBoost NumLearningCycles 1–200 200

Random forest
ntree 50, 100, 150, 200, 300, 400, 500,

600, 700, 1000 50
mtry 1, 2, 3, 4, 5

N: Total number of models in the grid search.

Figure 5. Flowchart of model training, testing, and evaluation.

4. Results and Discussion
4.1. Prediction Results of SVMs

The primary target of SVM models is to maximize the margin among all these classes.
SVM is a supervised classifier with a special kernel function to find the best hyperplane
that separates the training samples of targeted classes. In this work, linear kernel function,
polynomial kernel function, RBF kernel function, and sigmoid kernel function were carried
out to find the best hyperplane. Firstly, the input vectors of the training dataset were found
to determine the optimal penalty parameter c and kernel function width g by using the grid
search method. At the same time, the 10-fold cross-validation method was performed to
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validate the model’s performance. The ACC/F1 of linear-SVM, poly-SVM, RBF-SVM, and
sigmoid-SVM were 0.894/0.802, 0.875/0.768, 0.881/0.781, and 0.875/0.758, respectively, as
shown in Figure 6. The performance of linear-SVM exceeded that of other SVM models.

Figure 6. Classification performances of linear-SVM, poly-SVM, RBF-SVM, and sigmoid-SVM.

Figure 7 shows the results of linear-SVM hyper-parameters selection by using the
grid search method. It was determined that c was 6.96 and g was 0.03, with the 10-fold
cross-validation accuracy of 96.25%.

Figure 7. The results of grid search method of linear-SVM.

Figure 8a represents the classification results of the linear-SVM model. Evidently,
none of the beads were classified into globules. However, seventeen prediction errors
occurred. Namely, there were three CB samples misclassified into VB, while thirteen
VB samples were misclassified in CB. Additionally, one FG sample was classified into
OG. The confusion matrix in Figure 8b graphically shows the linear-SVM classification
performance with respect to each individual class. The vertical axis corresponds to the class
predicted by the SVM classifiers, and the horizontal axis corresponds to the actual class
of each test sample. The recall rates of CB, VB, OG, and FG are 0.975, 0.625, 1, and 0.975,
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respectively. This is principally because columnar crystal structures and porosities appear
in both VB and CB, which leads to difficulty in differentiating them due to their similar
morphological characteristics. In addition, the recrystallization processes of VB and CB are
similar because they are both arc beads, which determines that these two groups of copper
beads have similar levels of Cu2O. The misclassification between OG and FG is because
dendritic morphologies occasionally appear in FG microstructures. In contrast, no beads
were classified as globules, and no globules were differentiated as beads.

Figure 8. The classification results and confusion matrix of RBF-SVM. Micrographs shown in (a,b)
are views of the classification results and confusion matrix.

4.2. Prediction Results of BPNN

BPNN has been widely used in prediction works such as ash melting characteristic
temperature [37], landslide [38], and PM 2.5 mass concentration [39]. Hence, it was also
considered in this paper for the task of performing bead predication. The training function
of the BPNN is a gradient-descending function based on a momentum and an adaptive
learning rate. The learning algorithm of the connection weights and the threshold values
is a momentum-learning algorithm based on gradient descending. The performance of
the BPNN is affected by the number of hidden layers, hidden layer size, train function,
and transfer function. To obtain the optimal model, the grid search method was utilized to
evaluate the combination of parameters with special discrete values, as shown in Table 2.
The process of parameters selection and model validation is shown in Figure 5. 10-fold
cross-validation was also performed on the training dataset, combined with the grid search
method, to select proper parameters of the model. Early stopping was used as the stop
criteria in the BPNN model. It means that in the process of network training, if cross-
entropy validation curve does not decrease for 6 consecutive iterations, training process
is stopped.

After grid search and model validation, we found that when the values of the number
of hidden layers, the nodes of hidden layer, the train function, and the transfer function
were 1, 20, traingdx, and logsig, respectively, a BPNN model could perform this work
well. It is worth mentioning that, in terms of this fire investigation issue, the validation
accuracy could not increase by adding hidden layers. More hidden layers may even lead
to an over-fitting issue. The ACC/F1 of 1-Hidden layer BPNN, 2-Hidden layer BPNN,
and 3-Hidden layer BPNN were 0.850/0.723, 0.838/0.703, and 0.825/0.677, respectively, as
shown in Figure 9. Evidently, the performance of 1-Hidden layer BPNN exceeded those of
other multi-Hidden layer BPNN models.
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Figure 9. Classification performance of 1-Hidden layer BPNN, 2-Hidden layer BPNN, and 3-Hidden
layer BPNN.

Hence, the 3-layer BPNN was ultimately adopted in this paper, whose diagram is
shown in Figure 10. Figure 11a shows the process of the grid search and validation. The
model’s 10-fold validation misclassification rate was 0.08. Figure 11b clearly demonstrates
the error histogram during the cross-validation. Evidently, all of the errors were quite low
and fell between the range of −0.8736 to 0.9401, but most of the errors fell between the
range of −0.299 to 0.2757 where high bars could be clearly seen.

Figure 10. The BPNN network diagram used in this work.
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Figure 11. The 10-fold misclassification rate and error histogram results of the grid search method.
Micrographs shown in (a,b) are views of the misclassification rate and error histogram with 20 bins.

Figure 12a demonstrates the classification results of the BPNN algorithm. Distinctly, it
is found that there were twenty-four prediction errors of BPNN model. Namely, there are
two CB samples misclassified in VB, while sixteen VB samples were misclassified in CB.
Additionally, there were two VB samples misclassified in OG. Moreover, four OG samples
were misclassified in FG. Figure 12b shows the BPNN’s classification performance. The
recall rates of CB, VB, OG, and FG are 0.95, 0.55, 0.90, and 1, respectively. Unfortunately,
BPNN does not distinguish VB from VB well.

Figure 12. Identification results of the BP neutral network. Figures shown in (a,b) are the identification
results of BPNN and its confusion matrix.

4.3. Prediction Results of Bagging and AdaBoost

This study also adopted AdaBoost and bagging as the classifiers to perform this
prediction task. Bagging and boosting yield N learners by generating additional data
in the training stage. N new training data sets are produced by random sampling with
replacement from the original set. In the case of bagging, any element has the same
probability of appearing in a new data set. However, for boosting the observations are
weighted, AdaBoost is a genetic iterative supervised learning algorithm that combines
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weak hypotheses in a much more accurate master hypothesis. AdaBoost M2 algorithm [22]
was used in this work.

The decision tree algorithm was used as the base classifier for these two kinds of
classifiers, and the models were trained and validated via 10-fold cross-validation by using
the same process as shown in Figure 5. The performances of both AdaBoost and bagging
are affected by the number of base classifiers, namely the NumLearningCycles in these two
algorithms. In this work, due to a relatively small training dataset, we used some default
values of parameters of the decision tree. For the bagging algorithm, the maximal number
of decision splits (MaxNumSplits) was 399, while for AdaBoost, MaxNumSpilts was 10.
For bagging and AdaBoost, minimum observations per leaf (MinLeafSize) was set as 1. In
order to find a proper value of NumLearningCycles of bagging and AdaBoost, the grid
search method was used. Figure 13 shows the grid search results of bagging; it was found
that when NumLearningCycles was 30, bagging had the lower 10-fold misclassification
rate of 0.04.

Figure 13. The results of the grid search method of bagging.

Figure 14a shows the prediction performance of bagging. There were nineteen pre-
diction errors. Moreover, there were three VB samples misclassified as CB samples, while
thirteen VB samples were wrongly divided into CB. In addition, two OG samples were
falsely classified as FG, and one FG sample was misclassified in OG. Figure 14b shows the
classification performance of the bagging. The recall rates of CB, VB, OG, and FG are 92.5%,
67.5%, 95%, and 97.5%, respectively.

Figure 14. Identification results of bagging. Figures shown in (a,b) are the identification results of
bagging and its confusion matrix.
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Figure 15 demonstrates the grid search results of AdaBoost, showing that when
NumLearningCycles was 55, the 10-fold misclassification rate was 0.0425.

Figure 15. The results of the grid search method of AdaBoost.

As shown in Figure 16a, it is clear that there were eighteen prediction errors. Namely,
there were three CB samples misclassified as VB samples. At the same time, thirteen VB
samples were misclassified as CB samples. It is worth noting that only one OG sample was
determined in FG class and one FG sample was misclassified as an OG sample. AdaBoost’s
classification performance is shown in Figure 16b. The recall rates of CB, VB, OG, and FG
are 92.5%, 67.5%, 97.5%, and 97.5%, respectively. In conclusion, the AdaBoost algorithm
has a good performance in predicting OG and FG.

Figure 16. Identification results of AdaBoost. Figures shown in (a,b) are identification results of
AdaBoost and its confusion matrix.

The ACC/F1 of bagging and AdaBoost were 0.881/0.781 and 0.888/0.793, respectively.
Clearly, AdaBoost achieved a better performance than bagging in predicting OG with the
recall rate of 0.975. For CB, VB, and FG, these two classifiers have the same prediction
ability with the recall rates of 0.925, 0.675 and 0.975, respectively. Besides, AdaBoost
and bagging both have poor performance in predicting VB. Principally, it is because the
metallurgical microstructures of CB and VB are similar. Through metallurgical analysis, it
can be observed that the morphological characteristics of copper grain crystals and pores
in CB and VB are difficult to distinguish. If there is no definite boundary between different
classes, the model cannot accurately identify the samples. Hence, differentiating between
CB and VB is still a challenge in the fire investigation field.
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4.4. Prediction Results of RF

RF is an ensemble learning algorithm that performs by constructing a multitude of
decision trees at training time and outputting the class. Moreover, it is an extension of
bagging that also randomly selects subsets of features used in each data sample.

Here, we employed the RF as the classifier to differentiate the melted copper beads.
Each CART-decision tree in the RF was built using a bootstrap sample with replacement
from the original data, which helped to reduce the variance of the algorithm and avoided
over-fitting. In this RF algorithm, 10-fold cross-validation was performed using the training
dataset, and the test dataset was used to test. The model’s training, validation, and test
process are shown in Figure 5. According to the statistical mechanism of RF, the most
important parameters include mtry and ntree, which have a significant impact on the
prediction performance. These two parameters, mtry (i.e., the number of input variables
randomly chosen at each spilt) and ntree (i.e., the number of trees to grow for each forest)
were determined by the grid search method, shown in Figure 17. When ntree and mtry
were 50 and 5, respectively, the model’s validation performance was best.

Figure 17. The results of the random forest grid search method.

As shown in Figure 18a, there are three CBs misclassified as VBs, while thirteen CBs
were divided into VB class wrongly. One FG sample was classified as OG class. Notably, all
OG samples were predicted appropriately. The confusion matrix of RF was as shown in
Figure 18b. In general, RF had the better predication performance, with a high accuracy
rate at 89.4%. For CB, VB, OG, and FG, the recall rates were 92.5%, 67.5%, 100%, and 97.5%,
respectively. The above evidence shows that RF has great potential to differentiate the
resolidified copper beads found in fire. Through the ACC/F1 comparison between bagging
(0.881/0.781) and RF (0.894/0.805), it was revealed that the performance of RF exceeded
that of bagging.
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Figure 18. Prediction results of random forest. Figures shown in (a,b) are identification results of
random forest and its confusion matrix.

However, it can be observed that RF also has a poor ability to distinguish VBs from
CBs. In summary, the main reason for this is that the morphological difference between CB
and VB is nonapparent. Unfortunately, relying on metallurgical data alone will not assist
fire investigators in determining resolidified copper beads that do or do not start a fire.
Other evidence of investigation in an electrical fire is strongly recommended, such as video
surveillance information, trace of the fire, and a witness statement.

4.5. Performance Comparison among Classifiers

In this work, several excellent machine learning classifiers have been adopted to
carry out the resolidified copper beads classification missions using the same dataset. All
models were developed using the same process in Figure 5. Figure 19a represents the
comparison results of model performance. Distinctly, the ACC/F1 of linear-SVM, BPNN,
bagging, AdaBoost, and RF were 0.894/0.802, 0.850/0.723, 0.881/0.781, 0.888/0.793, and
0.894/0.805, respectively. The performance of RF exceeded that of other models. It is worth
mentioning that the misclassification between CB and VB is because columnar crystal
structures and porosities appear in both of them. In addition, the recrystallization processes
of VB and CB are similar, which determines that these two groups of copper beads have
similar levels of Cu2O. Furthermore, the misclassification between OG and FG is because
dendritic morphology occasionally appears in FG microstructures. Fortunately, linear-SVM,
bagging, AdaBoost, and RF used in this work could completely distinguish between beads
and globules, so that prediction accuracy for both of them reached 100%, as shown in
Figure 19b.

4.6. Variable Importance Analysis

In a developed decision tree, the variable importance measure (VIM) reflects the
degree to which a specific attribute affects the classification results. In terms of CART, the
VIM of the input variable α, calculated via Equation (6), is determined by its contribution
to the reduction of the GI of the sample set during the entire process of tree generation. The
importance score of a variable in the RF model is defined as Equation (7) in this study:

VIMa =
1
|S|

Na

∑
i=1
|Si|∆GI(Si, a) (6)

Scorea =
VIMa

VIMmax
(7)

where S represents the sample set of root nodes, and Si represents the sample set of the ith
nodes, split at attribute α. Na represents the total number of nodes, split at attribute α, VIMa
represents the averaged VIMa of each CART in RF model, and VIMmax represents the
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maximum of VIM. The higher the score, the more important the representative variables. As
shown in Figure 20, the mean value of the Cu2O has the highest score, followed by the Ar-G,
then the An-G, while the variables with the lowest score are As-G. From the results above,
it could be inferred that Cu2O has a relatively high impact on bead classification. Some
parameters like As-G, As-P, Dm-P, R-P, Fm-G, and P3-P have a relatively low impact on the
prediction results of the model. The reason is that, for these four kinds of melted beads,
sometimes they may appear to have relatively similar metallurgical characteristics due to
complex fire environments. Therefore, the size and shape of grains and porosities may
show similar microstructures, leading to low importance scores of such parameters. While
the Cu2O reflects the oxidation degree of beads’ recrystallization notably, consequently it
has a significant impact on differentiating resolidified copper beads.

Figure 19. Classification performance comparison among machine learning methods. Figures shown
in (a,b) are classifiers’ ACC/F1 values and confusion matrix of beads and globules of machine
learning classifiers, respectively.

Figure 20. Importance scores of input variables.

5. Conclusions

According to the formation process, resolidified beads on copper conductors that have
been through a fire have four categories: the CB, the VB, the OG, and the FG. Determining
the types of resolidified copper beads is extremely essential in investigating the cause of
an electrical fire. Unfortunately, Babrauskas has examined the published studies compre-
hensively, and found no promise with any of the methods that have been proposed for
differentiating between ‘cause’ and ‘victim’ beads [40]. Hence, we attempted to propose a
new novel approach to solving difficult problems in resolidified copper bead classification.
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To improve the judgement’s objectivity and quantifiability, we used various morphologic
parameters of crystals and porosities based on metallurgical analysis, such as Ar-G, As-G,
An-G, Dm-G, R-G, FD-G, Fm-G, Ar-G, As-P, An-P, Dm-P, R-P, FD-P, Fm-P, P3-P, and Cu2O.
Due to a large number of parameters in the input vector, it is difficult to detect this manually.
Therefore, this study developed several machine learning classifiers to predict the melted
beads by using SVM, BPNN, AdaBoost, bagging, and RF. Models were trained and tested
based on the sample set consisting of 560 samples, which were collected from real room
fires. After the metallurgical microstructures recording process, seventeen parameters were
selected as the input variables, and the four bead classes (CB, VB, OG, and FG) were taken
as output variables. The main findings can be summarized as follows.

• Among the machine learning classifiers used in this work, RF has the great potential to
differentiate among melted beads. ACC/F1 of RF model were 0.894/0.805, respectively,
which are better than SVM, BPNN, AdaBoost, and bagging. For RF classifier, the
recall rates of CB, VB, OG, and FG were 92.5%, 67.5%, 100%, and 97.5%, respectively,
indicating that RF has best potential to predict OG and FG. It is also worth noting that
the RF used in this work could completely distinguish between beads and globules.

• Through variables importance measure analysis, it is concluded that Cu2O has a
relatively high impact on bead classification, while some parameters like As-G, As-P,
Dm-P, R-P, Fm-G, and P3-P have relatively low impacts on the prediction results of
the model.

• More importantly, we cannot find much promise with this method that uses multiple
metallurgical and morphological parameters proposed in this paper for distinguishing
between CB and VB. It is confirmed that none of machine learning classifiers used in
this paper combined with metallurgical analysis could do this work well.

Such evidence indicates that relying on metallurgical data alone will not adequately
assist fire investigators to determine resolidified copper beads that do or do not start a fire.
Thus, we strongly recommend the consideration of other evidence of investigation in the
room fire to cover the shortage of this kind.
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