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Abstract: The nonlinear excitations of ion acoustic (IA) structures in an electron beam embedded
plasma composed of Vasyliunas–Cairns (VC) distributed hot electrons has been studied. The non-
linear Schrödinger equation (NLSE) from the Kadomtsev–Petviashvili (KP) equation with suitable
transformation has been derived from rational solutions of NLSE; breathers have been studied. It has
been shown that the nonthermality and superthermality of the electrons, the electron beam density,
and the beam velocity alter the characteristics of different kinds of breathers. This investigation may
be important in interpreting the physics of nonlinear structures in the upper layer of magnetosphere.
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1. Introduction

Numerous studies have focused mainly on the investigation of different nonlinear
structures in various plasma environments during the past few decades. With a vari-
ety of experiments and computer simulations revealing the basic physical phenomena of
localized structures, evolution in the study of nonlinear phenomena appears to be accel-
erating presently. Different sorts of nonlinear homogeneous/inhomogeneous equations
are developed using various techniques to explore the study of these types of structures.
The KP equation [1], often known as an extension of the Korteweg–de Vries (KdV) equa-
tion, has been developed to explore two-dimensional solitary structures. For the case
of one-dimensional perturbations, the soliton from KdV equation is stable if the soliton
and its perturbations both are illustrated by means of KdV equation. Furthermore, the
collision of two solitons is elastic, which means that their shapes and amplitudes remain
unchanged after the impact. A one-dimensional soliton, however, may become unstable in
the presence of two-dimensional perturbations if it propagates infinitely in two directions.
The Kadomtsev–Petviashvili (KP) equation, a two-dimensional form of the KdV equation,
which was derived by Kadomtsev and Petviashvili [1], determined this issue. In that study,
it was demonstrated that the sign of wave dispersion affects the stability of KdV solitons
with reference to two-dimensional transverse perturbations. Solitons are unstable when
the wave dispersion is positive, which means that the wave frequency is monotonically
increasing as function of the wave number; however, for a stable case of soliton wave, the
frequency is monotonically decreasing and the dispersion of the wave is negative. Several
publications [2–7] have reported the derivation of the KP equation in various plasmas
to examine solitary structures. Saini et al. [3] employed the KP equation’s solution to
study the propagation properties of dust acoustic (DA) solitary waves in a superthermal
dusty plasma that consisted of ions and superthermal electrons. The combined effects of
superthermality of electrons, ions, and dust concentration on the amplitude and breadth
of DA solitary waves under transverse perturbations were investigated. Kohli et al. [5]
applied the KP equation to assess the effect of ion beam and other plasma factors on the
characteristics of DA solitary waves under transverse disturbances in a dusty plasma. They
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discovered that the variations in the values of ion density, beam density, beam velocity, and
superthermality of ions and electrons had a significant impact on the amplitude, breadth,
and energy of dust acoustic waves (DAWs). Ruderman [6] investigated the impact of trans-
verse perturbations by employing the KP equation on the stability of magnetosonic solitons
in a Hall plasma and demonstrated that fast and slow magnetosonic solitons are both
unstable in the presence of transverse disturbances. These soliton formations are the result
of the nonlinearity of medium and wave phase dispersion effects being balanced. Further,
envelope solitons (localized modulated wave packets) arise if the balance between the
wave group’s dispersion and the medium’s non-linearity is achieved, and their evolution is
controlled by the nonlinear Schrödinger equation (NLSE).

Both the nonlinear Schrödinger equation (NLSE) and the KP equation can be used
to explain the nonlinear waves in a plasma. The KP equation describes the occurrence
of a non-modulated wave, also known as the KP soliton, which is a single pulse without
any rapid oscillations throughout the packet. A modulated wave packet’s dynamics is
monitored by the NLSE. The nonlinearities in the NLSE are balanced with the wave group
dispersion, and the NLSE’s solutions exhibit a variety of nonlinear structures such as
breathers, rogue waves, and envelope solitons as a result.

The NLSE, one of the most significant physics equations, is utilized to describe a wide
range of nonlinear phenomena in diverse physical domains. The primary mechanism
of such wave production in the framework of the NLSE is modulational instability (MI),
which enables high-intensity peaks and promotes the formation and interaction of the
various nonlinear phenomena (freak waves, breathers, and Peregrine solitons). Further-
more, instability induced by a modest plane wave disturbance causes amplitudes to rise
exponentially until they entirely vanish. NLSE’s rational solution in the unstable area is a
crucial mathematical model for the different nonlinear phenomena. Different nonlinear
phenomena on a periodic background are more frequently preferable than those on a
constant background. For the NLS equation and the modified Korteweg–de Vries equa-
tion, researchers have explored various nonlinear structures such as breathers and freak
waves on the non-constant backdrop (such as the periodic background). The NLSE has
different kinds of solutions; these describe the different kinds of nonlinear structures such
as rogue waves, breather structures, envelope solitons, Peregrine soliton etc. Rogue waves
are transient waves that emerge out of nowhere and were found in the ocean. Following
that, the study of these waves was gradually expanded to other domains, such as optical
fibres, the atmosphere, capillary water waves, superfluid helium, Bose–Einstein conden-
sates, even in astronomical conditions, and more recently, laboratory plasma physics [8].
They are a violent event with a limited duration appearing out of nowhere. Their usual
height might be more than twice as high as the waves around them. There has been a lot
of interest in investigating the modulation instability of various wave modes in plasma
for breather structures. Many researchers in various types of plasma have investigated
the modulation instability and breather structures as one of the exciting and intriguing
nonlinear phenomena [8–17]. Abdikian and Ismaeel [9] explored IA breathers and rogue
waves in relativistically degenerate electron-positron plasmas and reported that the region
of MI increased with increase in temperature of ions; this implies that there were high
chances of existence of breather structures and amplitude of rogue waves decreased with
enhancement in relativistic factor. Effects of electron trapping on IA breathers and super
freak waves in degenerate quantum plasma were examined by El-Tantawy et al. [8]. They
observed that an increase in temperature of degenerate trapped species leads to an increase
in the area of MI of IA waves and decrease in amplitude of breather structures. MI of IA
waves in Cairns distributed hot ion plasma was reported by Shan et al. [10] to explore the
breather structures and it was reported that nonthermality significantly modifies the region
of MI and amplitude of nonlinear structures. Employing the Gardner equation, a broad
spectrum of nonlinear IA wave structures and their group dynamics are examined in a
negative ion plasma by Ghosh [12]. Ullah et al. [14] studied the MI of electron acoustic
waves in three component (r,q) distributed plasma. They observed that the range for area of
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MI highly fluctuated due to the presence of warm (r,q) distributed species. The comparison
of growth rate of instability for kappa and Maxwellian case was also discussed in detail by
them in their investigation. Saini and Kaur [15] investigated the propagation properties
of solitary, breather, and freak waves in a degenerate quantum plasma with spin effect.
They remarkably announced that the spin density polarization ratio drastically changes the
properties of propagation of a nonlinear wave. The progressive nonlinear development of
electron acoustic solitons into a peregrine soliton in a plasma at a fixed temperature with
quantum effects was explored by Das et al. [17]. It was announced that external forcing
term is responsible for this development and the properties of nonlinear wave structures
showed dynamical behaviour. Therefore, studying the properties of breathers in IA plasma
is highly intriguing.

The electron beam and IA waves occur side by side in space and the existence of
electron beams alters the ion acoustic waves’ characteristics in a drastic way [18,19]. Nu-
merous investigations have demonstrated that the electron beam and other physical factors
have a significant impact on the propagation properties of nonlinear waves in beam plas-
mas [20–30]. The comparison of reductive perturbation technique and pseudopotential
method to study the impact of electron beam in multi-species plasma comprising electrons,
positrons, and negative ions was reported by Moslem [20] and indicated that effective po-
tentials of both equations from these two methods agree to an identical extent. The impact
of relativistic electron beam on propagation of solitons and double layers in a two-electron
temperature plasma was explored by Sahu and Roychoudhury [22]. They discovered that
the value of relativistic and beam parameters limits the region in which solitary waves
may occur. To investigate the influence of beam parameters on nonlinear solitary and
double-layer structures, Lakhina et al. [24] evolved out a model in four-component plasma
that replicated the magnetosheath plasma and they predicted the same characteristic of
electrostatic bipolar pulse by the model as the observed ones. The energy balance equation
in superthermal plasma immersed with an electron beam was derived using the pseudopo-
tential technique by Saini and Kourakis [25], who also examined how the characteristics
of the electron beam and the superthermality of the electrons affected the development of
arbitrary amplitude IA solitary waves. Further, the impact of finite ion temperature with
beam parameters on characteristics of IA solitons in a superthermal plasma system was
reported by Saberian et al. [26]. It was reported that both polarity solitons, both supersonic
and subsonic speeds of solitons, exist in a particular region that is influenced by beam
parameters. In order to study the effect of electron beam on the traits of IA rogue waves
and on head-on collision of multi-solitons in a superthermally distributed plasma, Singla
and Saini [28] adopted the Poincaré–Lighthill–Kuo method and underlined the impact of
the electron beam and the electrons’ superthermality on the phase shift of multi-solitons
brought on by their interaction as well as on the propagation characteristics of IA solitons.
In a multicomponent beam plasma, the features of electron acoustic (EA) rogue wave series
were studied by Kaur et al. [30] and it was emphasized that the characteristic of EA rogue
wave series drastically changed in the presence of beam. The consequences of addition
of higher-order corrections to IA shocks with beam in superthermally distributed plasma
were studied by Saini and Singla [29]. It was remarked that in the absence (presence) of
beam, only positive (negative) polarity shocks existed and the higher orders contributed to
both polarity shock waves.

Owing to wave–particle interactions, external influences, and plasma components
that are no longer in equilibrium, energetic particles exist in space plasmas. These are
very energetic particles with extended high-energy tails, according to several satellite
data from space [31] and their velocity distribution alters the characteristics of plasma
constituents that influence the nonlinear structures. The highly energetic non-Maxwellian
particles are generally assumed to be described by the Kappa [32] and Cairns [33] velocity
distribution functions. For analysing nonlinear processes, the more generalised version of
non-Maxwellian distribution function may be the optimum distribution. So, it is preferable
to employ the VC distribution (as hybrid distribution) [34] compared to a single non-
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Maxwellian distribution to investigate several nonlinear phenomena because at the peaks,
the distribution function is well described by the Cairns distribution and along the tail, it is
well-justified by the kappa distribution. The VC distribution function is represented as [2]

fVC(Ve) = aκ

(
1 + α

Ve
4

Vth
4

)(
1 +

Ve
2

2κeVth
2

)−(1+κ)

(1)

where aκ = bκne0
π3/2αeκe3/2Vth

3 , αe = 1 + 3α, bκ = Γ(1+κ)
Γ(κ−1/2) , κe = κ − 3/2; the thermal velocity of

electrons is Vth =
√

T/m. For a realistic case, α < 1 (κ > 3/2), also for α = 0, kappa distri-
bution exists and with α = 0 & κ→ ∞, Maxwellian case is retrieved. To more accurately
analyse diverse linear and nonlinear phenomena occurring in space and astrophysical
circumstances, VC distribution function for plasma species has been developed [35–38].
Debnath and Bandyopadhyay [36] explored the combined effects of the Kappa and Cairns
distributed electrons on the IA solitary structures in a magnetized plasma in presence of
dust. It was reported that in the phase space at the vicinity of v = 0 in addition to at the tail
of the distribution curve, this combined distribution can produce significantly more highly
energetic particles. Another novel finding in the investigation of IA waves in magnetized
dusty plasma is the production of ion acoustic supersolitons in magnetized plasma without
the occurrence of an IA double layer. The dispersion and damping rate of IA waves was
examined by Shahzad et al. [37] both analytically and quantitatively. They reported that the
damping rate for VC distributed plasma is lower than Maxwellian one. Sarkar et al. [38]
examined the role of this distribution in electron-ion plasma on electrostatic wave prop-
agation. It was remarked that the wave is stabilised by the population of suprathermal
particles, whereas the wave is destabilised by the population of nonthermal particles.

In this work, we explore the properties of IA breathers from the solutions of NLSE
in a multicomponent plasma embedded with electron beam and composed of ions, VC
distributed electrons, in order to provide new insight into prior studies. Our objective
is to use the KP equation to derive NLSE. Then, from the solutions of this equation, the
influence of different plasma factors on the propagation characteristics of IA breathers has
been examined. The paper is organised as follows: Section 2 presents basic fluid equations.
The KP equation and the derivation of nonlinear Schrödinger equation are described in
Section 3. Section 4 presents the solution of NLSE and its analysis. The conclusions are
presented in Section 5.

2. Basic Fluid Equations

A plasma made up of fluid ions and electrons that follow VC distribution and are
penetrable by an electron beam is studied. The group of normalized fluid equations is
denoted as [2]:

The continuity equation for ions and electrons beam is

∂nj

∂t
+

∂(njuj)

∂x
+

∂(njvj)

∂y
= 0, (2)

here, j = i, b. The momentum equations for ions and beam are written as

For ions:
∂ui
∂t

+ ui
∂ui
∂x

+ vi
∂ui
∂y

= −∂φ

∂x
− 2θie

∂ni
∂x

, (3)

∂vi
∂t

+ ui
∂vi
∂x

+ vi
∂vi
∂y

= −∂φ

∂y
− 2θie

∂ni
∂y

. (4)
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For electron beam:

∂ub
∂t

+ ub
∂ub
∂x

+ vb
∂ub
∂y

=
1

µm

∂φ

∂x
− 2θbe

µm

∂nb
∂x

, (5)

∂vb
∂t

+ ub
∂vb
∂x

+ vb
∂vb
∂y

=
1

µm

∂φ

∂y
− 2θbe

µm

∂nb
∂y

, (6)

with µm = me/mi. The Poission equation is written as

∂2φ

∂x2 +
∂2φ

∂y2 = −ni + µei(1 + W1φ + W2φ2 + . . . ) + nb. (7)

The expression of normalized VC distributed electron density is given as [2]

ne = 1 + W1φ + W2φ2 + . . . , (8)

where, W1 =

 1− ∆→ Cairns distribution
ke− 1

2
ke− 3

2
→ Kappa distribution

and

W2 =


1
2 → Cairns distribution

k2
e− 1

4
2(ke− 3

2 )
2 → Kappa distribution

The superthermality and nonthermality (with ∆ = 4α1
(1+3α1)

) of electrons are shown by
the spectral index κe and α1. Here, nj(=i,b,e) denotes the number density of ions, beam, and
superthermal electrons and is normalized by unperturbed ion density. ui,b are normalized
by sound speed cs(= (KBTe/mi)

1
2 ). The temperature of ions and beam is represented by

Ti and Tb with θie = Ti/Te and θbe = Tb/Te. Time coordinate and potential function are

normalized by inverse of plasma ion frequency
(

ωp,i
−1 =

(
mi

4πni0e2

)−1
2
)

and φ0 = KBTe/e,

respectively. The space variable is normalized by Debye length
(

λD,e =
(

KBTe
4πni0e2

) 1
2
)

. The

charge neutrality condition yields as 1 = µei + µbi with µbi =
nb0
ni0

and µei =
ne0
ni0

.

3. The KP Equation and Derivation of Nonlinear Schrödinger Equation (NLSE)

We have employed the reductive perturbation technique, the stretching of independent
variables (space and time) for transverse perturbation, to construct the KP equation which
elaborates the nonlinear features of ion acoustic waves in given plasma and is:

X = ε(x−Vt), Y = ε2y and T = ε3t, (9)

The extended form of the perturbed quantities is [2]:

ni = 1 + ε2ni
(1) + ε4ni

(2) + . . .

nb = µbi + ε2nb
(1) + ε4nb

(2) + . . .

ui = ε2ui
(1) + ε4ui

(2) + . . .

ub = ul + ε2ub
(1) + ε4ub

(2) + . . .

φ = ε2φ(1) + ε4φ(2) + . . .

vi = ε3vi
(1) + ε5vi

(2) + . . .

vb = ε3vb
(1) + ε5vb

(2) + . . .

(10)
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A series of equations may be obtained by replacing Equations (9) and (10) in
Equations (2)–(7) and equating the coefficients of different powers on each side. The
following KP equation has been obtained from the above equations [2,5] :

∂

∂X

[
∂φ(1)

∂T
+ B

∂3φ(1)

∂X3 + Aφ(1) ∂φ(1)

∂X

]
+ C

∂2φ(1)

∂Y2 = 0. (11)

The nonlinear, dispersion and higher-order coefficients are stated as:

A = B
[
33V2Vθ1

3 − 2µeiW2 − 4µmµbi(ul −V)2Vθ2
3
]
,

B =
[
2VVθ1

2 − 2µmµbi(ul −V)Vθ2
2
]−1

,

C = B
[
V2Vθ1

2 + µmµbi(ul −V)Vθ2

]
.

(12)

with Vθ1 − µeiW1 + µbiVθ2 = 0 obtained as dispersion relation; here, Vθ1 = 1
V2−2θie

and

Vθ2 = 1
µm(ul−V)2−2θbeµbi

. Further details can be seen in paper reported by Kohli et al. [5].
The same KP Equation (11) has been employed in this study to examine at the peculiarities
of breathers. To derive NLSE from the KP equation, we have employed transformation as
φ(X, Y, T) = Φ($, T) and $ = FX + GY−MT. Here, F and G are direction cosines of the
wave vector along the X and Y axes, respectively, so that F2 + G2 = 1 and M is an arbitrary
parameter same as the Mach number. Substituting new variables in Equation (11), we get:

∂TΦ($, T) + FAΦ($, T)∂$Φ($, T) + F3B∂$
3Φ($, T) = 0, (13)

where M = G2C
F = (1−F2)C

F . We assume the solution of Equation (13) as [39]:

Φ($, T) =
∞

∑
n=1

εn
∞

∑
l=−∞

Φl
n($, T)exp[il(k$−ωT)], (14)

where ω represents the frequency and k denotes carrier wave number. The new stretched
coordinates are ξ = ε($− vgT) and t = ε2T. For further derivation, using the procedure
adopted in [4], we have determined the different quantities and NLSE as follows.

Dispersion relation is obtained from first-order approximation (l = 1, n = 1) as follows:

ω = −F3k3B. (15)

The group velocity is determined from first harmonic (l = 1) of second approximation
(n = 2) as

vg = −3F3k2B. (16)

The zeroth harmonic (l = 0, n = 2) gives

Φ(0)
2 =

(
A
vg

)
| Φ(1)

1 |
2
. (17)

From the second harmonic, we get

Φ(2)
2 =

(
A

6F2k2B

)
| Φ(1)

1 |
2
. (18)

After rigorous algebraic calculations and by eliminating higher-order terms, from
n = 3, l = 1, we get the NLSE as [3]

i∂tΦ +
P
2

∂ξ
2Φ +Q | Φ |2 Φ = 0, (19)
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for simplicity Φ(1)
1 = Φ. The nonlinear coefficient Q = A2F2

P and dispersion coefficient
P = 6F3Bk depend upon various plasma parameters through A and B so that it can alter
the stability condition. To discuss the modulational instability, we consider a small per-
turbation δΦ such that Φ = Φ0 + δΦeiQ|Φ0|2t; here, the term Q| Φ0 |2 represents nonlinear
frequency shift. The amplitude of carrier wave (Φ0) is greater than perturbation (| δΦ |).
By substituting the value of Φ in Equation (19) and from first-order quantities, we obtain

i∂t(δΦ) +
P
2

∂ξ
2(δΦ) +Q | Φ |2 (δΦ + δΦ∗) = 0. (20)

The amplitude of perturbation is assumed to be proportional to ei(kξ−νt) and this
condition yields to

ν2 = P2k4 − 2PQ| Φ0 |2. (21)

From this equation, it is disclosed that ν2 > 0 for all k only when PQ is negative. So,
ν is real and tends to stability of wave. On the contrary, for a positive value of PQ, ν turns

to imaginary (for wave number (k)< critical value

(
kc =

(
2Q|Φ0|2

P

) 1
2

)
and wave becomes

modulationally unstable. The expression for growth rate instability for this case is given by

Γr = Im(ν) =

[
P2k4

(
kc

2

k2 − 1

)] 1
2

. (22)

It acquires maximum value, i.e., Q | Φ |2 at k =
(

kc
2

2

) 1
2 . There is much curiosity in

the events that lead to breather waves becoming significant, and several explanations have
been offered.The nonlinear mechanism of the self-wave interactions, such as the MI of the
envelope IA waves, is a key theory and has been shown to create a massive wave in specific
circumstances.

4. Various Types of Localized Solutions of the NLSE

There are various types of solutions of NLSE those describe different kinds of nonlinear
waves, named freak waves, breathers, Peregrine solitons, etc. Basically, these waves are
result of the wave instability; the growth of instability is nonlinear which tends to localize
the energy of wave into one particular region. Generally, the first-order breather solution of
Equation (20) is given as [13]

Φb =

(
P
Q

) 1
2
[

1 +
2(1− 2R)cosh[C2P t] + i C2 sinh[C2P t]

(2R)1/2cos[C1ξ]− cosh[C2P t]

]
exp[iP t]. (23)

Here, C1 = 2(1 − 2R)1/2 and C2 = (2R)1/2m, as it is clear from these quantities, the
physical behaviour of this solution depends upon the parameter R. Further, this solution
has been categorized into three types of breather solutions: (i) space–time localized solution,
(ii) space localized solution, (iii) time periodic solution. These solutions are illustrated
as follows:

(i) Space–time localized solution: The solution given by Equation (23) turns down to freak
wave solution or space–time localized solution as R→ 1/2. Peregrine was the first
scientist to study the first-order freak wave as the solution of the generalised NLSE.
Localized pulses of massive amplitude are produced as a result of self-modulation
occurring inside the slowly evolving amplitude-modulated perturbation. Addition-
ally, the first-order freak wave’s observed amplitude is three times that of the adjacent
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carrier wave, which is consistent with the NLSE’s rational inference. The expression
for first-order freak waves is given as

Φ f = limR→ 1
2
Φb =

(
P
Q

) 1
2
[

1− 4(1 + 2iP t)
1 + 4ξ2 + 4P2t2

]
exp(iP t), (24)

the amplitude is maximum when ξ and t both are zero, i.e., Φ f max = 3
(
P
Q

) 1
2 . Further,

when a number of first-order freak waves superimpose on each other and produce a
wave that remains localized in both space and time but its amplitude is more than
individual waves, this is named a super freak wave. The expression for super freak
wave is

Φ f s =

√
P
Q

(
1 +
R1 + iS1

T1

)
e(iP t), (25)

R1 =
3
8
− ξ2

2
− 3ξ2

2
− 6(Pξt)4 − 10(P t)2, (26)

S1 = P t
[
−15

4
+ ξ4 − 3ξ2 + 4(ξt)2 + 4(P t)4 + 2(P t)2

]
(27)

T1 =
3

32
+

ξ6

12
+

ξ4

8
+

ξ4(P t)2

2
+

9
16

ξ2 − 3
32

(Pξt)2 +
2
3
(P t)6 +

9(P t)4

2
+

33(P t)2

8
. (28)

(ii) Space localized solution: In Equation (23) for 0 < R < 1/2 and C1 < 2, C2 > 0, the
solution will have real values localized in time and exhibit a periodic modulation in
space ξ with period 2π/m (here), known as Akhmediev breather. The expression for
the peak amplitude is given as

| Φb |max=

(
P
Q

) 1
2
(1 + (8R)

1
2 ), for R ε (0, 0.5) (29)

(iii) Time periodic solution: In Equation (23) for 0.5 < R < ∞, the C1, C2 become imaginary
and hyperbolic functions are replaced with ordinary circular functions and vice versa,
the solution will have real values; the solution is periodic in time (with period 2π/nP)
and is known as Kuznetsov–Ma breather, given as

Φkb =

(
P
Q

) 1
2
[

1 +
2(1− 2R)cos[C2P t]− i C2 sin[C2P t]

(2R)1/2cosh[C1ξ]− cos[C2P t]

]
exp[iP t]. (30)

The peak amplitude is | Φb |max=
(
P
Q

) 1
2
(1 + (8R)

1
2 ), for R ε (0.5, ∞). The peak

amplitude of the Kuznetsov–Ma breather is more than that of the Akhmediev breather.
Thus, the characteristics of breathers depend on various plasma parameters through
nonlinearity and dispersion coefficients by varying different physical parameters.

Figure 1 depicts the plot of growth rate of instability (Γr) with wave number (k) for
the cases of with and without beam. It is observed that the growth rate of instability (Γr)
increases to its maximum value, then starts decreasing as the value of wave number (k)
increases. With increase in ratio of density of beam to ions (µbi), nonthermality parameter
(α1) growth rate of instability decreases, and with the superthermality parameter (κe), it
increases. It is also observed that the maximum value of growth rate for without beam
is eight times lower than the case of with beam. This implies that the electron beam
parameters have significant impact on the growth rate of instability.
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(a) (b)

Figure 1. The plot of growth rate of instability (Γr) with wave number (k) (a) with beam, for reference
curve: µbi = 0.09, κe = 3.5, α1 = 0.3; (b) without beam; other parameters are µbi = 0.09, θbe = 0.2,
u = 0.2 and θie = 0.1 and ul = 1.25.

Figure 2 reveals the first-order freak waves’ profile with/without beam. It is easily
perceived that the large amount of energy is intensified in a small area in space so the
amplitude of freak waves’ profile | φ1 | enhances vertically very high as compared to
surroundings. The wave withdraws energy from other neighbouring waves and fixates
it into a particular place, then become unstable and soon collapses. Figure 2a shows that
with an increase in ratio of density of beam to ions (µbi), the nonlinearity and dispersion are
increased which results in an increase in amplitude and width of first-order freak waves.
On increasing the ratio of temperature of beam to electrons (θbe), nonlinearity decreases
which makes the amplitude of first-order freak waves decrease. The variation of first-order
freak waves’ profile | φ1 | with superthermality (κe) and nonthermality (α1) parameters
with beam is illustrated in Figure 2b.

With an increase in superthermality coefficient (κe) (i.e., decrease in superthermality),
nonlinearity decreases, and with an increase in nonthermality parameters (α1), nonlinearity
increases; hence, the amplitude of first-order freak waves is increased. Thus, the ratio of
density of beam to ions, the ratio of temperature of beam to electrons, and superthermality
and nonthermality parameters greatly influence the characteristics of first-order freak waves.
The three-dimensional variation and contour plot of first-order freak waves is shown in
Figure 2c,d, respectively. From Figure 2e, it is observed that the amplitude of first-order freak
waves is less for the case of without beam (µbi = 0). By virtue of dispersion of waves over a
large scale, there is enhancement in profile with respect to spacial and temporal coordinates.

Further, the behaviour of second-order freak waves’ profile | φ f s | with respect to
change in ratio of density of beam to ions (µbi), ratio of temperature of beam to electrons
(θbe), superthermality (κe) and nonthermality (α1) parameters has been examined in Figure 3.
From Figure 3a,b, it is evident that the amplitude of second-order freak waves is larger
than the first-order freak waves due to the superposition of energies of the first-order freak
waves. Also with an increase in the ratio of density of beam to ions (ratio of temperature of
beam to electrons), the nonlinearity and dispersion are increased (decreased) which results
in an increase (decrease) in the amplitude and width of second-order freak waves. The
characteristics of second-order freak waves’ profile | φ f s | with superthermality (κe) and
nonthermality (α1) parameters have been illustrated in Figure 3b. The figures epitomize
that when the value of superthermality parameter (κe) and nonthermality parameter (α1)
are raised then nonlinearity and dispersion effects are decreased for kappa but increased for
nonthermal case, consequently the amplitude and width of super freak waves are reduced
(enhanced) for superthermal (nonthermal) case. The three dimensional variation and
contour plot of first order freak waves has been shown in Figure 3c,d respectively. There is
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large-scale spatial and temporal variation. From Figure 3e, it is observed that the amplitude
of second-order freak waves is less for without beam (µbi = 0). It is emphasised that the
dynamics of IA freak waves are evidently influenced by the presence of an electron beam.

(a) (b)

(c) (d)

1

1

(e)

Figure 2. The variation of first- order freak waves’ profile (|φ f |) with (a) ratio of density of beam
to ions (µbi), ratio of temperature of beam to electrons (θbe); (b) superthermality parameter (κe),
nonthermality parameter (α1); Solid reference curve: µbi = 0.09, θbe = 0.2, ul = 1.25 and θie = 0.1;
(c) 3D profile; (d) contour plot; (e) without beam (µbi = 0).
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(a) (b)

(c) (d)

(e)

Figure 3. The variation of super freak waves’ profile (|φ f s|) with (a) ratio of density of beam to ions
(µbi), ratio of temperature of beam to electrons (θbe); (b) superthermality parameter (κe), nonthermality
parameter (α1); Solid reference curve: µbi = 0.09, θbe = 0.2, ul = 1.25 and θie = 0.1; (c) 3D profile;
(d) contour plot; (e) without beam (µbi = 0).

Figures 4 and 5 present Akhmediev breathers’ profile and Kuznetsov–Ma breathers’
profile, respectively. From Figures 4a and 5a, it is depicted that on increasing the value of
parameter R, the amplitude is increased. It is also reflected that Akhmediev breathers are
periodic along the space coordinates (see Figure 4b) and from the Kuznetsov–Ma breathers’
profile (see Figure 5b), it is clear that these breathers are periodic in spacial and localized in
temporal coordinates and their contour plots are respectively shown in Figures 4c and 5c.
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In other words, the solution of Akhmediev breathers’ profile reduces to localized in both
space and time.

(a)

(b)

1

1

(c)

Figure 4. The plot of Akhmediev breather’s profile (|φb|) with ξ (a) for different values of parameter R;
(b) 3D plot; (c) contour plot; the other parameters are the same as given in Figure 1.
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(a)

(b)

(c)

Figure 5. The plot of Kuznetsov–Ma breather’s profile (|φkb|) with ξ (a) for different values of
parameter R; (b) 3D plot; (c) contour plot; the other parameters are the same as given in Figure 1.
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Finally, it is highlighted that all parameters, viz., density ratio of beam to ions (µbi),
temperature ratio of beam to electrons (θbe), superthermality (κe), and nonthermality (α1)
of electrons play a very significant role in the evolution of different potential IA nonlinear
structures in the given plasma environment.

5. Conclusions

This study focuses on the properties of rogue waves and breathers in fluid ions as
well as in electron beam and electron obeying VC distribution. From the KP equation
using suitable transformation, NLSE has been derived to study the different kinds of freak
waves and breathers. The combined effects of beam density as well as temperature of beam,
ion temperature, superthermality, and nonthermality of electrons on breathers have been
examined. The key findings are as follows:

• The amplitude of freak waves is more in the presence of beam.
• With increase in parameter R, the amplitude of breathers’ structures increases.
• The beam parameters highly modify the properties of freak waves and breathers.

The increase in superthermality parameter (i.e., decrease in superthermality) and
nonthermality parameters has a great impact on the amplitude of IA freak waves.

The outcomes of the present investigation may be of great importance to analyse
nonlinear phenomena in plasma environments such as in the upper layer of magnetosphere
where VC distributed hot electrons, hot ions, and hot electron beams may exist.
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24. Lakhina, G.S.; Singh, S.V.; Kakad, A.P.; Goldstein, M.L.; Viñas, A.F.; Pickett, J.S. A mechanism for electrostatic solitary structures

in the Earth’s magnetosheath. J. Geophys. Res. 2009, 114, A09212. [CrossRef]
25. Saini, N.S.; Kourakis, I. Electron beam-plasma interaction and ion-acoustic solitary waves in plasmas with a superthermal electron

component. Plasma Phys. Control. Fusion 2010, 52, 075009. [CrossRef]
26. Saberian, E.; Esfandyari-Kalejahi, A.; Rastkar-Ebrahimzedeh, A.; Afsari-Ghazi, M. Propagation of ion-acoustic solitons in an

electron beam-superthermal plasma system with finite ion-temperature: Linear and fully nonlinear investigation. Phys. Plasmas
2013, 20, 032307. [CrossRef]

27. Kaur, M.; Kaur, R.; Saini, N.S. Two-dimensional ion-acoustic solitons in electron beam plasma. Afr. Rev. Phys. 2020, 15, 111.
28. Singla, S.; Saini, N.S. Head-on collision of ion-acoustic multi-solitons and study of rogue waves in electron-beam superthermal

plasma. Res. Phys. 2021, 22, 103898. [CrossRef]
29. Saini, N.S.; Singla, S. Ion acoustic shocks with contribution of higher order effects in a superthermal beam-plasma. Chin. J. Phys.

2022, 77, 366. [CrossRef]
30. Kaur, R.; Singh, K.; Saini, N.S. Electron acoustic rogue waves in Earth’s magnetosphere. J. Astrophys. Astron. 2022, 43, 62.

[CrossRef]
31. Livadiotis, G. Kappa Distributions: Theory and Applications in Plasmas; Elsevier: Amsterdam, The Netherlands, 2017.
32. Vasyliunas, V.M. A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys.

Res. 1968, 73, 2839. [CrossRef]
33. Cairns, R.A.; Mamun, A.A.; Bingham, R.; Boström, R.; Dendy, R.O.; Nairn, C.M.C.; Shukla, P.K. Electrostatic solitary structures in

non-thermal plasmas. Geophys. Res. Lett. 1995, 22, 2709. [CrossRef]
34. Abid, A.A.; Ali, S.; Du, J.; Mamun, A.A. Vasyliunas-Cairns distribution function for space plasma species. Phys. Plasmas 2015,

22, 084507. [CrossRef]
35. Ahmad, N.; Abid, A.A.; AL- Hadeethi, Y.; Qureshi, M.N.S.; Rehman, S. The effect of positive/negative ion on the dust grain

charging process in a Vasyliunas-Cairns (VC)-distributed dusty plasma system. Plasma Sci. Technol. 2019, 21, 065001. [CrossRef]
36. Debnath, D.; Bandyopadhyay, A. Combined effect of Kappa and Cairns distributed electrons on ion acoustic solitary structures in

a collisionless magnetized dusty plasma. Astrophys. Space Sci. 2020, 365, 72. [CrossRef]
37. Shahzad, M.A.; Aman-ur-Rehman; Mahmood, S.; Bilal, M.; Sarfraz, M. Kinetic study of ion-acoustic waves in non-thermal

Vasyliunas-Cairns distributed plasmas. Eur. Phys. J. Plus 2022, 137, 236. [CrossRef]
38. Sarkar, S.; Paul, S.; Parvin, S. Collective effect of nonthermal and suprathermal particles on electrostatic waves and instabilities in

Vasyliunas-Cairns distributed plasmas. Phys. Scr. 2023, 98, 045617. [CrossRef]
39. El-Labany, S.K.; Moslem, W.M.; El-Bedwehy, N.A.; Abd El-Razek, H.N. Nonplanar dust ion-acoustic solitary and shock excitations

in electronegative plasmas with trapped electrons. Astrophys. Space Sci. 2012, 337, 231. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.7566/JPSJ.88.074501
http://dx.doi.org/10.3389/fphy.2020.602229
http://dx.doi.org/10.1140/epjd/e2019-100589-1
http://dx.doi.org/10.1080/17455030.2021.1912435
http://dx.doi.org/10.3390/sym13112029
http://dx.doi.org/10.1109/TPS.2021.3113727
http://dx.doi.org/10.1063/1.864400
http://dx.doi.org/10.1017/S0022377898007429
http://dx.doi.org/10.1063/1.1399326
http://dx.doi.org/10.1063/1.1695558
http://dx.doi.org/10.1063/1.1857528
http://dx.doi.org/10.1029/2009JA014306
http://dx.doi.org/10.1088/0741-3335/52/7/075009
http://dx.doi.org/10.1063/1.4795745
http://dx.doi.org/10.1016/j.rinp.2021.103898
http://dx.doi.org/10.1016/j.cjph.2021.10.047
http://dx.doi.org/10.1007/s12036-022-09843-6
http://dx.doi.org/10.1029/JA073i009p02839
http://dx.doi.org/10.1029/95GL02781
http://dx.doi.org/10.1063/1.4928886
http://dx.doi.org/10.1063/1.4928886
http://dx.doi.org/10.1088/2058-6272/ab0333
http://dx.doi.org/10.1007/s10509-020-03786-6
http://dx.doi.org/10.1140/epjp/s13360-022-02463-7
http://dx.doi.org/10.1088/1402-4896/acc433

	Introduction
	Basic Fluid Equations
	The KP Equation and Derivation of Nonlinear Schrdinger Equation (NLSE)
	Various Types of Localized Solutions of the NLSE
	Conclusions 
	References

