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Abstract: The space-charge effects of pulsed high-current electron beams are very important to
high-power particle beam accelerators and high-power microwave devices. The related physical
phenomena have been studied for decades, and a large number of informative publications can be
found in numerous scientific journals over many years. This review article is aimed at systematically
summarizing most of the previous findings in a logical manner. Using a normalized one-dimensional
mathematical model, analytical solutions have been obtained for the space-charge-limited current of
both planar diode and drifting space. In addition, in the case of a beam current higher than the space-
charge-limited current, the virtual cathode behavior and beam current reflection are quantitively
studied. Furthermore, the criteria of steady-state virtual cathode formation are investigated, which
leads to the physical understanding of the unstable nature of the virtual cathode. This review article
is expected to serve as an integrated source of related information for young researchers and students
working on high-power microwaves and pulsed particle beams.

Keywords: electron beam; space charge; virtual cathode; high-power microwave; pulsed power;
accelerator

1. Introduction

The space-charge effect of charged particle beams is an important phenomenon for
many engineering efforts, such as high-power electron- or ion-beam acceleration, high-
current beam transportation, and high-power microwave generation [1–8]. Of particular
interest is the high-power microwave device called a virtual cathode oscillator, where the
space-charge effect reaches the point in which a virtual cathode is formed [4–8].

The most fundamental basis of space-charge physics has been understood for more
than 100 years [1,9,10]. During this time, building blocks have been added by many re-
searchers to make the theory more solid and broad [11–26]. Most studies, in fact, were
carried out since the 1970s when high-power particle beam diodes and high-power mi-
crowave devices were intensively studied [22–33]. This subject has been investigated for
so long and in so much detail that there nearly exists at least one publication on every
physically interesting issue that some of us may still be dealing with today. However, many
of these publications are so old that they are not easy to acquire, especially for those who
have limited access to the huge platforms of the scientific archive. In addition, different
papers may have been written in different contexts, for different purposes, and use different
mathematical methods with different sets of symbols to represent the same physical quan-
tities. These factors may bring additional difficulties to an already complicated problem,
especially for students and young engineers who have just entered this field.

This review article serves as a tutorial for guiding the readers along the general path
that our field has walked through over the last decades, starting from the Child–Langmuir
law. The aim is to provide a unified description of a series of physical phenomena using a
consistent mathematical language. The idea is to put together many smaller pieces that
have been scattered over a long period and in a variety of journals so that a clearer picture
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can be seen by those who are new to this subject. Therefore, the purpose of this article is not
to publish any novel findings, nor is it aimed at experienced researchers who are familiar
with every physical detail.

This article only deals with steady-state issues without considering any transient
effects. The reason is that the space-charge effect is primarily a matter of space, where time
becomes important only when instability develops. Therefore, although time-dependent
events frequently occur in real devices, the steady states often serve as a backbone that lies
at the center of the fluctuation or oscillation. In addition, the steady-state approach is much
easier and straightforward in most cases, with which we can better grasp the physical
relations between different quantities and phenomena.

In the next section, we first deal with a one-dimensional acceleration gap in which
electrons with zero initial kinetic energy are accelerated, for which the space-charge-limited
current is obtained. Then, in Section 3, we consider the situation where an electron beam
with the initial electron kinetic energy is injected into a drifting space for cases of beam
current below or above the space-charge-limited current. These two situations are put
together in Section 4, where electrons accelerated by the acceleration gap are injected into
the drifting space. Stability analysis has been carried out from which we have concluded
that there exists a parameter range where no stable steady-state solutions can be obtained.

2. Space-Charge Limited Current in an Acceleration Gap

Consider an electron beam being accelerated by a voltage applied between two planar
electrodes facing each other in parallel, as shown conceptually in Figure 1. In a steady state,
if the cross-sectional size of the electron beam is much larger than the distance between the
electrodes, all parameters can be considered as functions of the only spatial variable, which
is in the direction of the acceleration. This is the classic model for studying one-dimensional
space-charge-limited current, assuming the electrons have zero initial kinetic energy.
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Figure 1. One-dimensional model of an acceleration gap where electrons, with certain space charge,
are accelerated by the gap voltage from zero initial kinetic energy. The lower graph is a conceptual
illustration of the electric-potential distribution.

2.1. Non-Relativistic Space Charge Limited Current

In case the relativistic effect is not important, the physical parameters are related to
each other via the following equations.

dE
dz

= − en
ε0

(1)
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E = −dϕ

dz
(2)

J = −env (3)

1
2

mv2 = e(V0 + ϕ) (4)

where E(z), ϕ(z), n(z), and v(z) are functions of coordinate z, and they represent the electric
field, the electric potential, the electron density, and the electron velocity, respectively. J
is the electron beam current density, which does not change with z in a steady state. In
addition, the constants e, m, ε0, and V0 represent the unit charge, electron mass, vacuum
permittivity, and the applied acceleration voltage, respectively.

In order to normalize the parameters, we define the following normalization constants.

E0 =
V0

d
(5)

ϕ0 = V0 (6)

n0 =
ε0V0

ed2 (7)

v0 =

(
2eV0

m

)1/2
(8)

J0 = ε0

(
2e
m

)1/2 V0
3/2

d2 (9)

z0 = d (10)

where d is the distance between the electrodes, namely the acceleration gap width. Using
the above constants, we can define the dimensionless quantities E′, ϕ′, n′, v′, J′, and z′

by using
E = E′E0 (11)

ϕ = ϕ′ϕ0 (12)

n = n′n0 (13)

v = v′v0 (14)

J = J′ J0 (15)

z = z′z0 (16)

and obtain the following equations by inputting them into Equations (1)–(4).

dE′

dz′
= −n′ (17)

E′ = −dϕ′

dz′
(18)

J′ = −n′v′ (19)

v′2 = 1 + ϕ′ (20)

The relations of Equations (5)–(10) are important for nondimensionalizing the parame-
ters and simplifying the equations. They are used throughout this article.
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Since E′, ϕ′, n′, and v′ are all monotonic functions of z′ in case of zero initial
velocity, they can be considered as functions of each other. Therefore, by submitting
Equations (17)–(20) into each other, we obtain

dE′ = −n′dz′ =
n′

E′ dϕ′ = − J′

E′v′
dϕ′ = − J′

E′
dϕ′√
1 + ϕ′ (21)

from which we can solve E’ as a function of ϕ’ and yield the following relation.

1
2

E′2 = −2J′
√

1 + ϕ′ + C (22)

where C is an integration constant, which is determined by the boundary condition. The
above relation reveals a very important physical phenomenon of the so-called space-charge
effect. Since the negatively charged electrons are accelerated in the positive z direction,
the beam current density J′ is always negative. Therefore, the electric field intensity |E′|
always increases as the potential varies from the cathode to the anode, i.e., when ϕ′ increases
from −1 to 0. In other words, the weakest electric field is observed on the surface of the
cathode, where the electrons have zero kinetic energy.

From Equation (22), we can see that the space-charge effect described above depends
on the value of J′. The higher |J′| is, the lower the field strength on the cathode surface
becomes because the integration of the electric field over the gap, which is the gap voltage,
is constant. Therefore, we can perceive that the maximum value of |J′| is reached when
the cathode electric field diminishes to zero or

E′(ϕ′ = −1
)
= 0 (C = 0) (23)

The maximum value of |J′|, denoted as |J′SCL|, is called the space-charge-limited
current. From Equations (22) and (23), we obtain

E′(ϕ′) = −
(
−4J′SCL

√
1 + ϕ′

)1/2
(24)

This is a well-defined relation between E′ and ϕ′, which does not depend on z′

in appearance. However, to find out J’SCL, we have to calculate the spatial integration
as follows:

1∫
0

dz′ = −
0∫

−1

dϕ′

E′ =

(
−1

4J′SCL

) 1
2

0∫
−1

dϕ′

(1 + ϕ′)1/4 =
4
3

(
−1

4J′SCL

) 1
2

(25)

Using the fact that the above integration equals unity, we obtain

J′SCL = −4
9

(26)

With Equations (9) and (15), we arrive at the well-known expression for the one-
dimensional, non-relativistic space-charge-limited (SCL) current density

JSCL = −4ε0

9

(
2e
m

)1/2 V0
3/2

d2 (27)

which is also called the Child–Langmuir law. When the beam current reaches this value,
the electron space charge completely shields the cathode surface from the electric field,
and we consider the gap to be in a space-charge-limited state. In this state, we can use
Equation (24) to calculate the electric field on the anode surface (ϕ′ = 0).

E′(ϕ′ = 0
)
= −

(
−4J′SCL

) 1
2 = −4

3
(28)
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Therefore, although the space-charge effect reduced the cathode surface (ϕ′ = −1) field
to zero, it enhanced the anode surface field by a factor of 4/3, compared with the average
value (E0).

By using Gauss’ law, we can calculate the total charge (per unit area) between
two electrodes.

Q = ε0 E′(ϕ = 0)E0 = −4ε0

3
V0

d
(29)

Furthermore, by dividing this charge with the current, we can obtain the transit time
of the electrons, which is the time of flight from cathode to anode.

tTOF =
Q

JSCL
= 3d

(
m

2eV0

) 1
2
=

3d
v0

(30)

where v0 is defined by Equation (8). It is the electron velocity when it arrives at the anode.

2.2. Relativistic Space Charge Limited Current

In case the relativistic effect has to be taken into account, Equation (4) is replaced by

v = c
(

1 − γ−2
)1/2

, where γ = 1 +
e(V0 + ϕ)

mc2 (31)

while Equations (1)–(3) remain unchanged. By defining a new dimensionless constant

x0 =
eV0

mc2 (32)

we can derive
γ = 1 + x0

(
1 + ϕ′) (33)

v′ = v
√

m
2eV0

=
1√
2x0

{
1 −

[
1 + x0

(
1 + ϕ′)]−2

}1/2
(34)

As in Equation (21), we can derive

dE′ = − J′

E′v′
dϕ′ = − J′

E′
√

2x0

{
1 −

[
1 + x0

(
1 + ϕ′)]−2

}−1/2
dϕ′ (35)

and obtain
1
2

E′2 = −J′
√

2
x0

·
√
[1 + x0(1 + ϕ′)]2 − 1 + C (36)

This is the relativistic form of Equation (22). However, regarding the space-charge
effect, Equations (36) and (22) are similar in understanding the fact that the electric field
intensity |E′| keeps increasing when ϕ′ increases from −1 to 0. As in the non-relativistic
case, the maximum current density, here denoted as |J′RSCL|, corresponds to the condition
of E′(ϕ′ = −1) = 0, with which the following relation is obtained.

E′(ϕ′) = −
{
−2J′RSCL

√
2/x0 ·

√
[1 + x0(1 + ϕ′)]2 − 1

} 1
2

(37)

To find out J′RSCL, we have to calculate the spatial integration which, unfortunately, is
not as easy as in the non-relativistic case.

1∫
0

dz′ =
(

−1
2J′RSCL

√
x0/2

) 1
2

0∫
−1

{[
1 + x0

(
1 + ϕ′)]2 − 1

}−1/4
dϕ′ (38)
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By defining x = x0(1 + ϕ′), we can rewrite the above equation as

(
−1

2J′RSCL

√
x0/2

) 1
2
· 1

x0

x0∫
0

[
(x + 1)2 − 1

]− 1
4 dx = 1 (39)

using which we can express J′RSCL as

J′RSCL = − 1
2
√

2
· 1

x03/2


x0∫

0

[
(x + 1)2 − 1

]− 1
4 dx


2

≡ J′SCL · G(x0) (40)

The above equation tells us that the relativistic space-charge-limited (RSCL) current
density can be expressed as a product of the nonrelativistic space-charge-limited current
density (J′SCL) and function G(x0), which is defined as

G(x0) =
9

8
√

2
1

x03/2


x0∫

0

[
(x + 1)2 − 1

]− 1
4 dx


2

(41)

Although it is not easy to calculate the value of G(x0) analytically, the above integration
can be solved numerically without much difficulty. Figure 2 shows the computation results,
with x0 replaced by V0 using Equation (32). The curve of Figure 2 tells us how much we
should care about the relativistic effect on the space-charge-limited current. For example,
when the acceleration voltage is lower than 500 kV, the difference between J′SCL and
J′RSCL is less than 10%. In any case, we can obtain the exact relativistic value by applying
Equation (27) with the value of G, as shown in Figure 2 for V0 < 5 MV.
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3. Electron Beam Injection into a Drifting Space

In the last section, we have considered the situation where an electron beam with
zero initial electron kinetic energy is accelerated by a gap with constant voltage. Next,
we consider a different case where an electron beam with a certain initial electron kinetic
energy is injected into a drifting space with zero voltage applied between two boundaries,
as shown in Figure 3.

3.1. When Beam Current Density Is Relatively Low

When the beam current density is relatively low, we can assume that all electrons
can go through the gap and arrive at the opposite electrode, which is different from the
situation described in the next subsection (Section 3.2).
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We assume that the initial electron kinetic energy is eV0, the injected beam current
density is Jin, and the gap length of the drifting space is D. The basic equations are the same
as Equations (17)–(20). To continue using the normalization relations of Equations (11)–(16),
we define the spatial normalization constant

d =

√
−4ε0

9

(
2e
m

)1/2 V0
3/2

Jin
(42)

with which the drifting space gap is normalized as

D′ =
D
d

(43)

and the normalized injected beam current density becomes

J′ in =
Jin
J0

= −4
9

(44)

where J0 is the same as defined by Equation (9). The physical meaning of d will be seen
more clearly in Section 4.

Since the electron beam passes through the gap entirely, in steady state, the electric
potential must have a symmetric distribution relative to its center at z = D/2. The potential
minimum (ϕp) appears at the center where the electric field is zero, namely

E′
(

ϕ′
p

)
= 0

(
ϕ′

p =
ϕp

V0

)
(45)

Substituting Equation (45) into Equation (22), we obtain

C = 2J′ in
√

1 + ϕ′
p = −8

9

√
1 + ϕ′

p (46)

and then

E′(ϕ′) = ±4
3

(√
1 + ϕ′ −

√
1 + ϕ′

p

) 1
2 (47)

If we only look at the left half of the gap, where 0 < z < D/2, we have positive E′ in the
above equation.
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As in the last section, the integration of 1/E′(ϕ′) gives spatial information such that

D′
2 = −

ϕ′
p∫

0

dϕ′

E′(ϕ′) = − 3
4

ϕ′
p∫

0

dϕ′(√
1+ϕ′−

√
1+ϕ′

p

) 1
2

=

(
1 −

√
1 + ϕ′

p

)1/2(
1 + 2

√
1 + ϕ′

p

) (48)

Using the above relation, we can express the following current ratio as a function
of ϕ′

p.

Jin
JSCL(D/2)

=
J′ in

J′SCL(D′/2)
=

(
D′
2

)2
=

(
1 −

√
1 + ϕ′

p

)(
1 + 2

√
1 + ϕ′

p

)2
≡ f

(
ϕ′

p

)
(49)

where JSCL(D/2) is the space-charge-limited current density defined by

JSCL(D/2) = −4ε0

9

(
2e
m

) 1
2 V0

3/2

(D/2)2 or J′SCL
(

D′/2
)
= −4

9

(
D′
2

)−2
(50)

It is, according to the previous section, the maximum current density that can be
obtained by acceleration voltage V0 with a gap of D/2. It is important that, for a given V0
and D, JSCL(D/2) is constant. Therefore, Equation (49) actually shows the relation between
the injected current density and the value of the minimum potential. This relation is plotted
in Figure 4 with ϕ′

p on the vertical axis and Jin/JSCL(D/2) on the horizontal, although the
following four points can be easily identified by using Equation (49).

f (0) = 0, f (−1/4) = 1, f (−3/4) = 2, f (−1) = 1

Plasma 2024, 7, FOR PEER REVIEW  8 
 

 

𝑑𝑑′(𝑑𝑑′) = ±
4
3
��1 + 𝑑𝑑′ − �1 + 𝑑𝑑′

𝑝𝑝�

1
2
 (47) 

If we only look at the left half of the gap, where 0 < z < D/2, we have positive E’ in the 
above equation. 

As in the last section, the integration of 1/E’(ϕ’) gives spatial information such that 

𝐷𝐷′

2
= −�

𝑑𝑑𝑑𝑑′

𝑑𝑑′(𝑑𝑑′)

𝜙𝜙′𝑝𝑝

0

= −
3
4
�

𝑑𝑑𝑑𝑑′

��1 + 𝑑𝑑′ − �1 + 𝑑𝑑′
𝑝𝑝�

1
2

𝜙𝜙′𝑝𝑝

0

= �1 − �1 + 𝑑𝑑′𝑝𝑝�
1/2

�1 + 2�1 + 𝑑𝑑′𝑝𝑝� 

(48) 
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When the amplitude of the injected current density (|Jin|) is increased, the minimum
potential decreases monotonically until |Jin| reaches its maximum value at

Jmax = 2JSCL(D/2) (51)

Since there is no solution of ϕ’p for Jin/Jmax > 1, this maximum value |Jmax| is,
therefore, the maximum current density that can be carried by the electron beam through
the gap. It is referred to as the space-charge-limited current of an electron beam in a
drifting space, for initial electron energy of V0 and gap width of D. Therefore, only when
the condition

Jin
JSCL(D/2)

≤ 2 (52)

is satisfied, the electron beam can drift across the gap in its entirety.
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From Figure 4, one can see that, for the region of −0.75 < ϕ′
p < 0, we have

Jin/JSCL(D/2) < 2. For ϕ′
p = −0.75, we have Jin/JSCL(D/2) = 2. Furthermore, for the

region of −1 < ϕ′
p < −0.75, we have 1 < Jin/JSCL(D/2) < 2. In other words, the maximum

beam current appears when the minimum potential reaches −0.75V0. If the potential dips
more than this value, the corresponding current amplitude actually becomes smaller. As a
result, in the region of 1 < Jin/JSCL(D/2) < 2, two solutions of ϕ′

p exist for any given value
of Jin. This can be generally explained by the fact that a small number of electrons moving
at a relatively high speed can carry the same current as that of a large number of electrons
moving at a relatively low speed. Therefore, too many electrons may create a space-charge
effect that leads to significantly reduced electron velocity. The highest flux is reached only
when a modest number of particles are traveling at a reasonable speed.

To calculate the electric field at the boundaries (ϕ′ = 0), we use Equation (47),

E′(ϕ′ = 0
)
= ±4

3

(
1 −

√
1 + ϕ′

p

) 1
2 (53)

from which we can further calculate the total charge (per unit area) between two boundaries.

Q = −2ε0 |E(ϕ = 0)| = −8ε0

3
V0

d

(
1 −

√
1 + ϕ′

p

) 1
2
= −8ε0

3
V0

D/2
· D′

2

(
1 −

√
1 + ϕ′

p

) 1
2 (54)

Combined with Equation (48), we obtain

Q
Q0

= 2
(

1 −
√

1 + ϕ′
p

)(
1 + 2

√
1 + ϕ′

p

)
(55)

where Q0 is defined as

Q0 = −4ε0

3
V0

D/2
(56)

By comparing Equation (56) with Equation (29), we can tell that Q0 corresponds to the
charge in a space-charge-limited gap having a width of D/2. So, if we define

t0 =
3D/2

v0
(57)

following Equation (30), we can obtain the transit time (time of flight) of electrons through
the drifting space by dividing the total charge with the current density and using
Equations (55), (30) and (49).

tTOF =
Q
Jin

=
Q
Q0

· Q0

JSCL(D/2)
· JSCL(D/2)

Jin
=

2t0

1 + 2
√

1 + ϕ′
p

(58)

Using this relation, we can calculate the following results as examples:

tTOF

(
ϕ′

p = 0
)
=

2t0

3
=

D
v0

tTOF

(
ϕ′

p = −3
4

)
= t0

tTOF

(
ϕ′

p = −1
)
= 2t0

They correspond to the cases of constant velocity (zero beam current), maximum beam
current, and lowest minimum potential, respectively.
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3.2. When Beam Current Density Is Higher Than the Limiting Value

When the amplitude of the injected beam current density (|Jin|) is higher than the
limiting value, which is defined by Equation (51), one thing we know for sure is that not all
electrons can pass through the gap to the other side because such steady-state solution does
not exist. In this case, the only physically feasible situation is that some of the electrons
turn around at a certain point and move back toward the injection plane while the others
continue moving forward. In other words, the space charge of the electron beam partially
reflects the electron beam at a certain position somewhere in the gap, as depicted in Figure 5.
The position of electron beam reflection is denoted as zp.
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Figure 5. One-dimensional steady-state model of a drifting space where an electron beam is injected
with initial electron kinetic energy of eV0. Here, the beam current density is higher than the critical
value given by Equation (51).

In a steady state, at the location of zp, the electron kinetic energy drops to zero, and,
according to the law of energy conservation, the electric potential must be −V0. Assuming
the injected electron beam has been accelerated by a gap like that shown in Figure 1 where
the cathode has a potential of −V0, since the potential at zp has the same value as that of
the cathode, this position is called a virtual cathode.

On the right-hand side of zp, the transmitted electron beam passes through with a
current density of Jtr. In the space between the injection plane and zp, however, there are
two electron beams: the incoming beam with the current density of Jin and the reflected
beam with the current density of Jre. Since electrons are carrying negative charges, we
should have Jin < 0, Jtr < 0, and Jre > 0. In addition, they have the following relation with
each other:

−J′ in = J′re − J′tr (59)

after normalization by J0.
It is important to note that, although the injected beam and the reflected beam cancel

each other partially in current, they enhance each other in the space-charge effect because it
does not matter which direction the electrons are moving when we take their space charge
into account. Therefore, in terms of space charge, the beam current amplitude is −Jin + Jre
on the left-hand side of zp and −Jtr on the right-hand side. Since we have

E
(
zp
)
= 0 and ϕ

(
zp
)
= −V0 (60)
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the beam current amplitude on both sides of zp should satisfy the space-charge-limited
conditions described in Section 2.1. Thus, we have

−J′ in + J′re =
4
9

1
z′p2 (61)

−J′tr =
4
9

1(
D′ − z′p

)2 (62)

where z′p = zp/d and d are defined in Equation (42). From the above relations, we can
further obtain

−2J′ in = −J′ in + J′re − J′tr =
4
9

[
1

z′p2 +
1(

D′ − z′p
)2

]
(63)

and by using Equation (50), we find

J′ in
J′SCL(D′/2)

=
1
8

[
1(

z′p/D′
)2 +

1(
1 − z′p/D′

)2

]
(64)

Since all quantities are expressed in ratios of the same physical parameter, we can
remove the apostrophe (‘), which is used to indicate a parameter after normalization. In
other words, the equation for the parameters before normalization should have the same
form as Equation (64), namely,

Jin
JSCL(D/2)

=
1
8

[
1(

zp/D
)2 +

1(
1 − zp/D

)2

]
(65)

The above equation gives the relation between the injected beam current density (Jin)
and the position of the virtual cathode (zp). This relation is plotted in Figure 6 from which
we can see that, as Jin increases, the virtual cathode moves closer to the injection position
and that, as Jin decreases toward JSCL(D/2), zp approaches D/2.

Plasma 2024, 7, FOR PEER REVIEW  11 
 

 

𝑑𝑑�𝑑𝑑𝑝𝑝� = 0   and   𝑑𝑑�𝑑𝑑𝑝𝑝� = −𝑉𝑉0 (60) 

the beam current amplitude on both sides of zp should satisfy the space-charge-limited 
conditions described in Section 2.1. Thus, we have 

−𝐽𝐽′𝑖𝑖𝑖𝑖 + 𝐽𝐽′𝑟𝑟𝑟𝑟 =
4
9

1
𝑑𝑑′𝑝𝑝2

 (61) 

−𝐽𝐽′𝑡𝑡𝑟𝑟 =
4
9

1

�𝐷𝐷′ − 𝑑𝑑′𝑝𝑝�
2 (62) 

where z’p = zp/d and d are defined in Equation (42). From the above relations, we can fur-
ther obtain 

−2𝐽𝐽′𝑖𝑖𝑖𝑖 = −𝐽𝐽′𝑖𝑖𝑖𝑖 + 𝐽𝐽′𝑟𝑟𝑟𝑟 − 𝐽𝐽′𝑡𝑡𝑟𝑟 =
4
9
�

1
𝑑𝑑′𝑝𝑝2

+
1

�𝐷𝐷′ − 𝑑𝑑′𝑝𝑝�
2� (63) 

and by using Equation (50), we find 

𝐽𝐽′𝑖𝑖𝑖𝑖
𝐽𝐽′𝑆𝑆𝑆𝑆𝑆𝑆(𝐷𝐷′/2)

=
1
8
�

1
(𝑑𝑑′𝑝𝑝/𝐷𝐷′)2

+
1

(1 − 𝑑𝑑′𝑝𝑝/𝐷𝐷′)2
� (64) 

Since all quantities are expressed in ratios of the same physical parameter, we can 
remove the apostrophe (‘), which is used to indicate a parameter after normalization. In 
other words, the equation for the parameters before normalization should have the same 
form as Equation (64), namely, 

𝐽𝐽𝑖𝑖𝑖𝑖
𝐽𝐽𝑆𝑆𝑆𝑆𝑆𝑆(𝐷𝐷/2)

=
1
8
�

1
(𝑑𝑑𝑝𝑝/𝐷𝐷)2

+
1

(1 − 𝑑𝑑𝑝𝑝/𝐷𝐷)2
� (65) 

The above equation gives the relation between the injected beam current density (Jin) 
and the position of the virtual cathode (zp). This relation is plotted in Figure 6 from which 
we can see that, as Jin increases, the virtual cathode moves closer to the injection position 
and that, as Jin decreases toward JSCL(D/2), zp approaches D/2. 

Using Equations (61), (62), and (64), we can obtain the following relations, after re-
moving the apostrophes. 

 
Figure 6. Relation between the injected beam current density (Jin) and the position of the virtual 
cathode (zp), as expressed by Equation (65).  

𝐽𝐽𝑟𝑟𝑟𝑟
𝐽𝐽𝑖𝑖𝑖𝑖

= −
�1 − 𝑑𝑑𝑝𝑝/𝐷𝐷�2 − �𝑑𝑑𝑝𝑝/𝐷𝐷�2

�1 − 𝑑𝑑𝑝𝑝/𝐷𝐷�2 + �𝑑𝑑𝑝𝑝/𝐷𝐷�2
 (66) 

Figure 6. Relation between the injected beam current density (Jin) and the position of the virtual
cathode (zp), as expressed by Equation (65).

Using Equations (61), (62) and (64), we can obtain the following relations, after remov-
ing the apostrophes.

Jre

Jin
= −

(
1 − zp/D

)2 −
(
zp/D

)2(
1 − zp/D

)2
+

(
zp/D

)2 (66)
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Jtr

Jin
=

2
(
zp/D

)2(
1 − zp/D

)2
+

(
zp/D

)2 (67)

With Equation (65), the above relations are plotted in Figure 7. As shown in Figure 7,
when Jin = JSCL(D/2), we have Jre = 0 and Jtr = Jin, indicating 100% beam transmission. As
|Jin| increases, however, we see a drastic increase in Jre and a decrease in |Jtr|. For example,
when Jin = 2JSCL(D/2), we have approximately −Jre/Jtr ≈ 3:1, indicating a situation that
most of the electron beam is reflected.

Plasma 2024, 7, FOR PEER REVIEW  12 
 

 

𝐽𝐽𝑡𝑡𝑟𝑟
𝐽𝐽𝑖𝑖𝑖𝑖

=
2(𝑑𝑑𝑝𝑝/𝐷𝐷)2

(1 − 𝑑𝑑𝑝𝑝/𝐷𝐷)2 + (𝑑𝑑𝑝𝑝/𝐷𝐷)2
 (67) 

With Equation (65), the above relations are plotted in Figure 7. As shown in Figure 7, 
when Jin = JSCL(D/2), we have Jre = 0 and Jtr = Jin, indicating 100% beam transmission. As |Jin| 
increases, however, we see a drastic increase in Jre and a decrease in |Jtr|. For example, 
when Jin = 2JSCL(D/2), we have approximately −Jre/Jtr ≈ 3:1, indicating a situation that most 
of the electron beam is reflected. 

 
Figure 7. Dependence of Jre/Jin and Jtr/Jin on Jin, given by Equations (66) and (67). 

Although the title of this subsection suggests that we are only investigating the situ-
ation for Jin > 2JSCL(D/2), we did find the steady-state solutions for the region of 1 < 
Jin/JSCL(D/2) < 2 under the assumption that a virtual cathode is formed. Therefore, together 
with what we have obtained in the last subsection, there are totally three possible states 
for each value of Jin in the region of 1 < Jin/JSCL(D/2) < 2. They are marked by (a), (b), and (c), 
respectively, in Figure 8, which is a replot of Figure 4 by adding the fact that the potential 
of the virtual cathode is always −V0 for steady states. These three states (a, b, and c) will be 
considered in more detail in the next subsection. 

As we have shown in the last subsection, we can use the electric field to calculate the 
total charge (per unit area) in the gap based on Gauss’ law. Since the current amplitudes 
on both sides of zp satisfy the space-charge-limited conditions, using Equations (24), (61), 
and (62), we can write 

𝑄𝑄 = −
4
3
𝑉𝑉0
𝑑𝑑
�

1
𝑑𝑑′𝑝𝑝

+
1

𝐷𝐷′ − 𝑑𝑑′𝑝𝑝
� = −

4
3
𝑉𝑉0
𝐷𝐷/2

𝐷𝐷′

2
�

1
𝑑𝑑′𝑝𝑝

+
1

𝐷𝐷′ − 𝑑𝑑′𝑝𝑝
� =

𝑄𝑄0
2
�

1
𝑑𝑑𝑝𝑝/𝐷𝐷

+
1

1 − 𝑑𝑑𝑝𝑝/𝐷𝐷
� (68) 

where Q0 is defined by Equation (56). As to the transit times, the satisfaction of space-
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Figure 7. Dependence of Jre/Jin and Jtr/Jin on Jin, given by Equations (66) and (67).

Although the title of this subsection suggests that we are only investigating the
situation for Jin > 2JSCL(D/2), we did find the steady-state solutions for the region of
1 < Jin/JSCL(D/2) < 2 under the assumption that a virtual cathode is formed. Therefore,
together with what we have obtained in the last subsection, there are totally three possible
states for each value of Jin in the region of 1 < Jin/JSCL(D/2) < 2. They are marked by (a),
(b), and (c), respectively, in Figure 8, which is a replot of Figure 4 by adding the fact that the
potential of the virtual cathode is always −V0 for steady states. These three states (a, b, and
c) will be considered in more detail in the next subsection.
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As we have shown in the last subsection, we can use the electric field to calcu-
late the total charge (per unit area) in the gap based on Gauss’ law. Since the cur-
rent amplitudes on both sides of zp satisfy the space-charge-limited conditions, using
Equations (24), (61) and (62), we can write

Q = −4
3

V0

d

(
1

z′p
+

1
D′ − z′p

)
= −4

3
V0

D/2
D′

2

(
1

z′p
+

1
D′ − z′p

)
=

Q0

2

(
1

zp/D
+

1
1 − zp/D

)
(68)
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where Q0 is defined by Equation (56). As to the transit times, the satisfaction of space-
charge-limited condition in both regions allows us to use Equation (30) for the transmitted
and reflected electrons, respectively,

tTOF(transmitted) =
3D
v0

(69)

tTOF(re f lected) =
6zp

v0
(70)

It is seen from Equation (69) that the transit time of the transmitted electrons does not
depend on where the virtual cathode is.

3.3. Stable State and Unstable State

To compare the different states marked by (a), (b), and (c) in Figure 8, we consider the
situation that the amplitude of the injected beam current density (|Jin|) increases slowly
from zero. Here, “slowly” means that a steady state is always maintained in the process.
Then, as |Jin| is increased, the value of the minimum potential in the gap (ϕp) decreases
continuously until it reaches −0.75V0 at Jin = 2JSCL(D/2), along the pass marked by (a)
in Figure 8. Up to this point, no virtual cathode appeared in the gap, and the electron
beam was 100% transmitted. From here, however, if the injected beam current is further
increased, there exists only one solution, as can be seen in Figure 8 for Jin/JSCL(D/2) > 2,
which is marked by (d). This is the state we have described in Section 3.2.

The above description implies a significant phenomenon, which leads to the following
parameter jumps (discontinuous variations) when the injected beam current crosses the
line of Jin = 2JSCL(D/2), represented by the thick line in Figure 8:

• Minimum potential (ϕp/V0): −0.75 → −1 (Figure 8);
• Position of minimum potential (zp/D): 0.5 → ~ 0.26 (Figure 6);
• Reflected beam current ratio (Jre/Jin): 0 → ~ 0.77 (Figure 7);
• Transmitted beam current ratio (Jtr/Jin): 1 → ~ 0.23 (Figure 7).

Therefore, when the injected beam current exceeds the space-charge-limited current of
the drifting space, the virtual cathode formation is accompanied by sudden changes in the
major parameters, at least from the steady-state point of view.

As for the states marked by (b) and (c) in Figure 8, they are just different mathematical
solutions that satisfy the model described in Sections 3.1 and 3.2. These states are never
reached in the process of the current rise, as seen above. In addition, these states are
physically different from those marked by (a) as explained below.

The three states, represented by (a), (b), and (c) in Figure 8, are schematically illustrated
in Figure 9.
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In state (a), the electron beam is 100% transmitted. The potential is higher than that
of state (b), indicating a relatively high electron velocity and low electron number density.
In this state, a slight increase in the beam current leads to a lower minimum potential
(higher in the absolute value of its amplitude). The enhancement of the space-charge effect
tends to suppress the beam current and hence stabilize the system. Therefore, state (a) is a
stable state.

In state (b), the electron beam is also 100% transmitted. However, compared with state
(a) for the same value of Jin, the potential minimum ϕp is lower, which leads to relatively
low electron kinetic energy and high electron number density. In this state, a slight increase
in the beam current leads to a higher minimum potential (lower in the absolute value of its
amplitude). The weakening of the space-charge effect tends to further enhance the beam
current and hence destabilize the system. Therefore, stage (b) is an unstable state.

In state (c), a virtual cathode is formed where a fraction of the electron beam is
reflected. The ratio of the reflected beam current to the injected beam current can be found
mathematically, as described in Section 3.2, by using the condition that the minimum
potential equals −V0. However, there is no physical mechanism that enforces this balance
between the current ratio and the potential distribution. For example, a slight increase
in the minimum potential (decrease in its absolute amplitude) may cause an increase in
the electron kinetic energy, which leads to a higher ratio of the transmitted beam current.
As a result, the number of electrons, the space charge of which forms the virtual cathode,
decreases, leading to a further decrease in the virtual cathode amplitude. Therefore, state
(c) is not a stable state either. In fact, from this point of view, no virtual cathode is stable,
including those in the region of Jin/JSLC(D/2) > 2. This is the physical explanation for the
so-called virtual cathode oscillation [27–33], which is beyond the scope of this article.

Finally, we compare the total charge (per unit area) in the gap. Equations (55) and (68)
are plotted in Figure 10, where ϕ′

p and zp/D have been replaced by Jin/JSCL(D/2) using
(49) and (65), respectively. From Figure 10, we can see that state (c) has the highest total
electron number, and state (a) has the lowest one. Based on the fact that, in a steady state, all
electrons enter or exit the gap with exactly the same kinetic energy, we can tell that state (c)
possesses the highest internal energy and state (a) has the lowest value. Since the electrical
potential is formed by the electron beam itself, it is natural to imagine that the electrons may
rearrange themselves so that they possess less total energy, while it is difficult to anticipate
that the opposite behavior might occur. Therefore, even if, for some reason, state (b) or state
(c) is temporarily observed, it tends to decay by lowering its potential barrier and releasing
some of the stagnated electrons and shift to state (a).
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Therefore, the conclusion is that, although we have found three possible states (a), (b),
and (c) in the parameter range of 1 < Jin/JSLC(D/2) < 2, only state (a) is stable. Although the
discontinuity between state (a) and state (d) mains a problem, which can only be dealt with
by using transient theories, they cover the whole axis of Jin. In other words, for any injected
beam current density, we can find a steady-state solution for the electron beam, whether it
can pass through the gap completely or it is partially reflected by the virtual cathode.

4. An Acceleration Gap and a Drifting Space

We have considered an acceleration gap in Section 2 and a drifting space in Section 3.
In this section, we put them next to each other. We consider only the ideal case, where
the boundary between two regions is assumed to be 100% transparent to the electrons,
which means the beam electrons neither lose their number nor their energy when crossing
the boundary.

4.1. When the Drifting Space Is Relatively Narrow

In case the width of the drifting space is relatively small so that all electrons injected
from the acceleration gap can pass through the drifting space and arrive at the other side, as
shown schematically in Figure 11, nothing has changed from the explanations in Sections 2.1
and 3.1. According to Equation (52), the limit on the width of the drifting space is

Jin
JSCL(D/2)

=

(
D
2d

)2
≤ 2 (71)

or
D ≤ 2

√
2d ≈ 2.83d (72)
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Using Equation (71), Figure 4 is plotted again in Figure 12 in order to show the
dependence of the minimum potential on the width of the drifting space. Based on the
discussions of Section 3.3, we understand that only the region of −3/4 < ϕp/V0 < 0 is
practically meaningful, in which we have 0 < D < 2.83d.
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4.2. When the Drifting Space Is Wider Than the Critical Limit

In case the width of the drifting space is wider than the critical limit, which is given by
Equation (72), a virtual cathode is formed in the drifting space, which reflects part of the
electron beam back to the acceleration gap, as shown in Figure 13. Here, the acceleration
gap is no longer an independent electron beam source because the space charge of the
reflected electron beam will affect the current of the injected beam.
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Under the assumption that the boundary plane (anode) separating two regions is 100%
transparent, the sum of the current amplitudes of leftward-going and rightward-going
beams is expected to be the same on both sides of the anode between the cathode and
virtual cathode. Therefore, since both regions satisfy space-charge-limited condition, we
have

zp = d or z′p = 1 (73)

Namely, the virtual cathode–anode distance equals the cathode–anode distance. Sub-
stituting the above relation into Equations (61) and (62), we obtain

−J′ in + J′re =
4
9

(74)

−J′tr =
4
9

1

(D′ − 1)2 (75)

and then

−2J′ in = −J′ in + J′re − J′tr =
4
9

[
1 +

1

(D′ − 1)2

]
(76)
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Hence, we can express the following current ratio using distance ratio D/d:

Jin
JSCL(D/2)

=
1
8

(
D
d

)2
[

1 +
1

(D/d − 1)2

]
(77)

This relation is plotted in Figure 14. For any given value of d, when D increases, the
current ratio Jin/JSCL(D/2) also increases. It is mostly due to the decrease in |JSCL(D/2)|, al-
though the increase in Jre contributes to a mild decrease in |Jin|, according to Equation (74).
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According to Equation (70), for the reflected electrons, it takes a total time of 6d/v0
to reach the virtual cathode and then come back to the anode. Therefore, if an electron is
moving back and forth between the cathode and the virtual cathode, the period of this
oscillatory movement (which is also called reflexing) is given by

tosc(re f lexing) =
12d
v0

(78)

which corresponds to an angular frequency of

ωosc(re f lexing) =
πv0

6d
=

π

2
√

2
ωp (79)

Equations (3), (8) and (27) have been used to derive the above relation. Here, ωp is the
so-call beam plasma frequency,

ωp =

(
nbe2

mε0

)1/2

(80)

for electron density at the anode (nb).
Looking again at Figure 14, when Jin/JSCL(D/2) = 2, we have D/d ≈ 3.75. Conse-

quently, for D/d < 3.75, we should have Jin/JSCL(D/2) < 2, which means that, according to
Equation (51), the injected current density is lower than the space-charge-limited current
of the drifting space. In other words, when D/d < 3.75, the state of the virtual cathode is
represented by (c) in Figure 8, which is an unstable state as discussed in Section 3.3.

Therefore, for D ≤ 2.83d, we have steady-state electron flow without reflection, which
is represented by state (a) in Figure 8. For D > 3.75d, on the other hand, we have a steady-
state solution for the virtual cathode formation in the drifting space, which is represented
by state (d) in Figure 8. There is a gap in between which is expressed by

2
√

2 < D/d < 3.75 (81)

For any value of D/d that falls into this gap, there is no possible steady state for
complete beam transmission because, in that case, the current would be above the space-
charge-limited current of the drifting space. However, in the steady-state virtual cathode
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model shown in Figure 13, a reflected beam is returned to the acceleration gap, which
reduces the injected beam current to a level beneath the space-charge-limited current of the
drifting space. This reduced incoming beam tends to pass the drifting space through the
transition from state (c) to state (a) of Figure 8, which would cease electron beam reflection
in the drifting space. Without the reflected beam, the acceleration gap would inject an
electron beam of current amplitude higher than the space-charge-limited current of the
drifting space. The above description is clearly a time-dependent process, of which the
details are out of the scope of this article. However, it has been made clear that, from the
steady-state point of view, we cannot find a stable virtual cathode in the parameter range
of Equation (81).

Therefore, when D/d increases slowly from zero, all electrons pass through the drifting
space at the beginning. As shown in Figure 15, the minimum potential decreases while
staying at the center of the drifting space until D/d reaches ~ 2.83, which is the critical
value for complete beam transmission. After this point, a virtual cathode tries to appear
somewhere in the drifting space and reflect part of the electron beam back to the acceleration
gap. But this situation is not sustainable, as explained above unless D/d exceeds 3.75, which,
according to Figure 14, is the condition for Jin/JSCL(D/2) > 2 even when the effect of the
reflected beam on the acceleration gap is taken into account.
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5. Summary

In this review article, the space-charge effect of electron beams is studied by using one-
dimensional steady-state models. Starting from an acceleration gap where electrons with
zero initial kinetic energy are accelerated by a constant voltage, the space-charge-limited
current has been obtained for both non-relativistic and relativistic cases.

The electron beam transportation through a drifting space is studied for situations
with and without virtual cathode formation. An overlap is observed for these two situations
of which the one without a virtual cathode is considered to be stable. The virtual cathode
formation with injected beam current under space-charge-limited current is considered to
be unstable from the steady-state point of view.

When an acceleration gap and a drifting space are connected with each other so
that electrons can freely move from one region to another, the electron beam reflected
by the virtual cathode in the drifting space can enter the acceleration gap, resulting in
reduced injected-beam current due to its space-charge effect. In this situation, there exists a
parameter range in which neither can the electron beam injected by the acceleration gap pass
the drifting space without reflection, nor can it sustain a stable virtual cathode by exceeding
the space-charge-limited current of the drifting space even when reflection occurs.
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