
Citation: Herzog, M.M.; Hudak, A.T.;

Weise, D.R.; Bradley, A.M.; Tonkyn,

R.G.; Banach, C.A.; Myers, T.L.;

Bright, B.C.; Batchelor, J.L.; Kato, A.;

et al. Point Cloud Based Mapping of

Understory Shrub Fuel Distribution,

Estimation of Fuel Consumption and

Relationship to Pyrolysis Gas

Emissions on Experimental

Prescribed Burns. Fire 2022, 5, 118.

https://doi.org/10.3390/fire5040118

Academic Editor: James A. Lutz

Received: 8 July 2022

Accepted: 10 August 2022

Published: 16 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fire

Article

Point Cloud Based Mapping of Understory Shrub Fuel
Distribution, Estimation of Fuel Consumption and Relationship
to Pyrolysis Gas Emissions on Experimental Prescribed Burns †

Molly M. Herzog 1, Andrew T. Hudak 2 , David R. Weise 3 , Ashley M. Bradley 1 , Russell G. Tonkyn 1,
Catherine A. Banach 1, Tanya L. Myers 1 , Benjamin C. Bright 2 , Jonathan L. Batchelor 4 , Akira Kato 5,
John S. Maitland 6 and Timothy J. Johnson 1,*

1 Chemical Physics and Analysis, Pacific Northwest National Laboratory, Richland, WA 99354, USA
2 USDA Forest Service, Rocky Mountain Research Station, Moscow, ID 83843, USA
3 USDA Forest Service, Pacific Southwest Research Station, Riverside, CA 92507, USA
4 School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
5 Graduate School of Horticulture, Chiba University, Chiba 271-8510, Japan
6 Fort Jackson Forestry Branch, Ft. Jackson, Columbia, SC 29207, USA
* Correspondence: timothy.johnson@pnnl.gov
† This manuscript was produced, in part, by U.S. Government employees on official time, is not subject to

copyright and is in the public domain.

Abstract: Forest fires spread via production and combustion of pyrolysis gases in the understory. The
goal of the present paper is to understand the spatial location, distribution, and fraction (relative to
the overstory) of understory plants, in this case, sparkleberry shrub, namely its degree of understory
consumption upon burn, and to search for correlations between the degree of shrub consumption
to the composition of emitted pyrolysis gases. Data were collected in situ at seven small experi-
mental prescribed burns at Ft. Jackson, an army base in South Carolina, USA. Using airborne laser
scanning (ALS) to map overstory tree crowns and terrestrial laser scanning (TLS) to characterize
understory shrub fuel density, both pre- and postburn estimates of sparkleberry coverage were
obtained. Sparkleberry clump polygons were manually digitized from a UAV-derived orthoimage
of the understory and intersected with the TLS point cloud-derived rasters of pre- and postburn
shrub fuel bulk density; these were compared in relation to overstory crown cover as well as to
ground truth. Shrub fuel consumption was estimated from the digitized images; sparkleberry clump
distributions were generally found to not correlate well to the overstory tree crowns, suggesting it is
shade-tolerant. Moreover, no relationship was found between the magnitude of the fuel consumption
and the chemical composition of pyrolysis gases, even though mixing ratios of 25 individual gases
were measured.

Keywords: pyrolysis; remote sensing; point cloud; understory spatial distribution; sparkleberry;
understory consumption; airborne laser scanning; terrestrial laser scanning; infrared; FTIR

1. Introduction

Prescribed fire is used in the United States and throughout the world today as an
effective land management tool [1,2]. Prescribed fire and wildland fire are two examples of
biomass burning; heating, cooking, transportation and power generation are other known
types [3]. All forms of biomass burning produce aerosols and greenhouse gases, partic-
ularly the small gaseous molecules CO and CO2 [4,5]. The gases and aerosols produced
from biomass burning depend on the loading and composition of the source fuels as well
as multiple environmental factors. An improved quantitative understanding of the depen-
dencies is needed, particularly knowledge of the initial and final gas compositions released
into the plume and how these depend on the fuel loads (quantity) and fuel composition
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(quality). In the U.S., since the advent of the 1970 Clean Air Act, numerous studies and
research programs have sought to understand these dependencies, including laboratory
studies of gaseous emissions [5–8], as well as studies that delineate the emissions as per the
phase of the fire, e.g., combustion vs. smoldering [8].

Biomass burning typically involves multiple chemical and physical processes that
occur over a wide range of temperatures and over different time scales: evaporation,
pyrolysis, gas combustion, and char oxidation, which leads to smoldering combustion [9].
One of the early processes is pyrolysis, the thermal breakdown of solid fuels such as
lignin, cellulose, or hemi-cellulose into gas-phase molecules [10]. The pyrolysis process
continues throughout the course of the burn, and pyrolysis gases are what oxidize to
produce the flame, which is visible to the eye due to the glowing carbon in the flame.
Flaming combustion is the hottest phase, with peak temperatures ranging from 600 ◦C to as
high as 1000 ◦C; this phase entails rapid oxidation reactions of the gases emitted from the
solid fuel, with primary flaming products being CO2, H2O, NOx, and SO2 gases along with
carbon soot [11]. Smoldering combustion follows the flaming stage and involves surface
oxidation via “glowing” (~400 to 800 ◦C), which produces enhanced levels of CO, CH4,
NH3, nonmethane organic carbon (NMOC), and aerosols as compared to the flaming phase
due to reduced oxidation rates at lower temperatures [12]; the smoldering phase can last
several hours to days or even weeks for certain types of fuel (stumps, logs, organic soils,
peat, and coal) [13].

Experiments to study biomass burning range from small-scale controlled laboratory
experiments [14,15] to larger-scale laboratory burns [16], and even to prescribed outdoor
burns at the stand and landscape levels: Both Scharko et al. [17] and Akagi et al. [18] have
reported such studies using infrared methods, in extractive and open-path modes, respec-
tively. Burling et al. [19] also used infrared methods, but included airborne measurements
as well, whereas Gilman and co-workers focused on the air quality impacts of volatile
organic compounds [17–20]. Many previous works have detected and identified dozens of
trace gases emitted from biomass burning [11,21,22]. The present effort is part of a larger
five-year study to better understand the mechanisms and conditions of pyrolysis associated
with prescribed fire. In particular, we are working to understand both the physics and
chemistry of the pyrolysis phase at the early stages of the burning process [8,18]. During
the course of these studies, we have used different methods, including both time-resolved
and static infrared spectroscopy [17,18,23], to characterize gaseous pyrolysis products via
the measurement of a variety of live and dead foliar fuel particles (measure and identify
pyrolysis products in lab and small-scale field experiments) and thus improve our ability
to model the pyrolysis and ignition processes. The results of the field and laboratory mea-
surements are ultimately integrated into models to identify potential improvements that
can enhance our understanding of pyrolysis and ignition in wildland fuels. For prescribed
fire in particular, key input parameters for better quantification include the composition,
identity, species, and environmental conditions of the understory [24]. While crown fires
may consume overstory forest canopies, most prescribed fires are designed to burn only
the accumulated dead organic material (litter, duff), surface fuels (down woody debris),
and understory shrubs and trees [25]. In most cases, determining the fuel consumption
still requires the time-intensive method of the ground-based sampling of understory fuels
via destructive methods both before and after a prescribed burn (e.g., Southeastern Forest
Experiment Station (Asheville, NC, USA) and Southern Forest Experiment Station (New
Orleans, LA, USA) 1959) [26].

The present study has two components. First, we mapped the density and distribution
of understory shrub fuels consumed by prescribed fire during the growing season at a
series of prescribed fires conducted on a military base in the southeastern U.S. In a previous
study, results from 3D point cloud analysis techniques were compared to results from
traditional sampling techniques to estimate shrub fuel bulk density [27]. Specifically,
point cloud data from terrestrial laser scanning (TLS) were collected pre- and postburn
to estimate understory shrub fuel bulk density, thus enabling an estimation of shrub fuel
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consumption. Building upon that study, this study applied another existing methodology
to map overstory tree crown cover as object polygons from airborne laser scanning (ALS)
point cloud data. In addition, point cloud data derived from Unoccupied Aerial Vehicle
(UAV) imagery, using Structure from Motion (SfM) technology, were used to generate
orthographically corrected images of vegetation less than 2 m in height. The images
were used to digitally delineate individual shrubs and shrub clumps as fuel objects. As
with the TLS, the UAV datasets were collected immediately before and after the burn,
enabling the mapping of pre- and postburn shrub fuel object distributions, such that
their consumption by fire could be mapped. The wealth of point cloud information thus
assembled to map fuel consumption provided for the second component of the study,
namely to relate fuel consumption to gases pyrolyzed by the fire. Understanding the
composition and quantity of the pyrolysis gases produced by the shrub component in
these forested stands provides the information that can be used in physically based fire
models that include the chemistry of the combustion reactions, thus allowing us to model
these fires more realistically. For all the burn plots studied here, the shrub understory is
dominated by two species, namely sparkleberry (Vaccinium arboreum Marshall), and turkey
oak (Quercus laevis Walter). Sparkleberry, a deciduous shrub, can have a significant impact
on the fire behavior that occurs in these forests by increasing the flame lengths when it
ignites, resulting in greater heat release, spread rates, and potential damage to the overstory.
While two previous studies [23,28] have indicated that certain gases such as phenol may be
a characteristic gas of such berry plants upon pyrolysis (sparkleberry is a member of the
Vaccinium genus), there are few other reports toward this end. While sparkleberry foliage
obviously does not burn during the dormant season (no leaves), it does burn in the early
growing season, i.e., after leaf-out. For this reason, and also for safety reasons, the burns
were conducted only in the early growing season at Ft. Jackson.

Using modern point cloud-based remote sensing methods, the goal of the present work
is thus to understand the spatial location, distribution and fractional coverage (relative
to the overstory) of the sparkleberry shrub understory, and the degree of understory con-
sumption upon burning, and, ultimately, to use these data to uncover possible correlations
between the degree of shrub consumption and the chemical composition of the emitted
pyrolysis gases. Our approach is thus composed of four discrete steps, namely: (1) analyze
the locations and fraction of sparkleberry shrubs in relation to the tree crowns, (2) compare
the digitized sparkleberry shrub clumps to independent ground truth measurements of
sparkleberry coverage, (3) calculate estimated fuel consumption from both the digitized
sparkleberry clumps and the ground truth measurements of sparkleberry coverage, and
(4) attempt to correlate fuel consumption estimates to the composition of the collected
pyrolysis gases. The last step is premised on the known flammability of sparkleberry
shrubs early in the growing season, i.e., it is anticipated that experimental burn units with
greater sparkleberry coverage will emit greater quantity and diversity (in terms of chemical
composition) of pyrolysis gases. While sparkleberry is a representative understory plant
for many ecosystems in eastern North America, an ancillary goal of the work is to develop
the methodologies such that they can be applied to other ecosystems.

2. Methods
2.1. Study Area

A series of prescribed burns was conducted in spring of 2018 at the U.S. Army’s Fort
Jackson. Located adjacent to Columbia, South Carolina (SC), the base covers approximately
53,000 acres in the Carolina sandhills, an ecological region of the southeastern United
States characterized by well-drained, nutrient poor soil and frequent fire activity [29]. The
forests of the Sandhills region are composed of a variety of vegetation well-adapted to
these conditions. At Ft. Jackson, species present in the overstory layer include longleaf
pine (Pinus palustris Mill.) and loblolly pine (P. taeda L.), while the understory layer is
composed primarily of turkey oak and sparkleberry; experimental burn plots were selected
for having ample coverage of sparkleberry, the principal shrub species of interest for this
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study (Figure 1). In addition to controlling the understory to facilitate military training,
prescribed burns assist in species management, specifically promoting the regeneration
and growth of longleaf pine, once a primary component of the southeastern U.S. pine forest
ecosystem, and maintaining habitat for animal species of concern such as the red-cockaded
woodpecker (Dryobates borealis) [30].
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Figure 1. Vegetation of the Carolina sandhills ecological region at Ft. Jackson: (a) view of over-
story longleaf and loblolly pine trees from ground level; (b) longleaf pine seedling in grass stage;
(c) understory view of turkey oak and sparkleberry; (d) close-up view of sparkleberry foliage.

Seven burn units, designated as 16D1, 16D5, 16D6, 24A Main, 24A Triangle, 24B Main,
and 24B Triangle, were selected due to having a significant sparkleberry component in
their understory vegetation (Figure 2). Areas with significant sparkleberry coverage were
preferred due to interest in the pyrolysis gases produced from burning sparkleberry during
its growing season [17,23,28]. Each unit was approximately 0.16 hectares in area; the units
were delimited by fresh bulldozer tracks, which served both as visible boundaries around
each unit and also as firebreaks to prevent the spread of fire outside the units. Units 16D1,
16D5, and 16D6 were approximately square in shape, while the Units 24A and 24B were more
irregularly shaped, with each larger main unit situated adjacent to a smaller triangle unit.
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2.2. In Situ Data Collection and Preparation
2.2.1. Airborne Laser Scanning

Airborne laser scanning is a LiDAR measurement system taken from a plane or UAV.
ALS is useful at distinguishing between canopy-level and ground-level features. ALS
measurements can determine the height of individual tree crowns [31] as well as density
and canopy cover due to the 3D nature of the data [32]. The ALS data used in this study
were collected in November 2015 with an Optech ALTM Gemini sensor at an average
density of 8.7 points m−2 [27]. The use of trade or firm names in this publication is for
reader information and does not imply endorsement by the U.S. Department of Agriculture
of any product or service.

The ALS data served two purposes in this study: The first purpose was to use the
georectified ALS point clouds as base data to which TLS and UAV point clouds were
co-registered; the tree crowns provided useful features for accurate co-registration. The
second was to interpolate a canopy height model (CHM) surface of 1-m resolution from the
ALS point cloud. The CHM was used to identify and segment individual tree crown objects
from the CHM and export the resulting 2D crown polygons as a shapefile (Figure 3).

Fire 2022, 4, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 3. Canopy height model (CHM) derived from ALS at 1-m resolution, depicting overviews of 
burn units (a) 16D1, 16D5, and 16D6, (b) 24A Triangle and 24A Main, and (c) 24B Triangle and 24B 
Main. 

2.2.2. Terrestrial Laser Scanning 
Terrestrial laser scanning is a second LiDAR measurement method in which data are 

taken from discrete locations at ground level rather than from above the canopy while in 
motion; this allows for the higher precision measurements of fuel bed volume at discrete 
locations [33]. The TLS can be mounted on a tripod or attached to a boom lift and can 
complete several scans of an area from a horizontal or low oblique angle, whose data can 
be merged to form one set of point cloud data [27]. The TLS sensor used in this study was 
an LMS 511 (SICK Inc.), and data were collected at each unit in the days just prior to, and 
immediately after, burning. 

The TLS data were used to create a model for determining prefire and postfire fuel 
densities, from which estimates for fuel consumption were derived by comparing the pre-
fire and postfire density maps, as previously described [27]. In brief, the TLS point clouds, 
merged from multiple scans, were delineated into 0.1 × 0.1 × 0.1 m3 voxels (3-dimensional 
pixels), populated in a binary manner with a 1 if fuel was present (as indicated by shrub 
returns) and 0 if no fuel was present. In order to determine the mass density associated 
with each voxel, a 0.5 × 0.5 × 2 m3 plot was established in each burn unit for comparison 
of the TLS to the destructive sampling. The 3D shrub plots (each marked by metal con-
duits) were identified in the TLS point cloud data; within the 0.5 × 0.5 × 2 m3 area of each 
plot, the voxels where fuel was indicated to be present were summed. The occupied voxel 
density of each 3D shrub plot was then compared to the shrub biomass densities deter-
mined through traditional destructive sampling; a logarithmic model was fit to relate oc-
cupied voxel density to actual mass density. This model was applied to occupied voxel 
density rasterized across each entire burn unit, pre- and postburn, from 0.0 to 2.0 m above 
ground. These resulting pre- and postburn rasters had a resolution of 1.0 m, where pixel 
values represent estimated shrub fuel density in g/m3 (Figure 4) [27]. Subtracting the post-
burn raster from the preburn raster yielded a raster which represented the estimated 
shrub fuel density consumed during each burn. The consumption rasters were used to 
estimate the fuel consumption within visible fuel objects (e.g., sparkleberry shrub clumps) 
explicitly digitized from UAV imagery, as described in the next subsection. 
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2.2.2. Terrestrial Laser Scanning

Terrestrial laser scanning is a second LiDAR measurement method in which data are
taken from discrete locations at ground level rather than from above the canopy while in
motion; this allows for the higher precision measurements of fuel bed volume at discrete
locations [33]. The TLS can be mounted on a tripod or attached to a boom lift and can
complete several scans of an area from a horizontal or low oblique angle, whose data can
be merged to form one set of point cloud data [27]. The TLS sensor used in this study was
an LMS 511 (SICK Inc., Waldkirch, Germany), and data were collected at each unit in the
days just prior to, and immediately after, burning.

The TLS data were used to create a model for determining prefire and postfire fuel
densities, from which estimates for fuel consumption were derived by comparing the
prefire and postfire density maps, as previously described [27]. In brief, the TLS point
clouds, merged from multiple scans, were delineated into 0.1 × 0.1 × 0.1 m3 voxels
(3-dimensional pixels), populated in a binary manner with a 1 if fuel was present (as
indicated by shrub returns) and 0 if no fuel was present. In order to determine the mass
density associated with each voxel, a 0.5 × 0.5 × 2 m3 plot was established in each burn unit
for comparison of the TLS to the destructive sampling. The 3D shrub plots (each marked
by metal conduits) were identified in the TLS point cloud data; within the 0.5 × 0.5 × 2 m3

area of each plot, the voxels where fuel was indicated to be present were summed. The
occupied voxel density of each 3D shrub plot was then compared to the shrub biomass
densities determined through traditional destructive sampling; a logarithmic model was fit
to relate occupied voxel density to actual mass density. This model was applied to occupied
voxel density rasterized across each entire burn unit, pre- and postburn, from 0.0 to 2.0 m
above ground. These resulting pre- and postburn rasters had a resolution of 1.0 m, where
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pixel values represent estimated shrub fuel density in g/m3 (Figure 4) [27]. Subtracting the
postburn raster from the preburn raster yielded a raster which represented the estimated
shrub fuel density consumed during each burn. The consumption rasters were used to
estimate the fuel consumption within visible fuel objects (e.g., sparkleberry shrub clumps)
explicitly digitized from UAV imagery, as described in the next subsection.
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2.2.3. Unmanned Aerial Vehicle Imagery

Images were taken at a variety of angles from an Unmanned Aerial Vehicle (UAV-
Marvic Pro) quadcopter (DJI, Inc., Shenzhen, China) flown in the days just prior to and
after the burns were conducted. For image acquisition, transects were flown over plots at 61
and 122 m height above ground (Figure 3). Images were collected with 80% front and side
overlap using the stock 12-megapixel RGB camera with a pixel resolution of 3 cm at 100 m
above ground. The RGB imagery provided a nadir view of each burn unit and, being higher
resolution (0.06 m), served as the source imagery from which the individual sparkleberry
shrubs or shrub clumps were manually digitized. The original images contained the canopy
layer, which made it difficult to identify individual sparkleberry bushes. In order to obtain
an improved view of the understory, images taken from the UAV were altered by digitally
removing obstructions caused by the tree canopy layer. Image processing was performed
using the Agisoft program Photoscan. Multiple images taken at a variety of oblique angles
were merged using Structure from Motion technology to create 3D point clouds [34,35].
Photogrammetric point clouds were created using 120 to 240 photos for each plot, resulting
in a pixel resolution of 1 to 2 cm. The point clouds derived from the UAV imagery allowed
for the separation of points above and below 2 m in height above ground. Points above
2 m (i.e., tree crowns) were digitally removed from the images; points below 2 m were
subsequently rasterized into an orthoimage of the understory ground in each burn unit at a
resolution of 0.06 m (Figure 5). The 2-m level was chosen since the sparkleberry shrubs only
achieve plant heights up to 2 m above ground and because the majority of tree crowns were
greater than 2 m off the ground [27]. Understory shrubs were visible in the orthoimage
after overstory removal, albeit with a degree of obscuration, especially within the residual
tree shadows, which likely varied in linear proportion to tree canopy cover [36].

2.2.4. Field Data

Around the perimeter of each burn unit, several gas canisters were filled at marked
locations in order to relate estimated sparkleberry shrub coverage to collected pyrolysis-
phase gas emissions; the details of the IR gas analysis methods are described in detail
elsewhere [17,23].

Destructive sampling of pre- and postburn fuels was conducted within four of the
burn units (16D1, 16D5, 24A Main, 24B Main); this was necessary to relate measured
shrub fuel biomass density to occupied voxel density derived from the TLS point clouds,
resulting in the shrub fuel biomass density maps used in this study; details are provided
elsewhere [27].
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In the fall of 2020, sparkleberry shrub coverage was estimated in the field at the
24A and 24B units. The purpose was to independently estimate the current coverage and
distribution of sparkleberry bushes, which, after being given 2 years to resprout and recover,
was expected to have returned to approximate preburn conditions. However, it seemed
unreasonable to expect individual shrub clumps to recover to their previous size and shape.
Therefore, for each burn unit, percent coverage of consistently spaced sparkleberry clumps
was estimated within a broader radius around a recorded centerpoint location. The radius
and percent cover were stored as attributes for each individual point.

Fire 2022, 4, x FOR PEER REVIEW 7 of 20 
 

 

Figure 4. Fuel density rasters for unit 16D1 derived from TLS point cloud data at 1 m resolution and 
depicting (a) prefire fuel density, (b) postfire fuel density, and, by difference, (c) consumed fuel 
density. If estimated consumption was less than 0, it was assigned a value of 0. 

2.2.3. Unmanned Aerial Vehicle Imagery 
Images were taken at a variety of angles from an Unmanned Aerial Vehicle (UAV - 

Marvic Pro) quadcopter (DJI, Inc., Shenzhen, China) flown in the days just prior to and 
after the burns were conducted. For image acquisition, transects were flown over plots at 
61 and 122 m height above ground (Figure 3). Images were collected with 80% front and 
side overlap using the stock 12-megapixel RGB camera with a pixel resolution of 3 cm at 
100 m above ground. The RGB imagery provided a nadir view of each burn unit and, 
being higher resolution (0.06 m), served as the source imagery from which the individual 
sparkleberry shrubs or shrub clumps were manually digitized. The original images con-
tained the canopy layer, which made it difficult to identify individual sparkleberry 
bushes. In order to obtain an improved view of the understory, images taken from the 
UAV were altered by digitally removing obstructions caused by the tree canopy layer. 
Image processing was performed using the Agisoft program Photoscan. Multiple images 
taken at a variety of oblique angles were merged using Structure from Motion technology 
to create 3D point clouds [34,35]. Photogrammetric point clouds were created using 120 
to 240 photos for each plot, resulting in a pixel resolution of 1 to 2 cm. The point clouds 
derived from the UAV imagery allowed for the separation of points above and below 2 m 
in height above ground. Points above 2 m (i.e., tree crowns) were digitally removed from 
the images; points below 2 m were subsequently rasterized into an orthoimage of the un-
derstory ground in each burn unit at a resolution of 0.06m (Figure 5). The 2-m level was 
chosen since the sparkleberry shrubs only achieve plant heights up to 2 m above ground 
and because the majority of tree crowns were greater than 2 m off the ground [27]. Under-
story shrubs were visible in the orthoimage after overstory removal, albeit with a degree 
of obscuration, especially within the residual tree shadows, which likely varied in linear 
proportion to tree canopy cover [36].  

 

Figure 5. UAV imagery of unit 16D1 captured in RGB (a) prior to digital removal of tree crowns and 
(b) after digital removal of tree crowns. Dark regions in (b) are largely tree shadows which remain. 

2.2.4. Field Data 
Around the perimeter of each burn unit, several gas canisters were filled at marked 

locations in order to relate estimated sparkleberry shrub coverage to collected pyrolysis-

Figure 5. UAV imagery of unit 16D1 captured in RGB (a) prior to digital removal of tree crowns and
(b) after digital removal of tree crowns. Dark regions in (b) are largely tree shadows which remain.

2.3. Digitization of Fuel Sources
2.3.1. Digitization

Individual fuel objects were manually digitized using ArcGIS software. The 0–2 m
RGB orthoimagery for each individual burn unit, both pre- and postburn, was uploaded
into the software. By manually plotting points to trace the perimeter of specific features, the
software automatically connects the line between points and forms polygons. The software
also recognizes lines (unclosed polygons) or individual points. Using the 0–2 m imagery,
which provided an unobstructed view of the understory, each individual feature was thus
delineated, and the collection of polygons for each burn unit was saved as a shapefile.

Features of interest include the unit borders, burned logs, and sparkleberry shrubs
(Figure 6). The boundaries of each unit (bulldozer lines) also required digitization to
accurately determine the burn unit areas. Downed logs and their postburn ash relics
(known as ghost logs) were also digitized because such downed woody debris contributes
heavily to smoldering smoke; the degree to which the few burning logs affected pyrolysis
gas measurements is unknown but is believed to be negligible. Being the primary focus
of this study, the sparkleberry shrubs were digitized with greatest care. Each burn unit
contained between 100 and 400 individual sparkleberry bushes or consolidated clumps.
Large patches of sparkleberry were digitized into individual shrub polygons from which
they could be visually resolved.

An additional attribute was added to the preburn sparkleberry shapefiles, which indi-
cates that the confidence level that the regions delineated accurately represent sparkleberry
shrub coverage. The confidence attribute was assigned on a simple 1 to 3 digital scale of
low, medium, and high confidence, where high meant that finding sparkleberry within the
marked region was highly probable, while low meant there was more uncertainty that the
identified feature was indeed sparkleberry (Figure 7a). The assignments of the confidence
attribute were not rooted in numerical calculation of uncertainty; they were based on visual
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appraisal by a single interpreter and are thus somewhat subjective, yet were consistently
assigned across all seven burn units.
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2.3.2. Rasterization

Once the sparkleberry features in each burn unit were digitized and collectively saved
as a shapefile, each shapefile was converted into an indexed raster using the statistical
computing software R [37]; pixels of the associated raster which fell within the boundaries of
a polygon were indexed as “1”, and pixels which fell outside of the polygons were indexed
as “0” (Figure 7b). The resolution of the sparkleberry raster was set to 1.0 m to match the
fuel density rasters generated from the TLS. The transformation from a vector shapefile to an
indexed raster simplified data extraction from prefire, postfire, and consumption fuel density
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rasters. The manual conversion between vector and raster formats here and elsewhere in this
analysis caused only negligible differences (all within ±1 m2) in areal extents.

2.4. Ground Truth Measurements

Using ArcMap, each individual coordinate point was buffered using the recorded
radius to create circular polygons which was an efficient means with which to describe
the location and coverage of sparkleberry in the field within each burn unit. To avoid the
duplication of data in regions where buffered circles overlapped, a line was drawn along
the major axis of the overlap area to bisect the region between the overlapping polygons
(Figure 8), such that the two competing cover estimates were each assigned to half of the
overlap region.
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Figure 8. Buffered polygons, adjusted for overlap, representing ground truth estimates of sparkle-
berry cover distributions for burn units (a) 24A and (b) 24B. Portions of polygons extending outside a
burn unit were truncated at the boundary.

The polygons of each unit were collectively saved as a shapefile in ArcMap, imported
into R, and converted into a raster. Due to the limited precision of GPS under the forest
canopy, the precision of both the ground truth measurements and the derived rasters was
limited to 1 m. Similar to the digitized sparkleberry, the ground truth raster was converted
into an indexed raster, where pixels located within the polygons were indexed as “1” and
pixels outside of the polygons were indexed as “0”.

2.5. Fourier Transform Infrared (FTIR) Spectroscopy Gas Analysis

A 3 L Summa canister was filled with gases from five of the seven burn plots, resulting
in five canister samples. The sampling probe collected gases near the base of the flame
just prior to flame arrival to capture pyrolysis gases [17,38]. The 7–10 aliquots collected
from each plot were collected from multiple locations with a portion of the plot near the
sparkleberry clumps; however, the composite sample represented the plot and was not
spatially linked to a particular clump of plants. The gas contents of the canisters were
analyzed in the laboratory using an 8-m White cell (Bruker A136/2-L) coupled to a Bruker
Tensor 37 FTIR spectrometer, as previously described [17,23]. The spectrometer was purged
with dry air from a gas generator and the entire system was heated to 70 ◦C to prevent
adhesion of compounds to the stainless-steel tubing. From the five canisters that were
collected, one to three gas samples were extracted and injected into the White cell for a
total of ten gas compositions. Spectra were analyzed using the MALT5 program, along
with 50 ◦C reference spectra from the PNNL database [39,40] and absorption lines from
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HITRAN in regions where H2O and CO2 were not saturated [41]. Mixing ratios of pyrolysis
gases were determined in ppmv.

2.6. Statistical Analysis

Statistical analysis was used to help achieve all four study objectives: (1) analyze the
locations of sparkleberry shrubs in relation to tree crowns, (2) compare the sparkleberry
clump digitizations to independent ground truth measurements of sparkleberry coverage,
(3) calculate estimated fuel consumption from both the digitized sparkleberry clumps and
the ground truth measurements of sparkleberry coverage, and (4) relate fuel consumption
estimates to the composition of pyrolyzed gases collected. While ArcMap was used for
creating, editing, and georeferencing images and shapefiles, most of the spatial analysis was
conducted using the statistical computing software R [37]. Analysis methods are discussed
in turn.

2.6.1. Tree Crowns vs. Sparkleberry Clumps Distribution

The purpose of analyzing the overlap between tree crowns and sparkleberry clumps
was to determine whether there was an association between the location of sparkleberry
plants and the location of the tree crowns. Sparkleberry is shade-tolerant [42] and is
described as growing best in direct sunlight to partial shade [43]. We had hypothesized that
more sparkleberry plants would be located in the area between tree crowns due to greater
sunlight. In order to test this relationship, the sparkleberry clump shapefiles and tree crown
shapefiles were intersected to determine the amount of overlap. If the sparkleberry favored
sunlight, the overlap area should be small relative to the total sparkleberry area (relatively
less sparkleberry cover under tree crowns). Using the observations of estimated overlap
from the 7 burn units, a one-sided t-test was performed to test if the overlap proportion
was less than 0.5. While this is a relatively small sample size, the t-test has been shown to
be a reliable statistic yielding acceptable power for small sample sizes [44].

2.6.2. Ground Truth Measurements

The ground truth measurements of sparkleberry coverage, taken in units 24A and 24B,
were expressed as percent cover. An area-weighted geometric mean for sparkleberry cover
was estimated using

x =

(
n

∏
i=1

xi
wi

)1/∑n
i=1 wi

= exp
(

∑n
i=1 wi ln xi

∑n
i=1 wi

)
where xi is the percent cover and wi is the area of the polygon. The polygons were not
perfect circles; the area of individual polygons and their total sum were therefore calculated
geometrically in ArcMap, rather than using the buffer radius to calculate area. Polygons
that extended beyond the perimeter of the units were cropped using the border shapefile.
Once the weighted geometric mean was determined and the total polygon area calculated,
the mean percentage was applied to the total area of polygons to estimate what area of the
burn units was covered with sparkleberry. A two-sample t-test compared the digitized
sparkleberry area with the ground truth measurement for four of the burn units. Ground
truth measurements of sparkleberry cover were not available for three of the seven burn
units; a simple linear regression was fitted to predict ground truth shrub fuel loading from
shrub fuel loading estimated within the digitized sparkleberry clumps aggregated within
these burn units.

2.6.3. Fuel Density/Consumption Estimates

To estimate consumption, the shapefiles within each burn unit were split into two
subsets: one inside sparkleberry clumps and the complement outside sparkleberry clumps.
The shapefiles were superimposed on the prefire, postfire, and consumption rasters gener-
ated from the TLS, and the density values from these rasters were extracted from within
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the areas of the shapefiles. Both the fuel density rasters and the shapefiles were cropped
to the boundaries of the unit to ensure that values outside of the burn areas would not be
included in the analysis. The arithmetic mean fuel density for each subset was multiplied
by the area of each subset to determine an estimate for the total fuel consumption for each
burn unit.

2.6.4. Effect of Fuel Consumption on Composition of Pyrolysis Gases

As part of the overall study, identifying and quantifying the composition of pyrolysis
gas emissions associated with the prescribed burning of the plots was measured and deter-
mined using FTIR spectroscopy [23]. We have shown elsewhere that the gases associated
with wildland fire are a type of data that are amenable to the application of specialized
statistical techniques [45–48]. An important characteristic of compositional data is that
these multivariate data are relative, and the information is contained in the ratios of the
different gases in the composition.

Common practice to analyze compositional data is to transform the data using the
isometric log-ratio (ilr) transformation and then apply familiar statistical techniques (such
as linear regression, analysis of variance, etc.) to the transformed data [49]. For this study,
the measured gas composition contained 25 gas mixing ratios expressed in ppm. For three
of the five canisters with multiple subsamples, the geometric mean of the concentration was
calculated for each gas. Isoprene was not detected in one of the samples, therefore a method
to replace below-detection limit values (BDL) with a non-zero value was used [50,51]. Com-
positional data are typically normalized (closed) to place on a relative scale [45], and these
data are used to calculate mole fractions, mass fractions, and mixing ratios [52]. A generic ilr
transformation of the closed concentrations yielded 24 real-valued multivariate coordinates.
While it is possible to develop individual linear regressions to test the significance of the re-
lationship between fuel consumption and the relative amount of each gas, interpreting these
individual regressions is difficult since the dependent variable (Y) is a log-ratio of 2 or more
of the gases. The small sample size (5) precluded testing the transformed concentrations for
multivariate normality. Permutational multivariate analysis of variance (PERMANOVA)
tested the significance of the relationship between the predictor variable fuel consumption
and the dependent multivariate gas composition [53,54] Equation (1) where ilr denotes the
isometric log-ratio transformation, Y is the vector of 24 ilr coefficients from the 25 gases, and
a and b are the intercept and slope vectors [55], each containing 24 values. This approach
was also used because there were fewer observations (only five) compared to the number
of gases (25), which is problematic for classical multivariate analysis of variance, which
assumes multivariate normality and more observations than gases. PERMANOVA tests the
same hypotheses as a MANOVA would in a distribution-free setting using permutational
algorithms [56].

ilr(Yi) = ilr(a) + Xiilr(b) + ilr(εi) (1)

3. Results
3.1. Tree Crowns vs. Sparkleberry Clumps Distribution

Table 1 summarizes the values calculated for each of the burn units: the plot area, tree
crown area, sparkleberry clumps area, and overlap area (intersection of tree crown area
with sparkleberry clumps area). The proportion of area covered by tree crowns ranged
from 0.37 in 24B Triangle to 0.77 in 24A Main; the sparkleberry cover was smaller, ranging
from only 0.07 to 0.26. In five of the seven burn units, the proportion of overlap between
the tree crowns and the sparkleberry was greater than 0.60 (Table 1), and the one-sided
t-test indicated that the mean proportion (0.64) was significantly greater than 0.5 with a
p-value of 0.03, which suggests that, on these plots, more sparkleberry occurred under the
tree crowns instead of in an open canopy gap space.
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Table 1. Area estimated from digitized sparkleberry shapefiles and tree crown shapefiles for each
burn unit.

Burn Unit Plot Area
(m2)

Tree Crown
Area (m2)

Tree Crown
Area/Plot Area

Sparkleberry
Area (m2)

Sparkleberry
Area/Plot Area

Overlap Area
(m2)

Overlap
Area/Sparkleberry

Area

16D1 1796.2 1218.2 0.67 416.2 0.23 303.1 0.72
16D5 1478.2 674.1 0.45 348.7 0.23 160.7 0.46
16D6 1860.5 754.3 0.40 245.0 0.13 90.5 0.37

24A Main 1342.5 1060.9 0.77 282.6 0.21 184.5 0.81
24A Triangle 873.2 574.2 0.50 227.6 0.26 159.9 0.71

24B Main 2242.0 1246.8 0.41 332.1 0.15 371.4 0.67
24B Triangle 838.7 586.6 0.37 56.3 0.07 58.4 0.75

3.2. Ground Truth Measurements

The ground truth estimates of sparkleberry cover were determined by multiplying
the total area of the buffered polygons by the weighted mean of percentage cover and
expressing the area as a proportion of the total plot area (Table 2). The t-test used to test the
equality of the mean values for the digitized (0.139) and the ground truth (0.172) estimates
was not significant (p = 0.53), meaning that the null hypothesis (the means were equal) was
not rejected, which provides support for the digitized method.

Table 2. Proportional area of sparkleberry found in burn plots at Ft. Jackson, SC, based on ground
truth versus digitized estimates of percent shrub cover.

Burn Unit Digitized Ground Truth

24A Main 0.137 0.211
24A Triangle 0.183 0.261

24B Main 0.166 0.148
24B Triangle 0.070 0.067

3.3. Shrub Fuel Loading Estimates

Shrub fuel density estimates were calculated using both the digitized sparkleberry
shapefiles and the ground truth shapefiles for data extraction from the prefire, postfire,
and consumption density rasters. The shrub fuel density estimates were multiplied by the
area of sparkleberry coverage to estimate a quantity of fuel. Table 3 shows the estimated
fuel quantities using the digitized sparkleberry and ground truth estimates, within areas
of expected sparkleberry coverage (digitized sparkleberry or ground truth polygons) and
outside areas of expected sparkleberry coverage. The area inside and outside of the
polygons was calculated from the same shapefiles used to extract shrub fuel density values.
The area of sparkleberry coverage from the ground truth measurements was calculated
previously as the geometrically weighted mean times the polygon area, and is the same
value used here. The area outside of the ground truth coverage is calculated as the total
area minus the sparkleberry area.

Table 3. Estimated fuel loading (g/m2) from digitized and ground truth samples from inside digitized
sparkleberry polygons.

Burn Unit
Preburn Postburn

DIN GIN DOUT GOUT DIN GIN DOUT GOUT

16D1 547 398 487 360
16D5 700 488 563 350
16D6 589 326 458 236

24A Main 492 510 435 496 485 421 438 428
24A Triangle 585 550 521 496 569 514 495 521

24B Main 256 183 136 118 150 138 87 84
24B Triangle 211 135 254 123 198 277 232 253

DIN, DOUT, GIN, GOUT = inside and outside digitized polygons, inside and outside ground truth
coverage, respectively.
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As described above, 16D1, 16D5, and 16D6 did not have ground truth samples. All of
the fitted linear regressions predicting ground truth shrub fuel loading from the digitized
shrub fuel loading were significant (Table 4), therefore the fitted values were added to the fuel
loading dataset used in subsequent analyses. None of the intercept terms were significantly
different from zero, which suggested no systematic bias in the data. The fitted models
accounted for more than 95 percent of the observed variation (Adj. R2), which increased
confidence in the predicted ground truth shrub fuel loading for 16D1, 16D5, and 16D6.

Table 4. Summary of simple linear regression models used to estimate missing ground truth shrub
fuel loading (g/m3) for small prescribed burns at Ft. Jackson, SC, burned in April 2018. “*” and “**”
indicate that the estimated coefficient (intercept, slope) was significant at the 0.05 and 0.01 probability
levels, respectively.

Model Intercept Slope Pr > F Adj. R2 Estimated Fuel Loading
16D1 16D5 16D6

InsidePreburn −110.54 1.18 ** 0.009 0.97 533.8 714.9 584.0
OutsidePreburn 19.16 0.95 ** 0.003 0.99 395.5 481.2 327.4
InsidePostBurn −51.73 1.03 * 0.017 0.95 448.6 525.7 418.7
OutsidePostBurn 1.70 1.02 ** 0.004 0.99 370.1 359.3 243.2

The general simple linear regression model was GIN = β0 + β1DIN or GOUT = β0 + β1DOUT for the preburn
and postburn shrub fuel loadings.

3.4. Relationship between Fuel Consumption and Pyrolysis Gas Composition

Geometric mean pyrolysis gas concentrations determined by FTIR show the relative
dominance of CO2, CO, H2O, and CH4 in the composition as well as the variability in
concentration values between burn units (Table 5). It is important to recall that the log-
ratios between the gases contain relative information; analysis is underway to compare the
measurements, which is outside the scope of the present work.

Table 5. Mean pyrolysis gas concentrations (ppm) derived from FTIR measurements for small,
prescribed burns at Ft. Jackson, SC, in April 2018. Values are presented as the geometric mean
(95 percent confidence interval).

Burn Unit

Gas 24B Main 24A Triangle 16D5 16D6 16D1

H2O 243,741 1 19,839 10,073 8916 15,193
CO2 13,637 65,899 67,508 53,715 38,852
CO 2928 15,886 11,207 10,664 6546
CH4 306 1591 1261 1269 553
C2H2 80 623 593 527 234
C2H4 185 1013 822 657 340
C2H6 24.6 100.8 55.9 52.0 28.0
Allene 2.4 18.2 15.7 12.4 6.1
C3H6 27.3 181.3 113.7 85.0 48.8
C4H6 4.2 72.6 41.9 26.8 15.8

Isobutene 0.6 14.6 8.7 3.8 2.7
Isoprene 0.7 41.5 12.2 3.5 2.8
CH3OH 56.5 91.4 42.7 33.3 21.7

CH3COOH 61.1 27.5 16.7 6.3 11.8
HCOOH 5.1 9.7 8.3 3.1 5.0
CH3CHO 47.3 181.7 94.3 70.2 43.5
Acrolein 25.5 75.8 37.7 26.3 18.2
Acetone 21.6 48.7 25.0 19.1 13.3
HCHO 45.6 64.4 17.7 6.3 10.2
Furan 5.4 17.4 6.4 6.2 3.7

Furfural 13.1 21.9 7.5 8.0 5.5
Naphthalene 1.0 4.4 6.5 12.2 7.4
Methyl nitrite 6.1 10.5 3.4 4.3 8.1

HCN 20.1 92.7 103.4 86.3 51.2
HONO 4.6 1.8 0.6 0.8 1.7

1 Geometric mean xg = n
√

∏n
i=1 xi where xi is each gas. Number of samples (n) by burn unit: 24BMain, 16D5 (1);

16D6 (2); 24A; Triangle, 16D1 (3).
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Fuel consumption was calculated as the difference between pre- and postburn shrub
fuel densities for both digitized and ground truth data. If estimated consumption was less
than 0, it was assigned a value of 0. For 21 of the 24 tests, the Shapiro–Wilk test did not
reject the hypothesis that the ilr-transformed gas concentrations were normally distributed
based on the unadjusted probabilities. When adjusting the probabilities to control the false
discovery rate, none of the Shapiro–Wilk probabilities were significant (p-value < 0.05) [57].
A summary of the four fitted models relating the pyrolysis gas composition to the fuel
consumption is presented in Table 6. The F-statistic probabilities indicated that none of the
models were significant, and the models accounted for less than 20 percent of the variation
(R2). Based on these results, there does not appear to be a direct relationship between fuel
consumption and pyrolysis gas composition.

Table 6. Summary of simple linear models relating estimated fuel loading to composition of pyrolysis
gases. None of the fitted models were significant.

Predictor F-Statistic Pr > F R2

Digitized Inside 0.30 0.83 0.09
Ground truth Inside 1.58 0.29 0.35

Digitized Outside 0.51 0.70 0.14
Ground truth Outside 0.32 0.83 0.10

4. Discussion and Conclusions
4.1. Tree Crowns vs. Sparkleberry Clumps Distribution

The distribution of sparkleberry clumps within each burn unit was expected to favor
areas which did not fall under tree crowns, as the sparkleberry would then face competition
for sunlight and soil nutrients. Assessing the chi-square results with an α-value of 0.05,
only the burn units 16D1 and 24B main show a statistically significant association between
sparkleberry distribution and crown cover; the remaining burn units do not show such
an association. It is unclear whether the associations in 16D1 and 24B main indicate a
higher proportion of sparkleberry located underneath or outside of tree crowns. Since
the majority of burn units show no significant correlation between tree crown cover and
sparkleberry clump location, it currently appears that sparkleberry distribution among
the units is unrelated to the distribution of tree crowns, suggesting the species may be
shade-tolerant, at least more so than previously assumed. That the distributions of tree
crowns and understory shrub clumps are independent due to shade tolerance undermines
any assumptions about understory shrub distributions that might otherwise be inferred
from airborne remote sensing data, which is much more sensitive to overstory structure
than that of the understory.

4.2. Ground Truth Measurements

The ground truth measurements provided a ground-based estimate of total sparkle-
berry coverage per burn unit. While the locations of sparkleberry bushes from the digitized
sparkleberry clumps were determined with much higher resolution than the ground truth
locations, the overall area of sparkleberry coverage from the independent estimates was
assessed using t-tests. It was expected that there be no statistically significant difference
between the ground truth measurements and the digitized sparkleberry, and this was
confirmed. This supports our assertion that the burn units can be considered as replicates
for interpreting our results, despite the lack of ground truth data at three of them.

4.3. Fuel Density/Consumption Estimates

When quantifying fuel consumption, it was expected that the fuel consumption would
be greater within areas of sparkleberry coverage, as sparkleberry was delineated as the
component of the fuel bed that can significantly increase fire behavior when conditions are
favorable because the shrub crowns ignite resulting in larger flames. Personal communica-
tion, John Maitland, Chief, Forestry Branch, USAG Ft. Jackson to David Weise, 2015. While
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sparkleberry was the focus of the present study, Wenk et al. [58] found similar results in
another prescribed fire study in the Carolina sandhills in longleaf stands where turkey oak
(Quercus laevis) was the dominant understory woody plant [59–62]. It is well-established
that natural fuel loadings are highly variable, particularly in forested systems with an
understory component [63–65]. This variability requires increased sample sizes in order to
produce confidence intervals that do not include 0 if the arithmetic mean is used as was
done in the present analysis. This problem associated with the arithmetic mean can be
overcome by properly applying the geometric mean since fuels’ data are compositional,
similar to the gases [38]. With respect to the differences in consumption between regions
of estimated sparkleberry as coverage, the regions of no coverage (outside of polygons)
tended to have greater quantities of fuel prior to burning as well as greater estimates of
fuel consumed, which is not expected, as areas within polygons are assumed to be fuel
beds with sparkleberry shrubs which are consumed during burning, while areas outside
of polygons are regarded as areas without sparkleberry. It is important to recall that the
lack of sparkleberry coverage does not indicate that no fuel is present; litter, duff, and other
herbaceous material account for a significant proportion of consumption [66,67]. Moreover,
the areas designated as sparkleberry coverage are typically smaller than the areas outside of
sparkleberry coverage. Even in burn units where mean fuel density was greater in areas of
sparkleberry coverage than outside of sparkleberry coverage, the relative size of the areas
was significant in determining the total fuel quantity, and the larger area outside of the
sparkleberry coverage often determined that the total fuel quantity outside of sparkleberry
coverage was greater than within coverage.

4.4. Relationship between Fuel Consumption and Pyrolysis Gas Composition

For the gas-phase data, the lack of a significant statistical relationship between fuel
consumption and pyrolysis gas composition, while a novel finding, was not unexpected.
By conservation of mass, the total yield of pyrolysis products is equivalent to the amount of
wildland fuels that are heated and broken down into constituent materials and chemicals;
thus, as more fuel is consumed, the total yield of pyrolysis gases increases. However, if
heating efficiency and heating rate remain relatively constant, there is no reason to expect
yield to increase or decrease on a per mass pyrolyzed basis. Similarly, the chemical makeup
of the pyrolyzed fuels was fairly constant, therefore there was no expectation that the
steady heating of constant fuels would produce a different composition of pyrolysis gases.

As the pyrolysis gases oxidize during combustion under similar conditions, the ex-
pectation is that the composition of the combustion products would be similar between
the burn units. In the present study, fuel consumption was the difference between the
starting and ending fuel mass; however, the amount of char and noncombustible silica
ash were not included in the mass balance. If the amount of char and ash produced in
these burns was assumed to be constant based on similar fuels and burning conditions,
fuel consumption would not be affected by this omission. It is also well established that
heating rates can affect the composition of pyrolysis products [68–70]. For these prescribed
fire experiments, the heating rates produced by a wildland flame are in the order of 100 s of
◦C s−1, which falls in the range of fast pyrolysis, and were similar [71]. Therefore, given
the relatively similar burning conditions and fuels, no relationship between pyrolysis gas
composition and fuel consumption is expected. Nevertheless, this is a novel finding based
on a limited sampling of pyrolysis gases in a single fuel type. Although our focus was on
a single shrub species, it comprised only a small fraction of the fuels consumed in these
fires [27], which undoubtedly also contributed to pyrolysis gas emissions. It would be
worthwhile to measure pyrolysis gas emissions in relation to consumption at other sites
and in other fuel types.
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