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Abstract: In this paper, a numerical model verified by a 1:10 small-scale model test was used to
study the effect of different smoke vent layouts on fire characteristics and smoke exhaust efficiency.
The results show that the total smoke spread length is shortest when four smoke vents are opened
near the fire source. If there are more than four smoke vents, some of them will only inhale fresh
air rather than smoke. More seriously, some smoke vents will promote the spread of toxic smoke
farther. Under different smoke vent layout schemes, the maximum temperature shows the same
change trend with the increase in smoke exhaust volume (first increasing and then decreasing). When
there are four smoke vents, the temperature field is in a good range compared with other schemes. If
four smoke vents are opened, the total smoke exhaust efficiency is highest, and exhaust rate has little
influence on total exhaust efficiency. Total smoke exhaust efficiency of the tunnel is more than 93.7%
under different exhaust volumes, and the maximum difference of total smoke exhaust efficiency is
less than 1.5% under different exhaust volume of Case “4”. The exhaust volume has little influence
on temperature decay beneath the ceiling, and a temperature attenuation model of a point exhaust
tunnel with four smoke vents was proposed. For the single-side point exhaust tunnels, the number
of smoke vents near the exhaust fan side shall not be more than that on the other side. Four smoke
vents shall be opened in case of fire and the exhaust volume is 220 m3/s with HRR of 30 MW.

Keywords: tunnel fire; smoke control; maximum temperature; temperature decay; exhaust efficiency

1. Introduction

The danger of fire in a long and narrow space refers, mainly, to the damage to the
building structure caused by high-temperature and toxic smoke [1–3]. Controlling the
smoke in a certain area and discharging it out of the buildings in time will help to reduce
the fire hazard [4–10]. Therefore, tunnel ventilation and smoke control are the primary
issues in tunnel fire safety research. In recent years, ceiling exhaust ventilation has been
widely used in tunnel fire. Ventilation data for underwater tunnels constructed by shield
tunnelling machine in southern China were collected through field research, as shown in
Table 1. Research on the application of point exhaust ventilation in tunnel fire smoke control
has been reported extensively. Zhao et al. [11] analyzed the critical smoke exhaust rate and
temperature distribution in two-point exhaust tunnels through a 1:20 model test combined
with theoretical analysis and obtained the corresponding prediction model. Tang et al. [12]
studied the effect of the longitudinal velocity on maximum temperature and found out a
calculation model of maximum temperature in a smoke exhaust tunnel. They also explored
the influence of smoke exhaust on the transverse temperature profile beneath ceiling, and
established a unified temperature calculation model [13]. Tang and other colleagues [14]
also studied the effects of longitudinal wind speed and exhaust rate on tunnel fires and
proposed a calculation model of smoke distribution considering exhaust volume.
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Table 1. Ventilation data for underwater tunnels.

City Tunnel Length (km) Number of Smoke
Vents Opened

Distance between
Smoke Vent (m)

Wuhan Donghu Tunnel 7.035 4 60
Wuhan Sanyang Road Tunnel 4.32 6 60
Wuhan Qingdao Road Yangtze River Tunnel 3.44 4 60

Hangzhou Qianjiang Tunnel 4.45 6 60
Yangzhou Shouxihu Tunnel 4.40 6 60
Shanghai Shanghai Yangtze River Tunnel 8.90 3 60

Some scholars have also studied lateral ceiling exhaust tunnel fires. Zhu et al. [15]
studied the changes of critical wind speed and maximum temperature when the smoke
vent is located on the side wall and put forward some calculation models of maximum
temperature and critical wind speed that can guide the tunnel fire ventilation design based
on the test results. Wang et al. [16] studied the effect of exhaust volume and smoke vent area
on smoke back-layering length through a model test and obtained an empirical formula
for calculating the length of smoke back-layering considering in a point exhaust tunnel.
He et al. and Jiang et al. investigated the characteristics of smoke entrainment at the vent
and found that the HRR and smoke exhaust rate have the greatest influence on smoke
entrainment coefficient [17,18]. Tao et al. [19,20] studied the smoke control and temperature
distribution of a two-point exhaust tunnel and obtained some conclusions and temperature
calculation models that could improve tunnel ventilation design.

The factors, such as smoke and temperature distribution, related to evacuating one- or
two-point exhaust tunnels have been widely reported [21–23]. A tunnel fire will quickly
produce a large amount of toxic smoke. It is difficult to discharge the smoke out of the tunnel
by opening only one or two smoke vents. Therefore, the design of tunnel fire ventilation
allows for multiple smoke vents to be opened at the same time. More importantly, the
traditional smoke exhaust tunnel will discharge the smoke from both sides of the tunnel,
which will cause waste for some short tunnels. A separate fan room needs to be built for
tunnel ventilation, and the cost is often very expensive. If fan rooms are designed only on
one side and the exhaust duct outlet of the tunnel on the other side is closed, it will reduce
not only the cost of construction but also the number of axial-flow fans. It will also greatly
reduce the maintenance cost of ventilation facilities during operation. This kind of smoke
extraction scheme was adopted in the Mawan Tunnel in Shenzhen, China. Unfortunately,
the fire characteristics in single-side point exhaust tunnels have not been reported.

To fill this gap, this paper verified the reliability of the numerical model based on the
tunnel model. The effects of different smoke vent opening modes and smoke exhaust rate
on the smoke distribution, maximum temperature, temperature attenuation, and smoke
exhaust efficiency in the tunnel were studied based on the numerical results.

2. Numerical Modeling
2.1. Model Tunnel

The applicability of FDS (6.7) in tunnel fire calculation has been widely verified [24–27].
In this paper, the full-scale model tunnel is 600 m long, 13 m wide, and 6.5 m high. The
exhaust duct is 1.7 m high and 13 m wide. The area of the exhaust vent is 14.93 m2 and
the distance between smoke vents is 60 m. The smoke exhaust position consists of two
smoke vents with a size of 1 × 3.5 m, and there are six groups of smoke vents, as shown in
Figure 1. The two smoke vents in each smoke exhaust position are always in the same state
(open or closed). The vault and side walls of the tunnel are made of concrete. During the
whole simulation process, the environmental temperature is 20 ◦C and the mesh boundary
condition is “OPEN” [28]. The mass flow of gas and CO mass fraction at the smoke vent
should also be measured. In order to monitor the temperature distribution of the tunnel
vault, the thermocouple is arranged at 0.20 m below the tunnel ceiling and at intervals
of 0.25 m.
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Figure 1. Schematic diagram of model tunnel.

Note that the HRR is closely related to the combustibles. The HRR caused by a car
is 5–7 MW and that of medium-sized truck or bus is 20–30 MW. The HRR in a tunnel fire
may be higher, such as when an oil tank truck is involved [21]. However, tunnel ventilation
design must take into account the heat release rate according to the traffic flow and vehicle
type after tunnel operation. Therefore, only one heat release rate is generally considered
in tunnel fire ventilation design, and it is often much greater than the estimated value. In
addition, China’s national regulations (Guidelines for Design of Ventilation of Highway
Tunnel, JTG/TD70/2-02-2014) clearly stipulate that the heat release rate of most highway
tunnels in ventilation design should be 20 or 30 MW. Therefore, the power of the fire source
is 30 MW, and the exhaust volume is 200–280 m3/s in this paper. The fire source (gasoline)
is located at the center line of the tunnel floor, and the power of gasoline is controlled by
defining the mass loss rate (MLR) in FDS. The mass loss rate of gasoline is 0.055 kg/(m2·s),
and the HRR can reach 30 MW when the area of fire source is 12.6 m2 [29]. The soot and
CO yield are set to 0.1 and 0.05, respectively [30]. A detailed calculation scheme is shown
in Table 2.

Table 2. A summary of the simulation scheme.

Test No. Smoke Vent Number HRR (MW) Smoke Exhaust Rate (m3/s)

1–5 3A 30 200, 220, 240, 260, 280
6–10 3B 30 200, 220, 240, 260, 280

11–15 4 30 200, 220, 240, 260, 280
16–20 5A 30 200, 220, 240, 260, 280
21–25 5B 30 200, 220, 240, 260, 280
26–30 6 30 200, 220, 240, 260, 280

Note that a calculation model of temperature decay was also studied in this paper. If
only one fire source heat release rate is considered, the temperature calculation model is
not rigorous. Therefore, we studied the temperature attenuation beneath the tunnel ceiling
with HRR of 10, 20, and 30 MW.

2.2. Mesh Size

Generally, mesh size is the most important aspect for numerical simulation because
it determines the reliability of the numerical results. When the grid is less than 0.1D∗,
the numerical results are acceptable to guarantee the reliable operation of FDS [31]. The
characteristic diameter D∗ can be calculated by:

D∗ =

(
Q

ρacpTag1/2

)2/5

(1)

where Ta is the ambient air-temperature (K), ρa is the ambient air density (kg/m3), cp is
the specific heat capacity of air at constant pressure (kJ/kg·K), g is the gravity acceleration
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(m2/s), and Q is the heat release rate of fire source (kW). D∗ is calculated to be 3.74 m when
the HRR of fire is 30 MW, thus 0.1D∗ is approximately 0.374 m. In the previous reports
on the use of FDS to study tunnel fires, the selection of mesh size was described in detail,
and the mesh size was verified, as shown in Table 3. At present, when studying the smoke
movement and temperature profile based on FDS, the commonly used grid sizes are 0.1667
and 0.20 m [30,32–36]. Since the tunnel length in this paper is 600 m, we set the mesh size
as 0.20 m. Note that the HRR is the main factor affecting the characteristic diameter of the
fire source. Since the research scenario in this paper is the same as the existing tunnel fire
research based on FDS, we do not repeat the grid sensitivity analysis.

Table 3. Details of previous model tunnel grids.

References Dimension (m × m)
Wide × High HRR (MW) Mesh Sizes (m)

Yao [30] 10 × 5 5–100 0.200
Ji [33] 10 × 5 5–15 0.200

Liang [36] 10 × 7 30 0.20
Ji [37] 10 × 5 3–15 0.167

Guo [38] 10 × 5 3–10 0.167

2.3. Experimental Verification

A 1:10 model test with the same tunnel section and length was conducted to verify
the reliability of the numerical model. The model tunnel is made of aluminum sheet and
fireproof glass, and each smoke vent has a push–pull steel plate to control the opening state
of the vent. The outlet on one side of the exhaust duct is connected with the smoke exhaust
fan, and the outlet of the exhaust duct on the other side is sealed, as shown in Figure 2.
The jet fan in Figure 2 was not installed during the test conditions in this paper. The fire
source of the model test is liquefied petroleum gas (LPG), and the HRR of the fire source
is controlled by a rotameter [39], as shown in Figure 2. Details of the small-scale model
tunnel can be found in the author’s previous research [20,40]. The HRR and smoke exhaust
rate are converted by Froude similarity criterion.
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In this paper, the numerical model will be verified from the temperature profile and
smoke spread. The temperature profile in the tunnel is obtained under the same conditions.
The temperature distribution of the numerical results is approximately the same as the
model results, as shown in Figure 3a. The temperature difference between the numerical
and model results is very small near the tunnel ceiling and floor but relatively large in
the middle of the tunnel. The difference between the results of the model test and the
numerical simulation is within 10.8 ◦C under the tunnel ceiling. Under the same condition,
the smoke spread length in the numerical calculation is like that in the model test, and the
maximum difference is 5.4 m. Maximum errors of temperature and back-layering length
are 10.3% and 5.1%, respectively, which can be ignored for tunnel engineering. Therefore,
the accuracy of the mesh size of the numerical model can be guaranteed.
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3. Results and Discussion
3.1. Smoke Spread

In a tunnel fire, the opening state of the smoke vent is 3, 4, 5, and 6. When opening
three smoke vents, there are two situations (Figure 4): (1) Case “3A”: two smoke vents
are opened near the axial flow fan (upstream) and one is opened near the closed end
(downstream); (2) one smoke vent is opened near the axial flow fan and two are opened
near the closed end (Case 3B). There are also two situations when opening five smoke vents:
(1) three smoke vents are opened near the axial flow fan (upstream) and two are opened
near the closed end (downstream) (Case “5A”); (2) two smoke vents are opened near the
axial flow fan and three are opened near the closed end (Case 5B).

When the layout of the exhaust vent is Case “3A”, the smoke upstream can be con-
trolled within 50 m of the last smoke vent; when the exhaust volume exceeds 220 m3/s,
the exhaust volume has little effect on smoke spread upstream. However, exhaust volume
has a great influence on smoke spread downstream, and the length of the smoke spread
decreases with the increase in exhaust rate, as shown in Figure 5a. When the layout of the
smoke vent is Case “3B”, the effect of exhaust volume on smoke spread is opposite to that
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of Case “3A”; the exhaust volume mainly affects the smoke spread upstream, as shown in
Figure 5b. Moreover, the total length of the smoke spread (the sum of the spread lengths of
both sides of the fire) in the tunnel for Case “3A” is significantly longer than that of Case
“3B” at the same exhaust rate, as shown in Figure 6. Therefore, if only three smoke vents
near the fire source are opened, the smoke control effect of Case “3B” is better than that of
Case “3A”.
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When four smoke vents are opened, the smoke distribution on both sides of fire is
basically symmetrical. When the exhaust volume is more than 220 m3/s, increasing the
exhaust volume has no obvious effect on restraining the smoke spread, especially upstream.
The smoke can be controlled within 150 m on both sides of the fire. When there are three
smoke vents upstream and two downstream (Case 5A), the smoke spread length upstream
increases obviously compared with Case “4”. When the layout of the exhaust vent is Case
“5B”, the smoke spread length upstream decreases compared with Case “5A”, as shown in
Figure 5d,e. The influence of setting an exhaust fan on one side of the tunnel is highlighted.
Due to the single-side point exhaust, the velocity of the third exhaust vent upstream is very
high, which will help the smoke to spread to the third smoke vent. The smoke control effect
of Case “5B” upstream is better than that of Case “5A”.

When six smoke vents are opened, the smoke spreading length is the longest among
all the smoke exhaust opening schemes. Most importantly, when the smoke exhaust rate
is greater than 240 m3/s, the smoke downstream cannot spread to the last smoke vent,
which will cause serious waste. When three smoke vents are opened upstream, the smoke
spread length is much longer than when opening one or two smoke vents upstream, and
the total smoke spread length in the tunnel exceeds 300 m (the longest is 388 m) under
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different exhaust rates. The total length of the smoke spread is more than 200 m in all
calculation conditions. From the perspective of smoke diffusion, for a single-side point
exhaust tunnel, the best smoke exhaust effect can be obtained when four exhaust vents are
opened, especially for a two-way tunnel.

3.2. Temperature Distribution
3.2.1. Maximum Temperature

When the layout of the smoke vents is Case “5A” and Case “6”, the maximum temper-
ature decreases with the increase in exhaust volume; the maximum temperature under the
tunnel ceiling is 719–918 ◦C, as shown in Figure 7. When the layout of the exhaust vent
is Case “2”, Case “3A”, Case “3B”, Case “4”, and Case “5B”, the maximum temperature
first increases and then decreases with the increase in exhaust volume. This is because
when the smoke is confined near the fire source and sinks to the bottom of tunnel, the fire
is wrapped by the smoke and does not burn sufficiently. Increasing the exhaust volume
strengthens the air convection in the tunnel and makes the maximum temperature rise. If
the exhaust volume continues to increase, the velocity at the vent nearest to the fire will
make the high-temperature smoke unable to gather in the vault, and the smoke vent far
away from the fire will restrict air convection, which will reduce the maximum temperature.
When the layout of the exhaust vent is Case “5A” and Case “6”, the smoke within the range
of the smoke vents will sink to the bottom of the tunnel, as shown in Figure 4. It is difficult
for fresh air to reach the fire source with the increase in exhaust volume, so the maximum
temperature will not increase suddenly.
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When the layout of the exhaust vent is Case “4”, the exhaust volume has a great
influence on the maximum temperature. When the exhaust volume increases from 220 m3/s
to 240 m3/s, the maximum temperature increases by 97 ◦C. Although the maximum
temperature decreases rapidly with the increase in the exhaust volume, it is still much
higher than that of the other schemes. When the exhaust volume is less than 220 m3/s, the
maximum temperature is almost the same as that of the other schemes. If only four smoke
vents are opened, the exhaust rate should not be more than 220 m3/s.

3.2.2. Temperature Decay Model

For the downstream smoke under ceilings far away from fire source:
Mass equation:

d
dx

(ρuA) = ρaWue (2)
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Energy equation:

d
dx
(
ρAucpT

)
= ρaWuecpTa − htwp(T − Ta) (3)

The entrainment velocity ue can be expressed as:

ue = β(u − uo) (4)

where ρ and u are the density (kg/m3) and velocity (m/s) of smoke; A is the smoke flow
section area (m2); W is the width of the tunnel (m); T is the temperature of the smoke (K);
ue is the entrainment velocity of the smoke (m/s); wp is the wet perimeter of the smoke
flow (m); ht is the total net heat transfer coefficient on the tunnel walls (kW/m2·K); β is a
coefficient measured in the test; and uo is the velocity of the air (m/s).

In tunnel fires, smoke entrainment velocity is very small [41]. In order to simplify
the energy equation, we usually ignore the influence of smoke entrainment on the energy
equation. The tunnel wet perimeter can be calculated according to the tunnel design
parameters, so the tunnel wet perimeter can be considered a constant. It is assumed that ht
is also a constant. Based on Equations (2)–(4), the temperature attenuation downstream is
obtained as:

∆T(x)
∆Tmax

= exp
(
−

htwp + ρaueWcp

ρuAcp
x
)

(5)

Because the coefficient β (=0.00015) is very small [42], the horizontal entrainment of
smoke in the tunnel can be ignored:

∆T(x)
∆Tmax

≈ exp
(
−

htwp

ρuAcp
x
)

(6)

For a tunnel with a rectangular section, the temperature decay downstream can be
expressed as:

∆T(x)
∆Tmax

≈ exp
(
−(

2h
W

+ 1)· ht

ρucp
· x
h

)
= exp

(
−ξ· x

h

)
(7)

ξ = (
2h
W

+ 1)· ht

ρucp
∝

ht

ρucp
(8)

Although the coefficient ht is different in different locations and different fire devel-
opment stages, when the fire tends to be stable and far enough from fire, the difference of
ht in different locations is very small. In addition, the height of the smoke layer can also
be replaced by tunnel height. In view of this, the temperature decay can be approximated
using an exponential function [20,40]. Li et al. [43] found that the form of the sum of two
exponential functions, that is ∆T(x)/∆Tmax= a × exp

(
b× x

H
)
+c × exp(d× x

H
)
, can well

describe the decay of temperature under the tunnel ceiling.
Taking the location of the maximum temperature as a reference point, this paper

studies the temperature decay from the reference point to the first vent downstream. The
smoke control effect is the best in Case “4”, and the decay rate of the temperature is like
that of other smoke vent opening schemes. Therefore, this paper only presents the fitting
results for the temperature attenuation of Case “4”.

When four smoke vents are opened, the temperature decay rate is the same under
different smoke exhaust rates (H is the height of the tunnel, m), as shown in Figure 8. The
results of numerical calculation are in good agreement with the fitting curve (R2 = 0.992).
The constants a, b, c, and d are 0.444, −0.156, 0.598, and −1.913, respectively. The tempera-
ture decays the slowest when the layout of the exhaust vent is Case “5B” and decays the
fastest when the layout of exhaust vent is Case “3B”. The correlation coefficient (R2) of the
fitting curve of the temperature attenuation under different smoke vent opening schemes
was greater than 0.976. Except for the smoke vent opening schemes of Case “5B” and Case
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“3A”, the temperature decays rapidly and the decay rates are similar. Furthermore, the
fitting curves of the scheme with fast decay rate are close to the results of temperature for
Case “4”. Therefore, we only need to focus on the temperature attenuation of Case “4”.

Fire 2022, 5, x FOR PEER REVIEW 10 of 17 
 

 

2( 1) t t

p p

h hh
W uc uc

ξ
ρ ρ

= + ∝  (8)

Although the coefficient th  is different in different locations and different fire de-
velopment stages, when the fire tends to be stable and far enough from fire, the difference 
of th  in different locations is very small. In addition, the height of the smoke layer can 
also be replaced by tunnel height. In view of this, the temperature decay can be approxi-
mated using an exponential function [20,40]. Li et al. [43] found that the form of the sum 
of two exponential functions, that is ∆T(x)/∆Tmax=a×exp b× +c×exp(d× ), can well 
describe the decay of temperature under the tunnel ceiling. 

Taking the location of the maximum temperature as a reference point, this paper 
studies the temperature decay from the reference point to the first vent downstream. The 
smoke control effect is the best in Case “4”, and the decay rate of the temperature is like 
that of other smoke vent opening schemes. Therefore, this paper only presents the fitting 
results for the temperature attenuation of Case “4”. 

When four smoke vents are opened, the temperature decay rate is the same under 
different smoke exhaust rates (H is the height of the tunnel, m), as shown in Figure 8. The 
results of numerical calculation are in good agreement with the fitting curve (R2 = 0.992). 
The constants a, b, c, and d are 0.444, −0.156, 0.598, and −1.913, respectively. The tempera-
ture decays the slowest when the layout of the exhaust vent is Case “5B” and decays the 
fastest when the layout of exhaust vent is Case “3B”. The correlation coefficient (R2) of the 
fitting curve of the temperature attenuation under different smoke vent opening schemes 
was greater than 0.976. Except for the smoke vent opening schemes of Case “5B” and Case 
“3A”, the temperature decays rapidly and the decay rates are similar. Furthermore, the 
fitting curves of the scheme with fast decay rate are close to the results of temperature for 
Case “4”. Therefore, we only need to focus on the temperature attenuation of Case “4”. 

 
Figure 8. Temperature attenuation beneath tunnel ceiling of Case “4”. Figure 8. Temperature attenuation beneath tunnel ceiling of Case “4”.

In order to make the empirical formula for the temperature attenuation more repre-
sentative, the temperature distributions under different HRRs and exhaust volumes are
calculated for Case “4”. The detailed calculation conditions are shown in Table 4. Under
different HRRs, the exhaust volume has little effect on the temperature attenuation, as
shown in Figure 9. The influence of the HRR on the attenuation rate is very small. When
the HRR of the fire source is 10–30 MW, the temperature decay rate is similar. Taking the
average value of each coefficient, the empirical formula of temperature attenuation under
the tunnel ceiling with four smoke vents open can be obtained as follows:

∆T(x)/∆Tmax = 0.40e−0.147( x−xmax
H ) + 0.60e−2.17( x−xmax

H ) (9)

Table 4. Calculation condition of 4 smoke vents.

Test No. Smoke Vent Number HRR (MW) Smoke Exhaust Rate (m3/s)

31–35
4

10 100, 120, 140, 160, 180
36–40 20 160, 180, 200, 220, 240

To highlight the difference between the single-side multi-point exhaust tunnel and
the previous research results, we compared the temperature attenuation model in this
paper with some existing temperature attenuation models. Ji et al. [37] studied the effect of
pressure and HRR on the temperature decay beneath the ceiling and found that the impact
of pressure on temperature decay is very small, and the temperature attenuation conforms
to the sum of two exponential attenuations:

∆Tx/∆Tr = 0.33e−0.59 (x−xr)
H + 0.67e−0.048 (x−xr)

H (10)
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Ingason and Li [43] concluded that the temperature attenuation beneath the ceiling
conforms to the sum of two exponential attenuations:

∆Tx/∆Tr = 0.57e−0.13 (x−xr)
H + 0.43e−0.021 (x−xr)

H (11)

The numerical results are in good agreement with the prediction model proposed in
this paper, and the error between the numerical results and the prediction model is basically
within 15%, as shown in Figure 10. The closer to the smoke vent, the greater the error
between the numerical results and the prediction model, with the numerical calculation
results slightly higher than the prediction model. This is because the smoke vent will
inhibit the movement of high-temperature smoke and reduce the temperature attenuation
rate. Because there are four smoke vents in the tunnel that are continuously discharging
high-temperature smoke, the rate of the temperature attenuation model in this paper is
faster than that of natural ventilation or longitudinal ventilation tunnel, and the choice of
reference points may also be one of the reasons for the large differences.
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3.3. Exhaust Efficiency

By comparing the mass flow rate of CO in the exhaust duct under different calculation
conditions, the efficiency of smoke extraction with different calculation conditions can be
judged [30]. When the layout of the smoke vent is Case “4”, the increase in total smoke
exhaust efficiency is very small with increasing exhaust volume, and the effect of the
exhaust rate on total smoke exhaust efficiency is very small, as shown in Figure 11. Under
different exhaust volumes, the total exhaust efficiency is more than 93.7% when the layout
of the exhaust vent is Case “4”. The maximum difference of total smoke exhaust efficiency
is less than 1.5% under different exhaust volumes in Case “4”. Moreover, the total exhaust
efficiency with the same exhaust rate is significantly higher than that of other smoke vent
opening schemes. When the layout of the exhaust vent is Case “3A”, the total smoke
exhaust efficiency is the lowest compared with other schemes, and the smoke exhaust
efficiency is greatly affected by the exhaust rate. When the exhaust volume increases by
20 m3/s, the total smoke exhaust efficiency increases by more than 2.5%.
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The trend of total exhaust efficiency under different smoke vent opening states is that
the higher the exhaust rate, the greater the total exhaust efficiency. However, if the exhaust
rate exceeds 240 m3/s, the total smoke exhaust efficiency decreases with the increase in
exhaust volume in Case “5B”. This is because the velocity at the smoke vent downstream is
far less than that upstream, and the farther away from the fire, the lower the velocity at
the smoke vent. As the exhaust volume increases, the smoke may not spread to the smoke
vent, which will result in the intake of fresh air instead of smoke. It can be noticed from
Figure 12c,d that when the exhaust volume exceeds 260 m3/s, the exhaust efficiency of the
smoke vent farthest downstream from the fire is almost 0%.
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With the increase in distance from the fire, the smoke exhaust efficiency of the smoke
vent downstream decreases rapidly, as shown in Figure 12. The smoke vent with the highest
smoke exhaust efficiency is the nearest one on both sides of the fire. In the process of smoke
spreading, the smoke will continuously entrain the fresh air in the tunnel, resulting in the
decrease in CO content. Therefore, the CO content near the fire source is the highest. For
the smoke vent upstream, the farther away from fire, the higher the exhaust velocity, the
lower the exhaust efficiency. Moreover, the exhaust volume has little impact on the exhaust
efficiency of the vent closest to the exhaust fan. The smoke exhaust efficiency of the other
smoke vents upstream increases with the exhaust rate. The smoke is mainly discharged



Fire 2022, 5, 28 14 of 16

from the two smoke vents nearest to the fire source, and the exhaust volume has little
impact on the exhaust efficiency (the maximum difference of the exhaust efficiency with
different exhaust rates is less than 4%). When three smoke vents are opened downstream,
the smoke vent 150 m away from the fire makes little contribution to controlling the smoke,
and the smoke exhaust efficiency is less than 5% under different smoke exhaust rates.

4. Conclusions

A set of CFD simulations were performed in single-side point exhaust tunnels with
different smoke exhaust rates to explore the impact of the number of smoke vents on
smoke control, temperature profile, and smoke exhaust efficiency. The main conclusions
are as follows:

(1) When there are more than two smoke vents on one side of the fire source far away
from the exhaust fan, some smoke exhaust vents will inhale fresh air rather than toxic
smoke. When the layout of the exhaust vent is Case “4”, the total length of the smoke
spread in single-side point exhaust tunnels is shortest;

(2) The maximum temperature decreases with the increase in the smoke exhaust rate.
The temperature is much higher than in other smoke exhaust vent opening schemes
at the same smoke exhaust volume as Case “6”;

(3) By analyzing the simulation results of the vault temperature under different HRRs
and exhaust rates, an empirical formula of temperature attenuation for Case “4” was
proposed: ∆T(x)/∆Tmax = 0.40e−0.147( x−xmax

H ) + 0.60e−2.17( x−xmax
H ). The error of the

temperature attenuation model is less than 15%;
(4) Under the same exhaust volume, the exhaust efficiency is the highest when the layout

of the exhaust vent is Case “4”. The total smoke exhaust efficiency of the tunnel is
more than 93.7% and the maximum difference of the total smoke exhaust efficiency is
less than 1.5% under different smoke exhaust rates;

(5) For a single-side point exhaust tunnel, the number of smoke vents near the smoke
exhaust fan side shall not be more than that on the other side. The proposed smoke
control scheme for the Mawan tunnel with a designed HRR of 30 MW is as follows:
the layout of the exhaust vent is as shown in Case “4”, and the smoke exhaust rate
is 220 m3/s.

This paper mainly studied the smoke and temperature control of a centralized smoke
exhaust tunnel, discussed the smoke exhaust effect when there are different numbers of
smoke outlets, solved the fire ventilation design of Mawan tunnel, and provided a reference
for a similar tunnel fire ventilation design. A study on the temperature field of a single-side
point exhaust tunnel fire, especially the maximum temperature, will be carried out in
further model tests.
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