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Abstract: Many hybrid simulations of Hall thrusters, where electrons and ions are solved using
hydrodynamics and particle-in-cell methods, respectively, assume that the ionized gas is quasi-
neutral everywhere in the computational domain and apply so-called thin-sheath approximations
to account for space-charge effects near solid boundaries. These approximations do not hold along
boundaries near the exit of the thruster or in the near plume regions, where the plasma conditions
can lead to Debye lengths on the order of or higher than the local grid resolution. We present a
numerical scheme that fully resolves the conditions of the ionized gas in space-charge regions of
any thickness and that is coupled consistently to a global hybrid simulation of Hall thrusters. We
verify the numerical results with the closed-form solution for a Langmuir sheath in a simplified
one-dimensional example, and then again in simulations where the model is integrated in a 2D
multifluid/PIC axial–radial code called Hall2De. The new capability to resolve numerically large
sheaths around solid boundaries in Hall thrusters allows for significantly more accurate assessments
of ion sputtering, thus improving thruster lifetime predictions.

Keywords: Hall thrusters; sheath; numerical methods

1. Introduction

Numerical simulations of the partially ionized gas in a Hall thruster often make use
of either a fluid [1] or a hybrid approach [2–9] to model the charged species. In both
approaches, the electrons are modeled using hydrodynamics equations in the presence of a
magnetic and electric field. However, in the former, ions are also modeled hydrodynami-
cally, whereas in the latter, they are tracked using the particle-in-cell (PIC) method. The
grid size in the computational domain is chosen such that the gradients in plasma potential,
plasma density, and electron temperature can be resolved in the region of the thruster where
most of the acceleration of the ions occurs. The typical length of this acceleration region in
a Hall thruster is a few millimeters, and thus the cell size in these simulations is a fraction
of a millimeter in the most refined regions. Smaller length scales, such as the Debye length,
do not need to be resolved in these simulations, and plasma quasi-neutrality is assumed
everywhere in the computational domain. Boundary conditions in the presence of insulator
or conductor walls are imposed using the infinitesimal sheath approximation derived from
the one-dimensional solution of the Langmuir sheath [10,11]. This model is accurate in
most parts of the acceleration channel since the relatively high plasma density (typically
in the order of 1019 particles per m3, see Figure 1) and low electron temperatures (5–10 eV
or even lower in magnetically shielded thrusters) lead to Debye lengths of the order of
micrometers. Thus, regions in which the quasi-neutrality assumption is not applicable
(i.e., space-charge regions) are much smaller than the typical cell size in the simulation.
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Figure 1. Plasma properties (plasma potential, electron temperature, plasma density, Debye length) in
the acceleration channel and region near the pole covers of a 12.5-kW magnetically shielded thruster
operating at 600 V and 20.8 A.

With the development of magnetic shielding [12,13], a method that protects the dis-
charge chamber from ion sputtering, the magnetic field lines that graze the channel walls
of a Hall thruster are now designed to carry only cold electrons (1–5 eV). Though magnetic
shielding has practically eliminated channel erosion as the main life-limiting process in
these thrusters, subsequent experiments [14] and numerical simulations [15–17] have also
revealed minor but measurable erosion along the downstream magnetic pole surfaces
facing the plume. It was found that the maximum erosion rates at the downstream face
rarely exceed 0.1 mm/kh and, as a result, thin pole covers made of low sputtering materials
(like graphite) would be sufficient in protecting the poles in long duration space missions.

Assessments of thruster lifetime through numerical simulations play an important role
in the flight qualification of Hall thrusters, owing to the increased costs of long duration
wear tests. These lifetime predictions rely on accurate modeling of the plasma conditions
around critical surfaces like pole covers, which can vary significantly compared to those
in the interior of the thruster. First, the electron temperature is higher than in the channel
interior as the magnetic shielding topology pushes the maximum electron temperature
outside of the acceleration channel. Second, the plasma densities are lower due to the
expansion and acceleration of the ions downstream of the acceleration region. Consequently,
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the Debye length, λDe =
√

ε0Te/qene, where ε0 is the vacuum permittivity, Te is the electron
temperature, qe the electron change, and ne the plasma density, can grow to the order of a
millimeter, becoming comparable to the local size of the grid on which the global system
of equations for the plasma is discretized and solved. In these situations, the infinitesimal
sheath theory is not applicable, and a different modeling approach is required. In Figure 1,
we depict the electron temperature, plasma density, and Debye length from simulations of a
12.5-kW magnetically shielded Hall thruster operating with a discharge current and voltage
of 20.8 A and 600 V, respectively. The simulations were performed in 2D axial–radial
geometry, with the axial direction defined as left to right in Figure 1; the radial direction is
from bottom to top.

Typically, non-quasineutral conditions must be solved using kinetic approaches in
which ions and electrons are described by macro-particles and Poisson’s equation is solved
to compute the plasma potential (e.g., [18–20] and others). Another method consists of
accounting for successive moments of Boltzmann’s equation for the electrons and/or
ions [21,22] without assuming quasi-neutrality of the plasma, also allowing for a more
generalized description of the distribution functions of the species in the plasma than in the
fluid approximation. These methods are computationally costly and can only be applied to
simplified descriptions of the Hall thruster geometry that do not capture geometrical details
such as the exact position of the pole covers. In this article, we present a novel approach
to resolve the conditions inside the space-charge regions along the wall boundaries. The
algorithm has also been fully integrated in 2D hybrid Hall thruster simulations. Section 2
presents the grid refinement strategy that must be performed in regions of large Debye
length such that, locally, the grid size is sufficient to resolve the sheath. Section 3 describes
the solution of Poisson’s equation for the plasma potential in the region of interest. In
Section 4, we illustrate how the motion of the ion particles in the refined regions is informed
by the solution of Poisson’s equation. In Section 5, we provide a comparison between
the closed-form and numerical solutions of a one-dimensional sheath and also include
similar comparisons for simulations performed with the 2D (axial–radial) axisymmetric
code Hall2De [1,17]. Section 6 provides concluding remarks.

2. Grid Refinement for the Resolution of the Space-Charge Regions

Hall2De employs a magnetic-field-aligned mesh (MFAM) to solve electron fluid equa-
tions. The advantage of the MFAM approach is that it limits numerical diffusion in the
electron momentum and energy equations that would otherwise be caused by the highly
anisotropic transport coefficients in the parallel and perpendicular directions of the applied
magnetic field. The equations of motion for the ions and neutrals can be solved on a
rectilinear grid since these particles are not magnetized. As we mentioned in Section 1 the
typical size of a grid element or “cell” is in the order of millimeters to tenths of millimeters.
Resolving a sheath near the thruster walls requires higher resolution, even when the Debye
length approaches that typical cell size. In Figure 2, we depict the refined grid in the
neighborhood of the outer pole cover. Each coarse, rectilinear cell has been refined by a
factor of 144 (with 12 partitions in each direction). Notice that this brings the typical cell
size in the refined region to 5 × 10−5 m. Since the potential to electron temperature ratio,
φ/Te, is large (~20 based on the plasma parameters in Figure 1) in the region highlighted in
Figure 2, the sheath width can span 5 to 10 times the Debye length (~10−3 m) according to
the solution to Poisson’s equation for a 1-D sheath [11]. Thus, the refined cell size chosen
here provides enough resolution for the sheath in this region. On the other hand, even
though we also refine the first cell adjacent to any wall boundary, the refined cell size in the
interior of the channel is still at least an order of magnitude larger than the Debye length,
which establishes the validity of the infinitesimal sheath approximation inside the channel.
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Figure 2. The refined grid in the vicinity of the channel exit and outer pole cover. Red circle highlights
this region with respect to the complete grid.

In this implementation, grid refinement is performed at the time the code is initialized,
and cells to be refined are flagged based on distance to the nearest wall. The level of
refinement was chosen based on the Debye lengths computed in a previous simulation
with only the coarse grid. We anticipate that the refinement algorithm may in the future be
supplemented with an adaptive model that can refine regions in the computational domain
based, for instance, on the magnitude of the gradients of the plasma properties and also
provide refinement levels that vary based on the local Debye length at runtime. We limit
the application of the refined grid only to the solution of Poisson’s equation (Section 3),
thus limiting the increased computational cost associated with a larger number of cells to a
single equation.

3. Algorithm for the Solution of Poisson’s Equation

In [23], we proposed a method that employed Poisson’s equation to complement the
electron fluid equations for space charge regions. The same method is implemented here,
with the distinction that it now makes use of the refined grid presented in Section 2. Without
the appropriate mesh refinement, Poisson’s equation cannot resolve the potential gradient
inside the sheath. At each computational time-step, the solution to the global governing
equations of Hall2De [1] for the neutral particle motion, electron temperature, and plasma
potential is advanced. The ion motion in the refined regions is determined using the PIC
algorithm that will be described in Section 4. Poisson’s equation reads as follows:

∇2φsc = −
qe

ε0

(
3

∑
i=1

ini − ne

)
(1)

where φsc is the space charge potential and n is the number density, with subscript i
referring to the charge state (up to 3) of the ions and e to the electrons. In order to determine
the electron number density in the space-charge region, it is necessary to make some
assumptions about the energy distribution function of the electrons in the sheath. While
kinetic theory descriptions of the electron distribution function in the sheath (e.g., [24,25])
are available in the literature, their implementation within our framework is not straight-
forward. On the other hand, the classical assumption that the electrons follow Maxwellian
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distribution in an electron repelling sheath [10,11] is easy to implement and consistent with
the use of the generalized form of Ohm’s law to compute the fluid potential in Hall2De [1].
Using this assumption yields the well-known Boltzmann relation:

ne = ne,0exp
(

φsc − φ0

Te,0

)
(2)

where ne,0, Te,0, and φ0 are tehe values of the plasma density, electron temperature (in
electronvolts), and potential, respectively, at the intersection of the edge of the sheath with
a magnetic field line drawn from the point at which ne is being evaluated. Since the location
of the sheath edge cannot be know a priori, we can take advantage of some of the known
properties of magnetized electrons along magnetic field lines in Hall thruster discharges
to determine the values of ne,0, Te,0, and φ0. Due to the higher (by approximately the Hall
parameter squared) conductivity of the plasma in the direction parallel to the magnetic
field, the electron temperature is approximately constant along magnetic field lines (see
for example results in [1] and experimental evidence in [26,27]), and thus Te,0 = Te. In
addition, along magnetic field lines, and following the derivation in [1] where the inertia of
the electrons is neglected, Ohm’s law may be expressed as the following:

−∇//φ = η je// −
Te

ne
∇//ne (3)

with ∇// denoting the gradient along magnetic field lines, η the resistivity, and je// the
electron current density along magnetic field lines. The resistive term can be neglected since
the resistivity along magnetic field lines is very low; hence, the fluid approximation along
magnetic field lines yields the Boltzmann relation for the electrons and the unknown values
at the edge of the sheath can be related for convenience to the fluid values of the plasma
density ne,F and fluid potential φF in the location at which the space charge potential is
being evaluated:

ne,F = ne,0exp
(

φF − φ0

Te

)
(4)

with ne,F =
3
∑

i=1
ini as dictated by the quasi-neutrality assumption that is built into the

fluid model. Combining the latter expression with Equation (2), the space charge density
becomes the following

ne = ne,Fexp
(

φsc − φF
Te

)
(5)

Numerical tests performed using this assumed relation for the electrons led to non-
monotone values of the plasma potential in the sheath. For instance, negative values of
the plasma potential were obtained when the walls were grounded. This occurred because
Equation (5) does not account for the fact the plasma potential will ultimately deplete
the sheath of all the electrons with lower energies than the wall potential, a limitation of
assuming Maxwellian electrons. In this situation, the electrons adopt a truncated Boltzmann
relation in which no electrons whose energy is lower than the minimum wall potential φw
at the boundaries of the computational domain are allowed [28]:

ne = ne,F

[
exp
(

φsc − φF
Te

)
− exp

(
φw − φF

Te

)]
(6)

Equation (1), using Equation (6) for the electron number density, is then solved at each
cell center using an implicit-linearized approach. The fully implicit system of equations
that determines the space-charge plasma potential at each cell k reads as follows:

∇2
kφt+∆t

sc = −
qene,F,k

ε0

[
1− exp

(
φt+∆t

sc,k − φF,k

Te,k

)
+ exp

(
φw − φF,k

Te,k

)]
(7)
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ne,F,k, φF,k, and Te,k are known values evaluated at the center of cell k that come from
the solution of the fluid equations in Hall2De [1]. These variables are updated by the
fluid model in HallDe [1] at each time-step, but we have omitted the time superscript for
them since they are not being updated when solving Equation (7). By the method of finite
volumes, the discretized linear Laplacian operator ∇2

k can be written as follows:

∇2
k f =

1
Vk

nedg,k

∑
e=1

fke − fk

|rke − rk|2
(rke − rk)·n̂e Ae (8)

In Equation (8), Vk is the cell volume, nedg is the number of edges that form the contour
of the cell, fke is the value of the variable at the cell adjacent to k and separated by edge e, rk
and rke are the location of the cell center for cell k and the adjacent cell ke, n̂e is the normal
vector of edge e pointing outwards from cell k, and Ae is the surface area of the edge. We
also omitted in Equation (7) the temporal superscripts for the variables that are determined
in the solution of the fluid equations. Equation (7) is non-linear and hence its solution
requires an iterative process such as Newton–Raphson. A Taylor series linearization of the
exponential term centered at the solution of the previous time-step, as follows:

exp

(
φt+∆t

sc,k − φF,k

Te,k

)
≈ exp

(
φt

sc,k − φF,k

Te,k

)(
1 +

φt+∆t
sc,k − φt

sc,k

Te,k

)
(9)

allows us to transform Equation (7) so it can be solved without iterations:

∇2
kφt+∆t

sc − qene,F
ε0

exp
(

φt
sc,k−φF,k

Te,k

)
φt+∆t

sc,k

= − qene,F
ε0

[
1− exp

(
φt

sc,k−φF,k
Te,k

)(
1− φt

sc,k
Te,k

)
+ exp

(
φw−φF,k

Te,k

)] (10)

We note that Equation (10) is solved in the whole computational domain and not
only in the refined regions. In locations where the Debye length is small and far from the
boundaries, the solution of Equation (10) naturally converges to φt+∆t

sc = φF,k. Boundary
conditions are imposed at the walls as follows. For electrically conducting boundaries,
the potential of the conductor φej is specified as the value of a ghost cell adjacent to the
boundary cell j. For insulating boundaries, the potential must satisfy je = ji at the wall,
where ji is the ion current density and is readily computed from the flux of ion particles
leaving the computational domain at each boundary edge. The electron current density at
the wall represented by the boundary edge of cell j can be approximated as follows:

je,ek = qene,0

√
qeTe,j

2πme
exp

(
−

φej − φ0
Te,j

)
= qene,F,j

√
qeTe,j

2πme
exp

(
−

φej − φF,j

Te,j

)
(11)

where we have again used the Boltzmann relation (4) to relate the plasma properties at the
edge of the sheath (ne,0, φ0) to those at the cell j adjacent to the edge (ne,F,j, φF,j). Enforcing
je = ji while also accounting for secondary electron emission through the secondary electron
yield Ye, φej can be determined from the following:

ji,ej = (1−Ye(Te,j))qene,F,j

√
qeTe,j

2πme
exp

(
−

φej − φF,j

Te,j

)
(12)

4. Ion Motion in the Presence of Thick Sheaths

Ion motion is modeled with the PIC method. Since ions are unmagnetized, they follow
the electric field that is computed from the space-charge potential field Esc = −∇φsc. We
note here again that the solution for φsc described in the previous section converges to the
fluid-computed potential φF in most of the computational domain and only diverges away
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from it near the walls when the Debye length is sufficiently large. Thus, the ion particle
push at each time-step is performed using the following:

ut+∆t = ut +
qi
mi

Et
sc∆t (13)

rt+∆t = rt +
∆t
2

(
ut+∆t + ut

)
(14)

where u and r are the velocity and position of each ion macro-particle, respectively, and Esc
is computed using bilinear interpolation from the values stored at the vertices of the grid to
the particle location inside a cell. The ion charge and mass are qi and mi, respectively. The
time-step for the particle push is limited by the Courant condition:

∆tmax = minp

V1/3
k,p∣∣up
∣∣
 (15)

where p is an index for all the particles in the computational domain, up is the particle
velocity, and Vk,p is the volume of the cell k where p is located at a given time-step. ∆tmax
is therefore much smaller in a simulation with refined regions than in a simulation that
only uses the coarse grid. To avoid the excessive computational cost of smaller time-steps,
particles in the refined regions are flagged, and thus two Courant conditions are computed,
∆tmax,coarse and ∆tmax,re f ined. Then, we compute the ratio:

R∆t = ceiling

(
∆tmax,coarse

∆tmax,re f ined

)
(16)

where R∆t is the nearest integer larger than the ratio of the two Courant conditions. At
each global time-step (that is, time-steps for particles in the coarse grid), particles in the
refined grid undergo R∆t time-steps with ∆tre f ined = ∆tcoarse

r∆t
. Particles that were in the

coarse region and transitioned to the refined region during any given time-step are flagged
and returned to their starting position and velocity at the beginning of the time-step. Then,
they are pushed again using the time-stepping scheme of the refined region. Since the
refined regions are relatively small and close to the boundaries, the fraction of particles
that are subject to the smaller time-steps is rather small, approximately 4 to 5% of the total
number of particles present at a given time-step in a typical simulation.

5. Results
5.1. Verification in One Dimension (1-D)

We first tested the model described in the previous sections using a simplified 1-D
simulation. We constructed a computational domain with an electrically conducting wall
grounded to 0 V on the left side and an inflow of ions on the right side. The electron
fluid equations were not solved. Instead, the values of the electron temperature (Te = 5 eV)
and plasma potential (φF = 300 V) at the edge of the sheath were specified as inputs.
Singly-charged xenon ions were injected into the computational domain from the right
with velocity ui = 3820 m/s and at a rate that produced a plasma density at the edge of the
sheath of ne = 3 × 1016 m−3, which yields λDe = 9.6 × 10−5 m. The space-charge potential
at the right boundary is set to 300 V. Ions that reach the left boundary are removed from
the simulation. In this setup, ions are accelerated by the space-charge electric field as
derived from Equation (10). The computational domain spanned 25λDe and had 120 cells,
so each cell had a length of 2 × 10−5 m. The average number of PIC particles per cell
was 100. Steady state was reached in a time ∼ 20 λDe√

2qeφF
mi

, where mi is the ion mass. In

Figure 3, the steady-state space-charge potential (Equation (7)) from the 1-D numerical test
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is compared to the solution of the ordinary differential equation for a one-dimensional
Langmuir sheath [11]:

dχ

dξ
=

√√√√4M0

(√
1 +

ξ

M0
− 1

)
+ 2(exp(−ξ)− 1) (17)

with χ = ∆φsh−φ
Te

, ξ = x
λDe

, M0 =
miu2

i
2qeTe

, and x denoting the axial dimension. ∆φsh is the
potential drop in the sheath (300 V in this case). We solved Equation (17) numerically using
a fourth order Runge–Kutta scheme. As shown in Figure 3, the numerical and closed-form
solutions agree remarkably well, with ||φsc − φth||/||φth|| = 0.017, where the subscripts “sc”
and “th” refer to the numerical and closed-form potentials, respectively.
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5.2. 2D Numerical Simulations with the Axial–Radial Code Hall2De

In this section, we report the results of 2D axisymmetric Hall thruster simulations
where the space-charge model has been fully integrated in Hall2De. The simulations are of
a 12.5-kW magnetically shielded thruster operating with discharge current and voltage of
20.8 A and 600 V, respectively. Further details on Hall2De simulations, such as a description
of the computational domain, boundary conditions, and physics models for neutrals, ions,
and electrons, can be found in [1,17]. Figure 4 depicts the simulation results near the outer
pole cover, with the fluid plasma potential and infinitesimal-sheath boundary conditions
on the left and the space-charge potential on the right. As expected, most of the differences
between the two contour plots are found around the pole cover surface, which is biased to
0 V. Thus, a finite sheath develops that is especially visible near the lateral surface at the
inner diameter of the cover, that is, the part of the cover facing the acceleration channel.
In this region, the potential transitions from almost 600 V to 0 V at the walls, with the
Debye length being approximately 10−4 m. Here, the infinitesimal-sheath approximation
is clearly not accurate and could lead to errors in erosion predictions as we will discuss
later. As we move away from the lateral surface towards the outer diameter of the cover,
the space charge and fluid solutions progressively converge as the fluid potential becomes
closer to the wall potential of 0 V. Because the new space-charge algorithm resolves the
spatial extent of the sheath from the boundaries, we shall also use the term “finite-sheath
solution” hereinafter when discussing the solution from this new algorithm. We also note
that there are no regions in which the fluid potential 0 = φw > φ is less than zero. Thus,
the truncation term in Equation (6), which was implemented due to the limitations of a
Maxwellian description of the electrons, has a negligible effect in this simulation.
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Figure 4. Computed potential contours around the outer pole cover from a Hall2De simulation of a
magnetically shielded thruster at 600 V and 20.8 A, with (left) infinitesimal-sheath solution at the
boundaries, (right) space-charge solution with grid refinement around the boundaries.

Similar conclusions can be drawn from the comparisons between the fluid and space-
charge potentials at the inner pole (Figure 5). Here, the computed plasma potential from
the hydrodynamic solution with infinitesimal-sheath boundary conditions at the outer
diameter of the pole cover, the side facing the acceleration channel, is lower than that at the
outer pole cover. Since the potential drop in the sheath is lower, the differences between
the finite-sheath and infinite-sheath models are not as acute as in the vicinity of the inner
diameter of the outer pole cover.
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Figure 5. Plasma potential contours around the inner pole cover in a Hall2De simulation for magneti-
cally shielded thruster at 600 V and 20.8 A, with (left) no space-charge solution, (right) space-charge
solution.

Around the dielectric channel walls of the thruster, the infinitesimal-sheath and space-
charge solutions are the same. Since the thruster is magnetically shielded, the temperatures
at the wall are in the order of 2–3 eV, leading to very small potential gradients in the sheath
from Equation (12). Second, the Debye length in the channel is very small (Figure 1) and
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thus the refined grid cannot resolve the sheath. Thus, the infinitesimal sheath assumption
in the channel is correct and the space-charge model does not improve the overall solution
of the potential near the dielectric walls.

In Figure 6, we compare the space-charge solution along a radial cross-section that
intersects the mid-point of the lateral surface at the inner diameter of the outer pole cover
(see dashed black line in Figure 4) with the closed-form solution given by Equation (17).
Parameters for the closed-form solution were obtained directly from the Hall2De solution
at the edge of the sheath (~2.1 mm from the wall in Figure 4) and are ne = 5.68 × 1016,
Te = 2.19 eV, ϕ = 598 V, ui = 4500 m/s, and λDe = 4.67 × 10−5 m. As in the 1-D test case, the
two solutions agree remarkably well.
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Figure 6. Comparison between the closed-form solution for the space-charge potential (Equation (17))
and the computed values from the Hall2De simulation along a radial cross-section that intersects the
mid-point of the lateral surface of the outer pole cover.

We conclude this section with a discussion on the effects the space-charge potential
on erosion predictions for the pole covers. Figure 7 shows the computed erosion rates on
the graphite outer pole cover for the 12.5-kW magnetically shielded Hall thruster at 600 V
and 20.8 A. The normalized coordinate employed in the x-axis refers to the location along a
line that follows the contour of the outer pole cover at constant azimuth angle, with 0 and
1 being the locations nearest and furthest from the acceleration channel, respectively. The
model for computing ion sputtering of these graphite surfaces has been described in [29]. As
expected by the visual examination of the finite- and infinitesimal-sheath solutions for the
potential in Figure 4, the largest differences in predicted erosion occur at the lateral surface
of the inner diameter (region 1 in Figure 7), where the finite-sheath model predicts erosion
rates that are larger by an order of magnitude. The finite-sheath model also predicts larger
erosion rates at the mid-point of the pole cover (region 3). To further elucidate these results,
we depict in Figure 8 the current density and average energy of the ions sputtering the
cover. At the inner diameter, the average energy of the ions is very similar in both models.
This is expected as the energy of the ions is dominated by the drop in potential across the
sheath. In the finite-sheath model, the ions gain energy as they traverse the sheath that is
resolved within the computational domain, while in the infinitesimal-sheath model, the
energy gained by the ions in the sheath is added after the particle exits the computational
domain. However, in both cases, the energy gained by the ions is approximately the same
(~600 V). On the other hand, the flux of ions towards the inner diameter of the pole is
larger by an order of magnitude in the finite-sheath model, accounting for the difference
in erosion rates between the two models. The finite-sheath model moves the edge of the
sheath from the boundary of the computational domain to approximately 2 mm away from
it (see Figure 6). As such, ions as far as 2 mm away are subject to a plasma potential that
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attracts them towards the lateral surface of the cover. In the infinitesimal-sheath model,
there is no plasma potential gradient that extends into the computational domain and,
consequently, fewer ions move towards the cover surface. The difference in erosion at the
mid-point step (region 3) is due to a combination of the larger current density and energy
of the ions sputtering in this region. As shown in Figure 4, the potential contours in the
finite-sheath model are different from those of the infinitesimal-sheath model in the vicinity
of the inner diameter in region 2. The finite-sheath solution leads to potential contours that
are approximately parallel to the step surface, while the contours in the infinitesimal-sheath
solution are at an angle. This results in more high-energy ions moving radially towards the
mid-point step in the finite-sheath solution.
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Figure 7. Comparison of erosion rates along the outer pole cover from 2D simulations with the
finite-sheath and infinitesimal-sheath models. Dashed-dotted lines denote transitions in orientation
of the pole cover surfaces (refer to numbers 1–4 in contour plot).

Plasma 2023, 6, FOR PEER REVIEW  12 
 

 

. 

Figure 6. Comparison between the closed-form solution for the space-charge potential (Equation 

(17)) and the computed values from the Hall2De simulation along a radial cross-section that inter-

sects the mid-point of the lateral surface of the outer pole cover. 

 

Figure 7. Comparison of erosion rates along the outer pole cover from 2D simulations with the finite-

sheath and infinitesimal-sheath models. Dashed-dotted lines denote transitions in orientation of the 

pole cover surfaces (refer to numbers 1–4 in contour plot). 

  

0

100

200

300

400

500

600

700

0 1 2 3 4
φ

(V
)

Distance from wall (mm)

Simulation

Closed-form solution

0.1

1

10

100

1000

0 0.2 0.4 0.6 0.8 1

E
ro

si
o

n
 r

at
e 

(µ
m

/k
h

)

Normalized coordinate

Finite sheath

Infinitesimal sheath

2 

1 

3 

4 

1 2 3 4 

0.001

0.01

0.1

1

10

0 0.2 0.4 0.6 0.8 1

C
u

rr
en

t 
d

en
si

ty
 (

A
/m

2
)

Normalized coordinate

Finite sheath

Infinitesimal sheath

0

100

200

300

400

500

600

700

800

0 0.2 0.4 0.6 0.8 1

A
v
er

ag
e 

io
n
 e

n
er

g
y

 (
eV

)

Normalized coordinate

Finite sheath

Infinitesimal sheath

4 

1 2 3 4 2 1 3 

Figure 8. Comparison of the ion current density (left) and average ion energy (right) along the outer
pole cover from simulations with the finite- and infinitesimal-sheath models. Dashed-dotted lines
denote transitions in orientation of the pole cover surfaces (refer to numbers 1–4 in Figure 7).

6. Conclusions

A computational capability has been developed for Hall thrusters that allows for
the self-consistent resolution of thick-sheath regions within the framework of global 2D
multifluid-PIC numerical simulations. The space charge near thruster boundaries that are
immersed in the low-density regions of the discharge can produce regions where the sheath
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thickness is much larger than the local grid resolution permitted by the global simulation.
Such regions require the direct solution of Poisson’s equation, which is normally not solved
in simulations where the electrons are modeled as a fluid. The resolution of the sheath
in these regions is critical in the assessment of Hall thruster life-limiting processes like
ion sputtering.

The space-charge algorithm developed here has been verified and then integrated into
a global hybrid simulation of Hall thrusters in 2D axial–radial domain. The computational
approach consists of (1) local grid refinement, (2) solution of Poisson’s equation in the
refined regions, and (3) solution of the equations for the ion motion using the PIC method
with special time-stepping in the refined regions. The numerical solution has been verified,
first in a separate one-dimensional simulation and then in larger-scale 2D axisymmetric
simulations. In the 2D simulations, the space-charge solver was integrated self-consistently
in the Hall2De code, a well-established simulation capability for Hall thrusters. With this
capability in the Hall2De code, we are now able to resolve sheaths around critical thruster
surfaces, like pole covers in magnetically shielded Hall thrusters, which significantly
improves the accuracy of thruster lifetime predictions.
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